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Abstract

Split Learning (SL) is a principled approach for training mod-
els on data distributed across multiple devices without shar-
ing training data. While SL emerged as an alternative to
federated learning to reduce the compute burden on devices,
it also enables a more fair redistribution of work between
edge devices and the server. Despite its potential, there is no
unified framework for implementing and deploying SL algo-
rithms, leaving several research questions underexplored. To
address this gap, we introduce SplitBud, a versatile frame-
work to implement virtually any SL algorithm. By supporting
various variants of SL, SplitBud facilitates research and de-
velopment in the field. In this paper, we demonstrate its
flexibility by implementing and evaluating multiple SL algo-
rithms, and we discuss future directions for the field.
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1 Introduction

The rapid growth of machine learning models in both size
and complexity demands an ever-increasing amount of data
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to improve performance. However, public datasets are finite,
and projections indicate that the supply of publicly avail-
able human text data may be exhausted between 2026 and
2032 [41]. Leveraging private data, which is often distributed
across devices (such as smartphones) and organizations (such
as hospitals), is becoming crucial to sustain further advance-
ments in machine learning. As collecting all distributed data
on a cluster for centralized training remains infeasible due
to privacy concerns and legal constraints [26], the field of
Distributed Collaborative Machine Learning (DCML) has
emerged, enabling models to be trained on private data with-
out exposing sensitive information [33].
Within DCML, Federated Learning (FL) [22, 26, 34] was

initially proposed to enable clients to collaboratively train a
model with the assistance of a server. In FL, clients create a
model through multiple training iterations. At the beginning
of each iteration, they receive training parameters from the
server.1 Then, they locally train a model using their private
data and return the training outcome (e.g., updated model
weights) to the server. Finally, the server aggregates these
updates to produce the training parameters for the next
iteration.
A major limitation of FL is that clients must fully train a

model locally. This is problematic because many real-world
devices operate under resource constraints [20], making it
impractical to train large models on them. While various FL
algorithms allow clients to train models proportional to their
compute capacity [7, 18, 19, 23], these approaches often lead
to lower model performance than if all clients jointly trained
a large model [33]. As state-of-the-art model architectures
continue to grow in size [42], this challenge is becoming even
more pronounced. For instance, to date, efforts for training
large language models with FL have been largely restricted to
the cross-silo setting, where only a small number of compu-
tationally powerful clients participate [8, 10]. Thus, training
large models on edge devices while preserving privacy re-
mains an open problem.

1Clients typically receive the current model weights [26, 34], but the server
may also send other data, such as logits [19, 23], prototypes [36], or auxiliary
model weights [43]. Additionally, the server may provide hyperparameters
such as learning rate or batch size. Throughout this paper, we refer to all
data and configurations sent to clients as training parameters.
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To address these limitations, Split Learning (SL) has emerged
as a promising alternative. SL extends FL by partitioning the
model’s computational graph between clients and a compute-
powerful server. Typically, clients train the initial layers of
the model and offload intermediate representations to the
server, which processes the remaining layers [15, 40]. This
offload of computation reduces both the memory and compu-
tational burden on the clients, enabling them to train larger
models than they could independently.
Given these advantages, we argue that SL is essential for

training large models on private, decentralized data. How-
ever, most existing SL algorithms have been evaluated only
in simulated environments, where clients are emulated as
software components rather than deployed on physical de-
vices [16, 28, 39]. Evenwhen real devices are used, researchers
often develop ad-hoc implementations of their algorithms [11,
12]. To the best of our knowledge, no existing framework al-
lows researchers and practitioners to easily design, evaluate,
and deploy SL algorithms. A standardized framework would
allow researchers to focus on algorithm development rather
than infrastructure, while also improving reproducibility.

The absence of such a framework has also contributed to
several underexplored aspects of SL training. For example,
different SL algorithms vary in how they manage server-side
models. At one extreme, all clients may train a single shared
server model concurrently; at the other, each client may
train its own server-side model, with aggregation occurring
only after all clients complete training [39]. Optimizing the
number of server models is challenging, as it affects both
convergence behavior and system efficiency metrics such
as GPU utilization, training time, and throughput. A stan-
dardized framework would enable fair comparisons between
different strategies.
To fill this gap, we introduce SplitBud, the first general

framework for split training and inference. SplitBud sup-
ports a wide range of SL use cases, enabling researchers and
practitioners to implement SL algorithms with minimal code,
as we demonstrate in this paper. It also provides a simple ab-
straction of the key components, facilitating a clearer under-
standing of SL algorithms. While we focus on split learning,
SplitBud is task-agnostic and can also support inference-
time applications, such as early exit strategies [29, 38].
In this paper, we discuss the design and implementation

of SplitBud. We then demonstrate through examples how
existing algorithms can be implemented in the framework,
and showcase the benefits of training models with SL using
the framework. We also discuss future directions for SL.

In summary, the contributions of this paper are:

• We propose SplitBud, a new flexible SL framework.
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Figure 1: Split Learning Protocol. Solid red lines represent the

exchange of training parameters and updates. Dotted blue

lines indicate computational graph offloading (for simplicity,

only one batch per client is shown). Upon receiving a request,

the server determines the server model that should execute

the requested part of the computational graph (gray box).

• We evaluate the framework in different settings high-
lighting the benefits of training a model with SL over
FL.

• We provide insights and discuss future directions of
SL, that are supported by SplitBud.

The framework can foster research in the field while stream-
lining SL training pipelines into production environments.
SplitBud is available at https://github.com/sands-lab/splitbud.

2 Background

We review the mainstream structure of SL algorithms. As
shown in Figure 1, similar to FL, SL algorithms create a model
through multiple training iterations, which are repeated until
a predefined termination condition is satisfied. At a high
level, each training iteration consists of five main steps:
1. Client sampling and configuration: At the start of
each training iteration, the server selects a subset of active
clients and prepares the training parameters for these par-
ticipants. Training parameters may include the client-side
model weights and additional configurations (e.g., learning
rate, batch size). The participants receive these instructions
and begin the local training (Step 3).
2. Configuration of server model(s): In most SL algo-
rithms, the computational graph is partitioned so that some
model layers reside on the server. Thus, at the start of each
training iteration, the server also prepares training parame-
ters for these server-side model segments, analogous to the
client-side configuration in Step 1. This includes selecting the
number of server models, initializing their weights, config-
uring optimizers, and setting other relevant parameters. The
server then instantiates these models on its infrastructure
and makes them available to participants.

https://github.com/sands-lab/splitbud
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3. Client training: Each participant trains its portion of
the model as instructed in Step 1, while offloading computa-
tions to the server. This offloading can involve any part of
the computational graph. For example, a client may request
the server to perform a forward pass from intermediate em-
beddings, compute the loss, and backpropagate gradients.
Conversely, during inference, the client might request only
a forward pass to obtain the target logits. Note that in the
former case, the server updates its model weights, while in
the latter, it does not.

Since computational graph partitioning varies, we generi-
cally refer to these interactions as client requests. Upon re-
ceiving a request, the server forwards it to the appropriate
server model, which executes the requested part of the com-
putational graph. When multiple clients issue requests to the
same model, they may be processed in parallel or, as shown
in Figure 1, sequentially. Once a client completes training,
it informs the server by sending training outcomes, such as
updated client-side model weights.
4. Aggregation of client updates: After all participants
finish the current round of training, the server aggregates the
received updates (e.g., updated client-side model weights).
The outcomes of aggregation are then used for the next
iteration. This step, employed also in FL, may take various
forms, such as simple averaging, weighted averaging, or
more sophisticated methods [20, 24, 34].
5. Aggregation of updated server models: If multiple
server-side models are instantiated during Step 2, their up-
dates are aggregated at this stage, similar to the process for
aggregating client-side updates in Step 4.

The SL protocol presented here is referred to in the litera-
ture as federated or parallel SL to distinguish it from earlier
SL formulations, where only one client trains at a time [15].
We, nevertheless, use the term split learning, and observe
that the one-client-at-a-time training setup is simply a spe-
cial case of our general formulation, achieved by sampling
exactly one client during Step 1.

Furthermore, note that we focus on a cloud-device proto-
col, considering only SL algorithms that offload computation
to a centralized server. In other words, we only examine
cases where the computational graph is partitioned between
clients and a central server. However, in general, the graph
can be divided into multiple segments – for instance, the
client may process the initial layers, an edge computing
server may handle intermediate layers, and a centralized
server may train the uppermost layers [9]. While this setup
distributes computation across more resources, it does not
alter the computations themselves. In a sense, such a “multi-
hop” SL training, where edge servers perform in-network
processing, is the SL equivalent of hierarchical FL [25].

3 SplitBud

3.1 Design goals

We design SplitBud to maximize flexibility, ensuring broad
applicability across different SL use cases. Specifically, the
framework aims to satisfy the following objectives:

• Arbitrary partitioning of the computational graph: Any
part of the computational graph can be offloaded to
the server, whether during training or inference.

• Flexible data exchange: Clients can exchange arbitrary
data, including embeddings, gradients, logits, and la-
bels.

• Customizable request-response patterns: Clients have
full control over server interactions, with support for
both synchronous and asynchronous invocations.

• Modular client and server logic: The framework en-
forces a clean separation of concerns, allowing client
and server logic to be updated independently with
minimal overhead.

3.2 Programming abstraction

SplitBud abstracts an SL algorithm into three main compo-
nents that naturally follow the protocol presented in § 2.

3.2.1 Client. A client executes the logic on an edge device,
accessing its private data to train a model. When selected for
training, it receives parameters from the server and begins
training. When necessary, it offloads part of the computa-
tional graph to the server by sending: a) the data required
for computation, and b) an indication of which operations
the server should perform.
For example, if the client holds the lower layers of the

model being trained and the server holds the upper layers,
the client first performs a forward pass through its portion
of the model to compute intermediate embeddings. It then
sends these embeddings along with the target labels to the
server, instructing it to complete the forward pass, compute
the loss, and backpropagate until obtaining the gradients
with respect to the embeddings. Hence, the server executes
the same operations (i.e., the same computational graph) that
the client would run if it had sufficient computing power.

3.2.2 Server Models. Server models are the components on
the server that execute the computational graph segments
requested by clients. Upon receiving a request, they perform
the specified computation using the provided data and, if
necessary, update their internal state (e.g., model weights).
Once the computation is complete, they may return results
to the client. Importantly, in SplitBud, server models are
containers for the models, i.e., server models hold the model
being trained as an internal attribute.
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3.2.3 Strategy. This component orchestrates training, han-
dling all steps not performed by other components:

• Step 1: Samples a subset of clients and prepares their
training parameters.

• Step 2: Configures training parameters for server mod-
els.

• Step 3: Routes client requests to the appropriate server
model. Routing involves a) decidingwhich servermodel
should process a request, as multiple clients and server
models may be involved, and b) deciding when to pro-
cess a request. For instance, some requests are pro-
cessed immediately, while others are batched with re-
quests from other clients.

• Step 4: Aggregates client updates.
• Step 5: Aggregates server updates.

3.3 Programming API

We implement SplitBud as a Python framework, where each
component described in § 3.2 is mapped to an abstract class
that users override to define the desired algorithm behavior.
For client logic, users override the Client class. Specif-

ically, they implement the initialization logic and the fit
method, which SplitBud invokes in participants at the begin-
ning of each iteration with the training parameters defined
by the strategy. Within fit, a client trains a model, poten-
tially offloading part of the computational graph to the server.
Each client has acces to a server_model_proxy attribute,
which allows the client to offload arbitrary computations. As
mentioned, offloading requires sending the necessary data
and specifying the computation to be performed. In code,
data is passed as method arguments, while the method name
indicates the computation. For example, within fit, a client
can issue the following statement:

1 logits = server_model_proxy.forward(embeddings=embs)

This creates a request containing the required data (embs)
and the computation to perform (forward).
For server models, users override the ServerModel ab-

stract class. Specifically, they implement the initialization
logic, where they may instantiate the actual model, and the
configure_fit method, which is called by the framework
at the beginning of the training iteration with the training
parameters from the strategy. Additionally, the class can
have any number of methods, which become available to
clients. Each method executes a specific computational graph
segment. For example, in the previous case, the server model
must have a forward method accepting a single argument,
embeddings. Notably, the server model is unaware of which
client made a request.

Finally, users define a Strategy class to configure clients
and server models and aggregate updates from both. The

strategy also tracks client requests and determines which
server model should handle each request and when.
Example:We illustrate how to implement SplitFed [39] in
our framework. A SplitFed client trains the lower layers of
the model. It first performs a forward pass on its model seg-
ment, then sends the resulting embeddings and labels to
the server, and waits for the gradients in return. Once the
gradients are received, the client completes the backprop-
agation step. This logic can be implemented in the client’s
fit method as follows:2

1 output = model(batch["images"])

2 gradient = server_model_proxy.serve_grad_request(

3 embeddings=output , labels=batch["labels"]

4 ) # returned value is stored to the `gradient ` variable

5 optimizer.zero_grad ()

6 output.backward(gradient)

7 optimizer.step()

The SplitFed server receives the embeddings and labels sent
by clients, performs a forward pass, computes the loss, and
backpropagates the loss until obtaining the gradients to be
returned to the client. This can be implemented as follows:

1 def serve_grad_request(self , embeddings , labels):

2 embeddings.requires_grad_(True)

3 output = self.model(embeddings)

4 loss = F.cross_entropy(output , labels)

5 self.optimizer.zero_grad ()

6 loss.backward ()

7 self.optimizer.step()

8 return embeddings.grad

The developer can then customize the behavior of the strat-
egy by deciding how many clients should train concurrently,
aggregating clients’ and server models’ updates, setting the
number of models to be trained on the server, and deciding
whether the client’s requests should be processed immedi-
ately or should be batched with requests from other clients.
Thus, by modifying the strategy, one can switch between
SplitFed v1 and SplitFed v2 without code changes.

3.4 Implementation

We implement SplitBud as an extension of the Flower FL
library [3], adding the necessary logic to support SL-based
training. Below, we highlight some key features we intro-
duce.
First, we introduce a server_model_proxy attribute for

every client. This component establishes and manages a
gRPC communication channel with the server, serving as
the interface for client-to-server communication. Clients can
issue requests using either unary gRPCs, which follow a
request-response pattern and are recommended by gRPC’s
documentation [14], or streaming gRPCs. While SplitBud
supports both, we find that streaming gRPCs reduce commu-
nication overhead.
2The presented code uses PyTorch, but SplitBud is DL framework-agnostic.
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Table 1: SL algorithms and lines of code (LoC).

LoC Client LoC Server Model

SplitFed v1 [39] 7 8
SplitFed v2 [39] 7 8

U-Shaped SL [40] 13 15
StreamSL [32] 7 7

FedSL [16] 11 7
LocFedMix-SL [28] 17 25

SplitAvg [30] 17 21

Clients can invoke any method on server_model_proxy
as long as the corresponding method is implemented in the
server model, passing any number of arguments. Two special
arguments configure the request behavior: _streams_ speci-
fies whether unary or streaming gRPCs should be used, while
_type_ determines the response handling strategy – clients
can either block execution until a response is received or con-
tinue processing, handling the asynchronous invocation’s
return value later.

On the server side, SplitBud employs an asyncio-based
service to receive and process client requests. The service
first deserializes and parses the request. It then provides
request metadata to the strategy, which determines the ap-
propriate server model for processing. The service waits until
the strategy signals that the request is ready, then triggers
computation on the designated server model and returns the
results to the client.

4 Preliminary framework evaluation

We now evaluate the framework. Our goal is not only to
show the efficiency of the implementation and the ease with
which new algorithms may be implemented, but also to
demonstrate the potential benefits of split learning over full
on-device training. The code reproducing our results is at
https://github.com/BorisRado/split_learning_algorithms.
To demonstrate SplitBud’s flexibility, we implement a

selection of state-of-the-art SL algorithms. Table 1 lists the
algorithms and the number of lines of code required to imple-
ment their training logic in SplitBud.3 Notably, implement-
ing all algorithms requires little effort and minimal code.

4.1 Scalability w.r.t. number of participants

We first analyze how training times vary in a traditional
SL setting while varying the number of clients. In SL, all
clients share the same server resources. Thus, increasing the
number of clients can lead to resource contention, potentially
increasing per-round training time due to queuing delays and
limited server-side computing capacity. SplitBud enables us

3We do not consider the code for model definition, data loading, etc.
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Figure 2: Round train time w.r.t. number of participating

clients, size of the client model, and GPU type on the server.

to scale the number of clients by simply starting more client
instances, with no changes needed to the code.
Setting: We train a ResNet-18 model using the SplitFed v1
algorithm, where each client trains a client-side encoder
model and a separate server-side classification head. Since
clients have the same computing resources (four cores of an
Intel Xeon Silver 4112 processor and 8 GB of RAM), they train
the same model architecture, specifically the initial ResNet
layers up to and including either the first (layer 1) or second
(layer 2) residual block. Thus, the server, equipped with
eight CPU cores, 16 GB of RAM, and a GPU accelerator (we
vary 3 types), trains the remaining three or two residual
blocks, along with the final fully connected layer.

We vary the number of participants from 1 to 16 and report
the average training time on a dataset with 400 data points.
As baselines, we consider the time required to train the full
model locally as in FL (“CPU full model”), and the time to
train only the client-sidemodel by performing a forward pass
on the client-side model and backpropagating a randomly
generated gradient (“CPU partial model”).
Results: Figure 2 shows the average time for a training
round. We see that SL significantly speeds up training. Train-
ing a model on devices takes 51.1 s, while by employing SL
with an A100 GPU on the server, the time decreases to 26.8
and 35.4 s depending on whether the client offloads the last
three or two residual blocks, respectively. When only one
client is training, the process is bottlenecked by the client, as
CPU partial model takes 20.7 (layer1) and 31.1 s (layer2).
The increase over this lower bound is caused by increased
CPU-GPU data movement, data serialization-deserialization,
communication delay, and server training time.
As the number of clients grows, training time increases,

influenced by the number of server-trained layers and GPU
type.When training a larger portion of the network (layer 1),
V100 and P100 GPUs experience significant slowdowns due
to resource saturation. Consequently, SL becomes slower
than full-device training when more than 10 − 12 clients
participate, depending on the GPU. In contrast, the A100
GPU handles the load better, with 16 clients requiring only

https://github.com/BorisRado/split_learning_algorithms
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both w.r.t. training epoch and training time.

32.4 s – still significantly faster than full-model training on
devices.

Training a smaller segment on the server (layer2) reduces
GPU load, keeping time increases modest. Even with 16
clients, training is faster than full-model training on devices.

4.2 Training different model sizes on clients

In the previous experiment, we assumed that clients had
uniform computing resources. However, in practice, it is
often the case that compute resources vary, with some de-
vices being equipped with high computational resources and
memory while others have more modest resources. In such
cases, different clients can decide to offload different parts
of the computational graph to the server. SplitBud allows
practitioners to easily implement these use cases.
Setting: We fine-tune a pre-trained ResNet 18 model [17]
with three algorithms, namely a) FedAvg, in which clients
fully train themodel locally, b) SplitFed v1, in which all clients
train until themaxpool layer, and c)Heterogeneous SplitFed v1,
in which powerful devices train the model locally while weak
clients offload the residual blocks and the last fully connected
layer to the server. Note, that in all cases, an independent
full model is trained for every client. Thus, the next version
of the global model is in all cases an average of the models
trained in the previous iteration, regardless of whether they
have been trained on the client or the server. We run the
experiments on CoLExT [5], an experimentation testbed for
DCML with 20 clients (8 OrangePi5B, 4 LattePandaDelta3,
2 JetsonAGXOrin, 4 JetsonOrinNano, 2 JetsonXavierNX). In
the case of Heterogeneous SplitFed v1 all Jetson devices train
themodel locally in full while the LattePandas and OrangePis
offload part of the computational graph to the server.
Results: Figure 3 reports the evolution of the loss on the
clients’ datasets over the training round (left plot) and time
(right plot). As expected, the loss curves are the same in all
variants: since SL offloads part of the computational graph
to the server, it does not alter the computations. The minor
differences arise due to the fact that the random number
generators are not synchronized between the clients and the
server; thus, the stochastic behavior of the dropout layer is
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Figure 4: Evolution of the average test accuracywhen training

from scratch or fine-tuning a pre-trained ResNet 18 model.

not consistent. This, however, does not yield any significant
behavioral differences in terms of convergence.
When training the model fully on-device, the per-round

train time4 is 188.1 ± 0.9 s. This relatively high time is due
to stragglers, i.e., devices that take more time to train than
others. As FedAvg is a synchronous scheme, it waits until
all participants finish training before proceeding to the next
iteration. When all clients offload part of the computational
graph to the server, the time decreases to 79.6±0.5 s. Despite
the significant speed-up, this solution is still sub-optimal, as
powerful devices, which could train a model locally suffi-
ciently fast so as to not slow down the training process, still
offload computation to the server. This adds unnecessary
overhead to the server. Therefore, the optimal solution from
a training-time perspective is offloading the computational
graph to the server only when necessary as demonstrated
by Heterogeneous SplitFed v1, where the per-round time
decreases to 55.3 ± 0.4 s.

4.3 Comparing algorithm convergence

Wenow compare the algorithms’ convergence behavior. Note
that our aim is not to conclude on absolute algorithm perfor-
mance as we do not optimize hyperparameters.
Setting:We run the algorithms using 8 clients, each equipped
with a dataset with 800 training and 200 test images, and
compare the evolution of the average test accuracy through-
out training. We consider both the case of training the model
from scratch or fine-tuning a pretrained model.
Results: We present in Figure 4 the evolution of test accu-
racy, focusing on four algorithms for simplicity. We observe
that algorithms that involve training a single model on the
server (represented by a solid line) converge quickly, but ulti-
mately achieve lower accuracy compared to those that train
a separate model for each client on the server (represented
by a dashed line). This difference can be attributed to the
imbalanced updates discussed in [21, 28].

4By per-round training time, we refer to the time elapsed fromwhen training
parameters are sent to participants to when the last participant’s update is
received, as measured by the server.
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5 Split Learning – What next?

Overall, SL has received significantly less attention than FL.
For instance, a cursory bibliographical search shows that
since 2024 over 20,000 papers have mentioned FL, whereas
only 1,500 have referenced SL.5 This disparity is surprising,
given that the SL protocol discussed in this paper can be
seen as a generalization of FL. In essence, SL allows clients to
offload computation to a server, whereas FL restricts them to
local training. This is evident in the SL protocol formulated
in § 2 – if clients do not offload to the server in step 3, the
protocol reduces to FL, making steps 2 and 5 unnecessary.

We argued that SL can be seen as redistributing computa-
tion across entities without altering the computations them-
selves. In this context – assuming each client trains its own
server-side model – SL can complement any FL algorithm
by reducing the computational burden on the client side. Im-
portantly, this redistribution does not affect the convergence
behavior of the algorithms (cf. Figure 3).
We identify a gap in the literature regarding the number

of models trained on the server. As we also demonstrated (cf.
Figure 4), having all clients train a shared server-side model
can lead to lower accuracy than assigning each client its own
model. However, the latter approach is memory-intensive.
A promising research direction is optimizing the number of
server-side models and, more broadly, exploring strategies
to balance resource efficiency with model performance. Ulti-
mately, the goal is to make SL scalable and effective for large
deployments involving thousands or millions of clients.
From a privacy standpoint, SL is less protective than FL,

as the server in SL has access to strictly more data. In FL, the
server sees only the model weights before and after client
training. In addition to this, SL exposes also the evolution of
server-sideweights and intermediate data embeddings.More-
over, in algorithms that do not use a U-shaped architecture,
clients must also transmit target labels to the server. Shar-
ing labels is particularly problematic in language modeling,
where sharing the target labels implies sharing all the input
data due to the nature of the next-token prediction training
task. However, to our knowledge, the U-shaped architecture
has only been applied with a single client at a time [31, 40] or
when each client trains its own server model [33]. Both ap-
proaches face severe limitations, as we discussed. However,
there is no technical reason preventing one from developing
a more general SL algorithm with U-shaped architecture. We
leave the exploration of this to future research.
The benefits of SL extend towards democratization of

machine learning. On the one hand, SL enables resource-
constrained clients to train large models. On the other, it
facilitates a more balanced distribution of compute resources.
Unlike FL, where clients perform all the computation while

5Source: Google Scholar. Values checked on February 5, 2025.

the server remains underutilized, and centralized training,
where the server performs all the work while edge devices
are idle, SL allows both clients and the server to contribute
data and compute proportionally to their resources.

We hope that SplitBud will foster research in these direc-
tions, making FL and SL coexist and strengthen each other.

6 Related work

Parallel Split Learning combines FL and SL, allowing mul-
tiple clients to concurrently train while the server assists
in training and aggregation [12, 39]. Variants differ in how
server-side models are managed: SplitFed v1 [39] maintains
separate heads per client, SplitFed v2 [39] shares a com-
mon head, and SFGL [12] trains multiple server-side models.
SplitFed v3 [13] addresses non-IID data by keeping client-
side model segments private. Recent works have tackled
challenges such as communication overhead [2, 6, 16], server-
client update imbalance [21, 28], heterogeneous model parti-
tioning [9, 35], and security aspects of training [1].
DistributedMachine Learning Frameworks: Several frame-
works support multi-node training. Petals [4] enables split
training for large language models but restricts clients to
train only the layers they own. FusionLLM [37] supports
arbitrary models, automatic differentiation, and heteroge-
neous software. Both frameworks focus on implementing
pipeline parallelism [27], using data from a single client. In
contrast, SplitBud is designed for SL algorithms, support-
ing data aggregation across clients, concurrent multi-client
training, and simultaneous model training on the server.

7 Conclusion

We introduced SplitBud, a flexible framework for imple-
menting and evaluating SL algorithms. By unifying SL im-
plementations, SplitBud facilitates systematic exploration
of SL’s strengths, limitations, and integration with FL. Our
experiments demonstrated its versatility across multiple SL
algorithms, while our analysis highlighted key challenges
faced by SL, including privacy, server-side model manage-
ment, and resource efficiency.
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