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Abstract
To alleviate the communication bottleneck of distributed deep learn-
ing training, several data compression algorithms have been pro-
posed. However, these algorithms introduce computational over-
head and resource allocation concerns on CPUs and GPUs. In this
paper, we introduce SqueezeNIC, an FPGA-based Network Inter-
face Card (NIC) that offloads communication compression from
CPUs/GPUs, bridging a high bandwidth intra-node network with
a high bandwidth inter-node network. It enables better overlap of
gradient communication and computation to further reduce train-
ing time per iteration in distributed training. Our evaluations shows
that SqueezeNIC achieves line rate compression and can speed up
training by up to a factor of 1.21×, compared to baseline approaches.
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1 Introduction
Distributed Deep Learning (DDL) has experienced rapid growth
in recent years, due in part to the emergence of very large deep
learning models on the one hand and the ever-increasing size of
training data on the other hand [1, 13, 14, 16, 21, 25, 27, 28]. The
Data Parallel (DP) distributed training paradigm is typically adopted
when the size of a Deep Neural Network model fits within the mem-
ory of a single compute worker [56], where the model is replicated
across multiple workers, with training data partitioned among them.
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Weight and gradient aggregation among workers occurs at peri-
odic intervals, facilitated by collective communication primitives.
Conversely, when the model exceeds the memory capacity of a
single worker, various distributed training methodologies can be
employed, including Pipeline Parallel [26], Tensor Parallel [43],
and Fully Sharded Data Parallel (FSDP) [38, 58] approaches. In all
of these methodologies, the model is partitioned among multiple
workers, with intermediate results exchanged along with weight
and gradient aggregation similar to DP.

All of these distributed training strategies are based on collective
communication operations to synchronize intermediate results be-
tween several workers during training. Although DDL has greatly
improved training throughput, weight and gradient communica-
tion have become a performance bottleneck [40, 42, 54]. Within
a node, GPUs can synchronize between training steps over high-
speed internal networks such as NVLink, which provides 600-900
GB/s bi-directional bandwidth [34]. This enables efficient commu-
nication and coordination between GPUs, enabling fast collective
operations within a node. However, for collective operations involv-
ing multiple nodes, communication over the inter-node network
becomes a bottleneck because inter-node network bandwidth of 50-
100 GB/s [60, 61], is an order of magnitude lower than intra-node.

To address this mismatch, Data Compression (DC) [32] algo-
rithms have been proposed for inter-node communication in DDL.
These can be divided into three main classes, namely: (1) Sparsifi-
cation algorithms - where sparsity in the gradient/weight matrix
is exploited and only a subset of values are transmitted [5, 32, 52];
(2) Quantization algorithms that limit the numerical precision used
to represent gradients [7, 11, 30, 53, 54], and finally (3) Low-Rank
decomposition [45, 47, 48]. General-purpose CPUs are not well
suited to DC due to their limited computational power and the
bottleneck imposed by the PCIe interface. On the other hand, while
GPUs are well suited for DC operations, they incur a non-negligible
computational overhead and consume computational resources that
are normally reserved for training and other computational tasks.
Therefore, using GPUs for data compression can slow down the
training process [4, 50].

In this work, we propose to offload the compression operations
to an FPGA-based NIC, named SqueezeNIC. SqueezeNIC enables
compression operations with negligible overhead on the one hand,
as well as further reducing compression overhead by overlapping
compression operations with communication. Taken together these
factors mean SqueezeNIC reduces training time per iteration in
the DDL environment. Crucially, SqueezeNIC is designed to inter-
face a high bandwidth intra-node GPU network with a traditional
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datacenter inter-node network, to overcome the significant band-
width mismatch between them. Specifically, we make the following
contributions: 1) We present the concept, design, and implemen-
tation of an FPGA-based NIC, called SqueezeNIC, that provides
high computational throughput for DC, and novel approaches for
application in DDL training. 2) We experimentally demonstrate
that SqueezeNIC can perform compression operations at line-rate
with negligible overhead, resulting in a speedup of 1.21× compared
to baseline approaches.

2 Design specification
SqueezeNIC is a hardware component that connects an intra-node
aggregation network to an inter-node network. The intra-node net-
work is a high-bandwidth on-board interconnect enabling multiple
GPUs to communicate at high bandwidth, such as NVLink. The
inter-node network is a high-speed Ethernet network built using
commodity hardware components. The key aim of SqueezeNIC is
to use compression to overcome the bandwidth imbalance between
the intra-node and inter-node networks. For example, NVLink 3.0
offers an aggregate bi-directional bandwidth of 600 GB/s, while
NVLink 4.0 offers 900 GB/s. These bandwidths are over an order of
magnitude higher than the 50 GB/s (400 Gbps) networks currently
available. SqueezeNIC uses compression to mimic a higher through-
put inter-node network to allow for faster collective communication
in distributed applications.

To enable compression with negligible overhead, SqueezeNIC
is required to ingest data at the extremely high intra-node band-
width, complete compression operations at line-rate and transmit
compressed data at the high inter-node bandwidth. This requires
hardware acceleration through deep pipelines that can parallelize
and pipeline compression operations and meet the required data
rates. For connectivity to both the intra-node network and the inter-
node network, high frequency transceivers are required. These are
used on all platforms that support high speed serial interface stan-
dards, such as PCI Express, High Bandwidth Memory, or NVMe.
Considering the bandwidths under consideration, a sufficiently high
number of transceiver pairs are required to support the required
rates at the intra- and inter-node sides.

2.1 Architecture
In selecting a suitable hardware architecture, we seek to balance
the high bandwidth and computational requirements with the fact
that proven approaches to compression in distributed deep learning
are diverse. Indeed, different models benefit from different types
of compression [57], and even as training progresses, different
forms of compression can be beneficial [2, 3, 6, 39, 55]. Hence, we
also require computational flexibility. Finally, a key factor in the
types of computation required for compression is efficient bit-level
manipulation, especially in the case of quantization. Hence, we
propose using FPGAs as our deployment platform. We show that
they are able to (1) sustain the required interconnect bandwidth,
(2) meet the resulting processing requirements through sufficient
parallelization and pipelining, and (3) entail minimal latency.

In terms of connectivity, FPGAs offer ample numbers of high
speed transceiver pairs. On commercially available FPGA accelera-
tor boards, these are used to interface FPGAs with PCI Express and

high-speed networking. Mid-size and larger devices in the Xilinx
Virtex UltraScale+ family contain 80-100+ transceivers, each sup-
porting 32.75 Gbps communication, for an aggregate bandwidth of
2.6-4+ Tbps into and out of the FPGA. This makes FPGAs suitable
to interface directly with the intra-node network (e.g., by commu-
nicating directly with GPUs via NVLink).
Quantization acceleration. Quantization is a point-wise opera-
tion which can be applied to a stream without intermediate packet-
level buffering. To compress from host-to-network, SqueezeNIC
ingests the host side stream from the intra-node network at line
rate, and applies the point-wise compression operation to the tensor
values in this stream with sufficient parallelization to maintain line
rate processing. Depending on the quantization operation being
performed, the depth of the processing pipeline can vary from a few
to tens of clock cycles. This added latency is negligible in terms of
impact on overall communication time. Packets for transmission are
assembled inside SqueezeNIC and sent out on the inter-node net-
work. To decompress from network-to-host, network packets are
ingested from the network at line rate and decompressed through
parallel decompressors and reassembled into the packet format for
the intra-node network. Any metadata required for the quantiza-
tion operation is assumed to be supplied by the GPUs in a packet
header.
Sparsification Acceleration Sparsification is more complex. If
the sparsification operation can be expressed through a stream-
ing process using metadata from the GPUs (such as sending only
tensor values above a fixed threshold value, or block-based spar-
sification [19]), then the compression operators are laid out as for
the quantization mode above. However, if the sparsification is a
multi-pass operation, then SqueezeNIC is required to buffer tensors
(or blocks) internally. To enable line-rate processing, HBM memory
is used with a double buffered arrangement. The first side of the
double buffer is filled by the host intra-node link, while the second
side is read into the sparsifier architecture and out over the inter-
node network. In this scenario, the performance of SqueezeNIC
is bottlenecked by the bandwidth to HBM. Currently, the HBM2
on the AMD Virtex UltraScale+ offers an aggregate bandwidth of
460 GB/s, while the HBM2e on the AMD Versal ACAP offers an
aggregate bandwidth of 819 GB/s. With the double-buffer, the bot-
tleneck would be half of this bandwidth. HBM3 would be sufficient
to support the currently available NVLink bandwidths for arbitrary
sparsification operations.

2.2 SqueezeNIC Compression Approaches
For simplicity, we employ the Data Parallel (DP) distributed training
approach in describing SqueezeNIC compression approaches. How-
ever, we note that compression is also applied in other strategies
such as FSDP [46]. In DP, only the weight gradients are communi-
cated; therefore, compression is discussed in the context of gradient
compression. Prior works [10, 57] usually first perform a local ag-
gregation of the gradient vectors across the intra-node GPUs, then
a GPU within the node compresses the aggregated gradient vector.
Afterwards, inter-node aggregation is invoked, where the inputs
consist of a single compressed gradient vector per node. Finally,
each GPU obtains a copy of the aggregated gradient and decom-
presses it. We view this approach as the simplest baseline for our
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work. Although there are many ways to perform compression op-
erations with respect to intra-node communication, we consider
only two approaches where we believe we can intuitively perform
better than the baseline. We discuss the two approaches below.
Approach 1: Local Reduction + In-Network Compression
(LR+INC). In this approach, a local reduce-scatter operation takes
place among the intra-node GPUs. After this operation, each of the
GPUs transmits the different partitions of the reduced gradients that
it holds to SqueezeNIC. Here, SqueezeNIC compresses the received
local gradient, initiates a global reduction with other nodes, and
subsequently broadcasts the resultant aggregated gradient to all
local GPUs.
Approach 2: Compress, Then Local Reduction + In-Network
Compression (CTLR+INC). Another approach follows a similar
pattern to the previous approach, but with a slight variation. In
this scenario, each GPU first compresses its own gradient before
any local aggregation occurs. Once each GPU has compressed its
gradient, these compressed gradients are then locally aggregated
within each node. To avoid format conversion overheads, this step
requires that the compressed gradients can be aggregated in their
compressed format (e.g., as done in [54]). Afterward, the aggre-
gated gradient from each node is sent to SqueezeNIC. SqueezeNIC
performs further compression on the already aggregated gradients
and facilitates global reduction across different nodes. The final
aggregated gradient is then broadcast to all GPUs in the network,
completing the optimization process.
Further optimizations. To reduce latency, we use pipelining to
optimize the above approaches. To apply pipelining, the input gra-
dient vector is divided into 𝐾 partitions; we split the pipeline into
two stages: one for gradient computation and the other for gra-
dient synchronization. The synchronization stage includes gradi-
ent communication, compression, and decompression operations.
Pipelining allows us to overlap both stages while one partition is be-
ing computed another can undergo synchronization improving the
throughput of the training process and node resource utilization.

3 Performance model
We now analyze the proposed approaches in terms of the number of
computational and communication operations and the duration of
each of these operations per iteration. We assume 𝑁 nodes intercon-
nected by a non-blocking inter-node network with full-bisection
bandwidth. Each node is connected to the fabric with an effective
bandwidth 𝐵 in each direction (transmit and receive). Each node has
𝑀 GPUs interconnected via internal links with an effective band-
width 𝑉 in each direction. The original gradient vector has a size
of 𝑧 bytes on each GPU. Gradient compression uses a compression
rate 𝑟 so that the compressed gradient has size 𝑟𝑧.

We assume that all approaches have the same backpropagation
time, which allows us to ignore this in the performance comparison.
Additionally, to compare the proposed approaches with each other
(not with the baseline), we can also ignore the inter-node reduction
time since the process is the same for all approaches. We assume
that the communication routine uses ring AllReduce for gradient
reduction and we follow the modeling approach of Patarasuk et
al. [35]. The AllReduce algorithm consists of two phases; the Re-
duceScatter and the AllGather phases. For intra-node reduction,

Table 1: Definition of notation. Both GPUs and SqueezeNIC
are termed accelerators.

Term Description

𝑔𝑖,𝑘 Gradient partition 𝑘 at training iteration 𝑖

𝑇 𝑖𝑛𝑡𝑟𝑎𝑐𝑜𝑚𝑚 (𝑔𝑖,𝑘 )
Time taken to communicate gradient 𝑔𝑖,𝑘 between
two accelerators

𝑇 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑚𝑚 (𝑔𝑖,𝑘 )
Time taken to communicate gradient 𝑔𝑖,𝑘 between
two accelerators

𝑇𝐻𝑤
𝐶𝑜𝑚𝑝

(𝑔𝑖,𝑘 )
Time taken to compress gradient 𝑔𝑖,𝑘 on a hardware
accelerator

𝑇𝐻𝑤
𝐷𝑒𝑐𝑜𝑚

(𝑄 (𝑔𝑖,𝑘 ))
Time taken to decompress gradient 𝑄 (𝑔𝑖,𝑘 ) on a
hardware accelerator

𝑄 (𝑔𝑖,𝑘 )
Compressed gradient using compression operator
𝑄 (.)

our proposed approaches only require the ReduceScatter phase and
does not have to broadcast the aggregated gradient to all the GPUs
inside the node. Instead, they only need to send the aggregated
gradient for global (inter-node) reduction.

We employ the alpha-beta communication model [35] to esti-
mate the communication costs. The model considers “alpha” as the
latency overhead–the fixed time cost of initiating a communication–
and “beta” as the inverse bandwidth, representing the time required
to transmit each unit of data.

𝑇 (𝑧) = 𝛼 + 𝛽𝑧

We also introduce the necessary terms to simplify the analysis
and effectively capture the performance components in Table 1.

Having introduced all the necessary notation, we proceed to
analyze the performance of the proposed approaches. We start by
modeling the time needed for the baseline. The gradient synchro-
nization baseline starts with a compressed local reduction using
GPUs followed by a compressed global reduction using GPUs and
NICs for communication.

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑔𝑖,𝑘 ) = (𝑀 − 1)𝑇 𝑖𝑛𝑡𝑟𝑎𝑐𝑜𝑚𝑚 (𝑔𝑖,𝑘 ) + 2(𝑁 − 1)𝑇 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑚𝑚 (𝑔𝑖,𝑘 ) (1)

Approach 1 (ReduceScatter for the local reduction, then Ring
AllReduce): The first approach starts with non-compressed local
reduction, then the locally aggregated gradient is sent to the hard-
ware accelerator (SqueezeNIC or GPU) to perform a compressed
global reduction.

𝑇𝐴𝑝𝑝1 (𝑔𝑖,𝑘 ) =(𝑀 − 1)𝑇 𝑖𝑛𝑡𝑟𝑎𝑐𝑜𝑚𝑚 (𝑔𝑖,𝑘 ) + 2(𝑁 − 1)𝑇 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑚𝑚 (𝑄 (𝑔𝑖,𝑘 ))

+ 𝑁 ·𝑇𝐻𝑤
𝐶𝑜𝑚𝑝

(𝑔𝑖,𝑘 ) + 𝑁 ·𝑇𝐻𝑤
𝐷𝑒𝑐𝑜𝑚

(𝑄 (𝑔𝑖,𝑘 ))
(2)

Approach 2 (ReduceScatter with compression for the local reduction
then Ring AllReduce): The second approach is similar to the first
but this time the local reduction is performed with compression.

𝑇𝐴𝑝𝑝2 (𝑔𝑖,𝑘 ) =(𝑀 − 1)𝑇 𝑖𝑛𝑡𝑟𝑎𝑐𝑜𝑚𝑚 (𝑄 (𝑔𝑖,𝑘 )) + (𝑀 − 1)𝑇𝐺𝑃𝑈
𝐶𝑜𝑚𝑝 (𝑔𝑖,𝑘 )

+ (𝑀 − 1)𝑇𝐺𝑃𝑈
𝐷𝑒𝑐𝑜𝑚 (𝑄 (𝑔𝑖,𝑘 )) + 𝑁 ·𝑇𝐻𝑤

𝐷𝑒𝑐𝑜𝑚
(𝑄 (𝑔𝑖,𝑘 )

+ 𝑁 ·𝑇𝐻𝑤
𝐶𝑜𝑚𝑝

(𝑔𝑖,𝑘 ) + 2(𝑁 − 1)𝑇 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑚𝑚 (𝑄 (𝑔𝑖,𝑘 )))
(3)
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With this model, we simulate and analyze the total communi-
cation time for (1) a broadcast operation from 1 GPU to 8 other
GPUs and an (2) inter-node AllReduce operation between 8 differ-
ent nodes. For (1), we performed our experiment on a node with
8 V100 GPUs. The node uses a hybrid 8-GPU hybrid cube-mesh
network as in the DGX1 (with Tesla V100) system topology. This
topology ensures high bandwidth intra-node communication. For
collective AllReduce inter-node communication (2), we use a set of
nodes with a V100 GPU connected to an Mellanox ConnectX 5 NIC.
In both experiments, we use PyTorch 2.0.1 and NCCL 2.14.3. We
monitor the inter-node AllReduce time for different node counts
from 2 to 16 to have a model that allows us to scale the number of
workers up to 16.

Fig. 1 and Fig. 2 show the results for scenarios (1) and (2), re-
spectively. It can be seen from the figures that the values obtained
with the model match the measured values of the actual system,
with an error margin of less than 10%. Having established the accu-
racy of the performance model, we use this model to quantitatively
evaluate the performance of SqueezeNIC in distributed end-to-end
training in Section 4.4.

4 Experiments
We demonstrate the feasibility and effectiveness of our proposal.
First, in Section 4.1 and Section 4.2, we show that performing com-
pression on GPUs or DPUs incurs significant overhead (justifying
the need for FPGA offloading). In Section 4.3, we show that our
SqueezeNIC FPGA implementation can perform line-rate compres-
sion, even at a network speed of 400 Gbps. Finally, in Section 4.4, we
show the advantage of SqueezeNIC in terms of training throughput
improvements. Again, for simplicity, we employ the DP distributed
training approach in all our experiments.

4.1 In-GPU and In-DPU Gradient Compression
Setup. We conduct our experiments on two different machines:
one for GPU evaluation and the other for DPU (a programmable
SmartNIC) evaluation. The GPU machine is equipped with NVIDIA
Tesla V100 GPUs (32 GB memory) and an Intel Xeon Gold 6242 CPU
@ 2.80 GHz, running CentOS Linux 7 with CUDA 10.1, cuDNN
7.5.1, MXNet 1.5.0, and PyTorch 1.10.2. The DPU machine uses a
Mellanox BlueField-2 equipped with 8 Arm v8 A72 cores (64-bit),
running Ubuntu 20.04.3 LTS arch64 with PyTorch 1.11.0.
Baseline.We first extract gradient tensors from four different DNN
models: BERT [18], DeepLight [17], NCF [24], and ResNet [23].
Using the GPU implementation of compression algorithms from
Hipress [10], we measure the average time to compute gradient ten-
sor compression for each layer on the GPU. The five GPU compres-
sion algorithms evaluated are Terngrad [53], DGC [32], TBQ [44],
GradDrop [5], and 1-Bit [41]. We then profile each compression
algorithm’s GPU kernel utilization. For DPU compression, we use
the Grace implementation [57] for Terngrad and DGC compression
algorithms, running them on BlueField-2 DPU while monitoring
CPU utilization.
Results. Table 2 shows that, as expected, compression on GPU
outperforms compression on DPU for all cases. The speedup of GPU
tensor compression over the DPU ranges from 3× for ResNet with
DGC to 187× for NCF with Terngrad. For the compute throughput,

Table 2: Time to compress one model gradient tensor in sec-
onds.

Terngrad DGC TBQ GradDrop 1-Bit

Model GPU DPU GPU DPU GPU GPU GPU

BERT 0.122 6.065 0.180 3.196 0.154 0.190 0.062
NCF 0.004 0.756 0.006 0.248 0.005 0.006 0.002
DeepLight 0.026 0.298 0.034 0.148 0.029 0.036 0.013
ResNet 0.097 0.866 0.133 0.509 0.106 0.140 0.035

Table 3: GPU compute throughput for each gradient com-
pression algorithm.

Algorithm Terngrad DGC TBQ GradDrop 1-Bit

Av. Comp. T’put(%) 29.85 6.608 21.84 6.931 76.61

Table 4: Iteration time per batch

Compression Scheme

Batch training Time (s) None Terngrad DGC TBQ GradDrop 1-Bit

DeepLight 0.024 0.113 0.126 0.130 0.129 0.106
BERT 3.300 7.734 N/A 7.926 N/A 7.396

Table 3 shows that the average GPU utilization for each compression
algorithm ranges from 6% to 76.61%. While for DPU compression,
the average CPU utilization is about 50% for each core.
Takeaway. Performing compression operations on the GPU is
more efficient than on DPUs because the compression algorithms
exploit the parallel nature of the algorithm, which makes the cur-
rent general-purpose DPUs unsuitable for compression offloading.
Furthermore, both GPU and DPU compression do not fully utilize
the computing power of the hardware, which shows that there is
room for improvement.

4.2 Compression Overhead
Setup. We use the same GPU machine as in Section 4.1.
Baseline. To investigate the impact of compression on the training
process, we train DeepLight and BERT models on a single GPU
while performing compression and decompression of each gradi-
ent tensor for every training iteration while monitoring the time
required to process a single batch.
Results. Table 4 shows the different times taken to process a batch
for each compression algorithm as compared to the no compression
baseline. All four algorithms have an iteration time 4-5× slower
than the no compression baseline for DeepLight. For BERT, the
iteration time is 2× when we apply compression.
Takeaway.While GPUs are more efficient at handling compression
than DPUs, the overhead of GPU compression increases training
time, making this approach sub-optimal. This inefficiency moti-
vates the need to offload compression operations to more efficient
hardware.
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Figure 1: Broadcast model for 8 GPUs.
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Figure 2: AllReduce model for 8 nodes.

Table 5: Measured host to network FPGA throughput (Gbps)
with different compression ratios.

Compression Packet size

Ratio 308 B 1076 B 1518 B

0 10.68 42.27 93.19
2 8.00 42.19 92.17
8 7.98 42.66 90.33
32 7.66 42.15 95.22

4.3 SqueezeNIC Line-Rate Compression
Having established that gradient compression, even when done on
a GPU or DPU, instills considerable time overhead, we now proceed
to demonstrate that SqueezeNIC can perform compression with
near zero overhead and at line rate. Our goal with these experiments
is to merely provide a proof of concept of our design. At present,
we are unable to implement an NVLink connection between the
FPGA and the intra-node network; since we are limited by the PCIe
bandwidth we also experiment with on-chip data generators.
Setup. We use an AMD/Xilinx Alveo U280 FPGA accelerator card.
This offers PCIe Gen 3×8 host connectivity and dual 100 Gbps
network interfaces. These interfaces are exposed at the hardware
level using AXI-Stream, allowing an accelerator to consume and
produce data every clock cycle (250 MHz in our case). We use the
Xilinx OpenNIC design to functionally verify our compressors.
Baseline. We develop a library of quantization-based compressors
with Vitis HLS running at 250 MHz on the TX path with equivalent
decompression on the RX path. For functional verification the FPGA
board is connected with a QSFP28 loopback cable and host-side
data generation is performed by DPDK pktgen.
Extension. Since our proposal extends the required bandwidth
at the host side beyond what PCIe can accommodate, we perform
throughput experiments using on-chip data generators to mimic
host-side data generation at the higher rates equivalent to intra-
node network bandwidth.
Results. Our experiments on the FPGA demonstrate two points.
First, results in Table 5 demonstrate that the compressor has negli-
gible effect on network throughput compared to the baseline NIC
functionality.

Table 6: FPGA resource utilization percentage scaling with
increasing host-side bandwidth.

Host BW (Gbps) LUTs FFs CLBs

400 11.85 11.28 26.53
800 12.40 11.81 26.91
1600 13.60 12.77 29.03
3200 12.59 12.55 28.07
6400 19.31 19.30 39.97

Second, we demonstrate that the FPGA compute is capable of
scaling to line rate compression for host-side throughput well be-
yond 100 Gbps. Multiple 100 Gbps data generators are instantiated
on-chip to emulate host-side scaling, for example, in Table 6, 400
Gbps is achieved by 4 parallel generators. All designs are matched
with a compression ratio to achieve 100 Gbps network-side through-
put, which is the maximum supported by the Alveo U280. It can be
seen that the device utilization remains low, even for emulated 6400
Gbps host-side bandwidth, with CLB resource utilization under
40%. For verification purposes, the Alveo-based generators were
connected to a BlueField-2 SmartNIC to confirm that 100 Gbps line-
rate was achieved. Results for 308 byte and 1076 byte packets were
verified with the SwitchML framework [40] and functionally tested
in a closed loop to demonstrate the functionality and verify quanti-
zation error bounds. Results for 1518 byte packets were generated
with DPDK pktgen to maximize host throughput.
Takeaway. The FPGA demonstrates its ability to compress at line
rate without affecting bandwidth, while also scaling to the very
high host bandwidth proposed for the SqueezeNIC design. While
existing boards cannot be deployed in this manner at present, due
to the required form-factor, the FPGA devices themselves have
sufficient high-bandwidth I/O and on-device computing resources
to support such a deployment. Our experiments demonstrate that
a suitable hardware platform can be built for this purpose.

4.4 Expected Gains
In Section 3, we studied the training performance model, we de-
picted the different communication pattern in a training iteration
and we modeled the execution time for SqueezeNIC collective com-
munication routines. Afterwards in Section 4.3, we showed the
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Figure 3: Single batch processing time for BERT-Large model normalized against the no compression baseline.

ability of performing zero cost compression without impacting the
bandwidth.

Currently, our SqueezeNIC implementation is confined to a stan-
dalone FPGA device and has not yet been integrated with actual
servers and accelerators. Consequently, we simulate the expected
performance gains using our performance model, integrating the
communication model into PyTorch communication hooks. These
hooks allows us to customize the gradient communication pattern
and integrate every SqueezeNIC communication operation execu-
tion time.

We now evaluate the expected performance gains of our pro-
posed approach, focusing on the time taken to process one batch.
We test the BERT-Large model with a synthetic dataset using a
batch size of 32. We employ weak scaling as we increase the num-
ber of workers and set the partition size to 25 MB. The experiment
utilizes the 1-Bit quantization method.
Setup. Our testbed consists of a singlemachine equippedwith seven
NVIDIA V100 GPUs running PyTorch 2.0.1, CUDA 11.7, and NCCL
2.14.3. To simulate the behavior of multiple nodes, we leverage
communication models presented in Section 3 to capture inter-
node communication times, enabling us to simulate a multi-node
environment.
Baseline. We explore three baselines: 1) No compression baseline.
2) On GPU Approach 1 baseline in direct comparison with Approach 1
on SqueezeNIC. 3) On GPU Approach 2 baseline in direct comparison
with Approach 2 on SqueezeNIC.
Results. Figure 3 presents the simulation results for 2, 4, 8, and 16
nodes. The results indicate that SqueezeNIC significantly improves
iteration time for both approaches, with notable benefits at 16 nodes.
By offloading compression operations from the GPU, SqueezeNIC
enhances training speed by 21% for approach 1 and 15% for approach
2 with 16 workers.
Takeaway. As the number of nodes increases, the overhead associ-
ated with compression on GPU also rises, often making it difficult
to achieve any performance gain compared to a baseline without
compression. This challenge is effectively addressed by SqueezeNIC,
which implements line-rate compression to enhance performance,
particularly when scaling up the number of nodes.

5 Related work
Lin et al. [32] highlight that the computational overhead of com-
pression algorithms in DDL correlates with the compression ratio,

with higher ratios leading to higher overhead. Xu et al. [57] and
Agrawal et al. [4] find that this overhead can sometimes exceed
the communication cost saved, especially in high-bandwidth en-
vironments. Bai et al. [10] propose selective compression to mask
the DC overhead on GPUs, and Zhong et al. [59] introduce 2-way
pipelined DC on CPUs to reduce the overhead, but limited to the
parameter server architecture. Wang et al. [51] address intra- and
inter-node communication by offloading compression to CPUs, but
these methods fail to overlap compression and computation due to
resource contention. SqueezeNIC, on the other hand, frees GPUs
and CPUs from DC overheads and improves communication and
computation overlap.

Alvarez et al. [8] and Tahmasbi et al. [9] propose to offload
scatter-gather operations and transport layer logic to FPGA-based
SmartNICs, while Spaziani et al. [12] focus on offloading packet
processing tasks. Wang et al. [49] propose an FPGA-based Smart-
NIC for direct P2P communication between GPUs, avoiding the
involvement of the CPU. Despite the existence of several commer-
cial SmartNIC solutions [20, 33, 37], none of them is specifically
designed for compression operations or the imbalance between
intra- and inter-node communication in multi-GPU environments.
Other approaches, such as priority-based scheduling [22, 29, 36]
and in-network aggregation [31, 40], aim to accelerate DDL train-
ing, with De Sensi et al. [15] proposing a switch architecture for
user-defined packet handling.

6 Conclusion
We have proposed SqueezeNIC, an FPGA-based compressor NIC to
address two major challenges related to DDL training. It addresses
the bottleneck caused by the bandwidth imbalance between intra-
and inter-node communication. It also relieves the computational
nodes (CPUs and GPUs) from the computational overheads of com-
pression that slow down training. Through rigorous experiments,
we show that SqueezeNIC can perform line-rate compression even
at very high data rates of up to 400 Gbps, with minimal overhead.
Importantly, our experiments also show that SqueezeNIC with hi-
erarchical aggregation has the potential to reduce the training time
per iteration, thereby increasing throughput compared to baseline
approaches. In the future, we plan to investigate how SqueezeNIC
features can be extended to further optimize DDL training and
inference.
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