
Towards a Unified Framework for Split Learning
Boris Radovič

KAUST, University of Ljubljana
Marco Canini

KAUST
Samuel Horváth

MBZUAI

Veljko Pejović
University of Ljubljana

Praneeth Vepakomma
MBZUAI, MIT

Abstract

Split Learning (SL) is a principled approach for training mod-
els on data distributed across multiple devices without shar-
ing training data. While SL emerged as an alternative to
federated learning to reduce the compute burden on devices,
it also enables a more fair redistribution of work between
edge devices and the server. Despite its potential, there is no
unified framework for implementing and deploying SL algo-
rithms, leaving several research questions underexplored. To
address this gap, we introduce SplitBud, a versatile frame-
work to implement virtually any SL algorithm. By supporting
various variants of SL, SplitBud facilitates research and de-
velopment in the field. In this paper, we demonstrate its
flexibility by implementing and evaluating multiple SL algo-
rithms, and we discuss future directions for the field.

CCS Concepts

• Computing methodologies→ Machine learning; Dis-
tributed algorithms.

Keywords

Distributed Collaborative Machine Learning, Split Learning

ACM Reference Format:

Boris Radovič,Marco Canini, Samuel Horváth, Veljko Pejović, and Pra-
neeth Vepakomma. 2025. Towards a Unified Framework for Split
Learning. In The 5th Workshop on Machine Learning and Systems
(EuroMLSys ’25), March 30–April 3, 2025, Rotterdam, Netherlands.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3721146.
3721936

1 Introduction

The rapid growth of machine learning models in both size
and complexity demands an ever-increasing amount of data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721936

to improve performance. However, public datasets are finite,
and projections indicate that the supply of publicly avail-
able human text data may be exhausted between 2026 and
2032 [41]. Leveraging private data, which is often distributed
across devices (such as smartphones) and organizations (such
as hospitals), is becoming crucial to sustain further advance-
ments in machine learning. As collecting all distributed data
on a cluster for centralized training remains infeasible due
to privacy concerns and legal constraints [26], the field of
Distributed Collaborative Machine Learning (DCML) has
emerged, enabling models to be trained on private data with-
out exposing sensitive information [33].
Within DCML, Federated Learning (FL) [22, 26, 34] was

initially proposed to enable clients to collaboratively train a
model with the assistance of a server. In FL, clients create a
model through multiple training iterations. At the beginning
of each iteration, they receive training parameters from the
server.1 Then, they locally train a model using their private
data and return the training outcome (e.g., updated model
weights) to the server. Finally, the server aggregates these
updates to produce the training parameters for the next
iteration.
A major limitation of FL is that clients must fully train a

model locally. This is problematic because many real-world
devices operate under resource constraints [20], making it
impractical to train large models on them. While various FL
algorithms allow clients to train models proportional to their
compute capacity [7, 18, 19, 23], these approaches often lead
to lower model performance than if all clients jointly trained
a large model [33]. As state-of-the-art model architectures
continue to grow in size [42], this challenge is becoming even
more pronounced. For instance, to date, efforts for training
large language models with FL have been largely restricted to
the cross-silo setting, where only a small number of compu-
tationally powerful clients participate [8, 10]. Thus, training
large models on edge devices while preserving privacy re-
mains an open problem.

1Clients typically receive the current model weights [26, 34], but the server
may also send other data, such as logits [19, 23], prototypes [36], or auxiliary
model weights [43]. Additionally, the server may provide hyperparameters
such as learning rate or batch size. Throughout this paper, we refer to all
data and configurations sent to clients as training parameters.

https://doi.org/10.1145/3721146.3721936
https://doi.org/10.1145/3721146.3721936
https://doi.org/10.1145/3721146.3721936

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Boris Radovič, Marco Canini, Samuel Horváth, Veljko Pejović, and Praneeth Vepakomma

To address these limitations, Split Learning (SL) has emerged
as a promising alternative. SL extends FL by partitioning the
model’s computational graph between clients and a compute-
powerful server. Typically, clients train the initial layers of
the model and offload intermediate representations to the
server, which processes the remaining layers [15, 40]. This
offload of computation reduces both the memory and compu-
tational burden on the clients, enabling them to train larger
models than they could independently.
Given these advantages, we argue that SL is essential for

training large models on private, decentralized data. How-
ever, most existing SL algorithms have been evaluated only
in simulated environments, where clients are emulated as
software components rather than deployed on physical de-
vices [16, 28, 39]. Evenwhen real devices are used, researchers
often develop ad-hoc implementations of their algorithms [11,
12]. To the best of our knowledge, no existing framework al-
lows researchers and practitioners to easily design, evaluate,
and deploy SL algorithms. A standardized framework would
allow researchers to focus on algorithm development rather
than infrastructure, while also improving reproducibility.

The absence of such a framework has also contributed to
several underexplored aspects of SL training. For example,
different SL algorithms vary in how they manage server-side
models. At one extreme, all clients may train a single shared
server model concurrently; at the other, each client may
train its own server-side model, with aggregation occurring
only after all clients complete training [39]. Optimizing the
number of server models is challenging, as it affects both
convergence behavior and system efficiency metrics such
as GPU utilization, training time, and throughput. A stan-
dardized framework would enable fair comparisons between
different strategies.
To fill this gap, we introduce SplitBud, the first general

framework for split training and inference. SplitBud sup-
ports a wide range of SL use cases, enabling researchers and
practitioners to implement SL algorithms with minimal code,
as we demonstrate in this paper. It also provides a simple ab-
straction of the key components, facilitating a clearer under-
standing of SL algorithms. While we focus on split learning,
SplitBud is task-agnostic and can also support inference-
time applications, such as early exit strategies [29, 38].
In this paper, we discuss the design and implementation

of SplitBud. We then demonstrate through examples how
existing algorithms can be implemented in the framework,
and showcase the benefits of training models with SL using
the framework. We also discuss future directions for SL.

In summary, the contributions of this paper are:

• We propose SplitBud, a new flexible SL framework.

Client 3

Client 1

Client 2

Training

Training

Training iteration i

3

3

Se
rv

er

Server
Model Offload Offload

1 2 4 5

Training

Training3

3

Server
Model Offload Offload

1 2 4 5

Training iteration i+1

Figure 1: Split Learning Protocol. Solid red lines represent the

exchange of training parameters and updates. Dotted blue

lines indicate computational graph offloading (for simplicity,

only one batch per client is shown). Upon receiving a request,

the server determines the server model that should execute

the requested part of the computational graph (gray box).

• We evaluate the framework in different settings high-
lighting the benefits of training a model with SL over
FL.

• We provide insights and discuss future directions of
SL, that are supported by SplitBud.

The framework can foster research in the field while stream-
lining SL training pipelines into production environments.
SplitBud is available at https://github.com/sands-lab/splitbud.

2 Background

We review the mainstream structure of SL algorithms. As
shown in Figure 1, similar to FL, SL algorithms create a model
through multiple training iterations, which are repeated until
a predefined termination condition is satisfied. At a high
level, each training iteration consists of five main steps:
1. Client sampling and configuration: At the start of
each training iteration, the server selects a subset of active
clients and prepares the training parameters for these par-
ticipants. Training parameters may include the client-side
model weights and additional configurations (e.g., learning
rate, batch size). The participants receive these instructions
and begin the local training (Step 3).
2. Configuration of server model(s): In most SL algo-
rithms, the computational graph is partitioned so that some
model layers reside on the server. Thus, at the start of each
training iteration, the server also prepares training parame-
ters for these server-side model segments, analogous to the
client-side configuration in Step 1. This includes selecting the
number of server models, initializing their weights, config-
uring optimizers, and setting other relevant parameters. The
server then instantiates these models on its infrastructure
and makes them available to participants.

https://github.com/sands-lab/splitbud

Towards a Unified Framework for Split Learning EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

3. Client training: Each participant trains its portion of
the model as instructed in Step 1, while offloading computa-
tions to the server. This offloading can involve any part of
the computational graph. For example, a client may request
the server to perform a forward pass from intermediate em-
beddings, compute the loss, and backpropagate gradients.
Conversely, during inference, the client might request only
a forward pass to obtain the target logits. Note that in the
former case, the server updates its model weights, while in
the latter, it does not.

Since computational graph partitioning varies, we generi-
cally refer to these interactions as client requests. Upon re-
ceiving a request, the server forwards it to the appropriate
server model, which executes the requested part of the com-
putational graph. When multiple clients issue requests to the
same model, they may be processed in parallel or, as shown
in Figure 1, sequentially. Once a client completes training,
it informs the server by sending training outcomes, such as
updated client-side model weights.
4. Aggregation of client updates: After all participants
finish the current round of training, the server aggregates the
received updates (e.g., updated client-side model weights).
The outcomes of aggregation are then used for the next
iteration. This step, employed also in FL, may take various
forms, such as simple averaging, weighted averaging, or
more sophisticated methods [20, 24, 34].
5. Aggregation of updated server models: If multiple
server-side models are instantiated during Step 2, their up-
dates are aggregated at this stage, similar to the process for
aggregating client-side updates in Step 4.

The SL protocol presented here is referred to in the litera-
ture as federated or parallel SL to distinguish it from earlier
SL formulations, where only one client trains at a time [15].
We, nevertheless, use the term split learning, and observe
that the one-client-at-a-time training setup is simply a spe-
cial case of our general formulation, achieved by sampling
exactly one client during Step 1.

Furthermore, note that we focus on a cloud-device proto-
col, considering only SL algorithms that offload computation
to a centralized server. In other words, we only examine
cases where the computational graph is partitioned between
clients and a central server. However, in general, the graph
can be divided into multiple segments – for instance, the
client may process the initial layers, an edge computing
server may handle intermediate layers, and a centralized
server may train the uppermost layers [9]. While this setup
distributes computation across more resources, it does not
alter the computations themselves. In a sense, such a “multi-
hop” SL training, where edge servers perform in-network
processing, is the SL equivalent of hierarchical FL [25].

3 SplitBud

3.1 Design goals

We design SplitBud to maximize flexibility, ensuring broad
applicability across different SL use cases. Specifically, the
framework aims to satisfy the following objectives:

• Arbitrary partitioning of the computational graph: Any
part of the computational graph can be offloaded to
the server, whether during training or inference.

• Flexible data exchange: Clients can exchange arbitrary
data, including embeddings, gradients, logits, and la-
bels.

• Customizable request-response patterns: Clients have
full control over server interactions, with support for
both synchronous and asynchronous invocations.

• Modular client and server logic: The framework en-
forces a clean separation of concerns, allowing client
and server logic to be updated independently with
minimal overhead.

3.2 Programming abstraction

SplitBud abstracts an SL algorithm into three main compo-
nents that naturally follow the protocol presented in § 2.

3.2.1 Client. A client executes the logic on an edge device,
accessing its private data to train a model. When selected for
training, it receives parameters from the server and begins
training. When necessary, it offloads part of the computa-
tional graph to the server by sending: a) the data required
for computation, and b) an indication of which operations
the server should perform.
For example, if the client holds the lower layers of the

model being trained and the server holds the upper layers,
the client first performs a forward pass through its portion
of the model to compute intermediate embeddings. It then
sends these embeddings along with the target labels to the
server, instructing it to complete the forward pass, compute
the loss, and backpropagate until obtaining the gradients
with respect to the embeddings. Hence, the server executes
the same operations (i.e., the same computational graph) that
the client would run if it had sufficient computing power.

3.2.2 Server Models. Server models are the components on
the server that execute the computational graph segments
requested by clients. Upon receiving a request, they perform
the specified computation using the provided data and, if
necessary, update their internal state (e.g., model weights).
Once the computation is complete, they may return results
to the client. Importantly, in SplitBud, server models are
containers for the models, i.e., server models hold the model
being trained as an internal attribute.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Boris Radovič, Marco Canini, Samuel Horváth, Veljko Pejović, and Praneeth Vepakomma

3.2.3 Strategy. This component orchestrates training, han-
dling all steps not performed by other components:

• Step 1: Samples a subset of clients and prepares their
training parameters.

• Step 2: Configures training parameters for server mod-
els.

• Step 3: Routes client requests to the appropriate server
model. Routing involves a) decidingwhich servermodel
should process a request, as multiple clients and server
models may be involved, and b) deciding when to pro-
cess a request. For instance, some requests are pro-
cessed immediately, while others are batched with re-
quests from other clients.

• Step 4: Aggregates client updates.
• Step 5: Aggregates server updates.

3.3 Programming API

We implement SplitBud as a Python framework, where each
component described in § 3.2 is mapped to an abstract class
that users override to define the desired algorithm behavior.
For client logic, users override the Client class. Specif-

ically, they implement the initialization logic and the fit
method, which SplitBud invokes in participants at the begin-
ning of each iteration with the training parameters defined
by the strategy. Within fit, a client trains a model, poten-
tially offloading part of the computational graph to the server.
Each client has acces to a server_model_proxy attribute,
which allows the client to offload arbitrary computations. As
mentioned, offloading requires sending the necessary data
and specifying the computation to be performed. In code,
data is passed as method arguments, while the method name
indicates the computation. For example, within fit, a client
can issue the following statement:

1 logits = server_model_proxy.forward(embeddings=embs)

This creates a request containing the required data (embs)
and the computation to perform (forward).
For server models, users override the ServerModel ab-

stract class. Specifically, they implement the initialization
logic, where they may instantiate the actual model, and the
configure_fit method, which is called by the framework
at the beginning of the training iteration with the training
parameters from the strategy. Additionally, the class can
have any number of methods, which become available to
clients. Each method executes a specific computational graph
segment. For example, in the previous case, the server model
must have a forward method accepting a single argument,
embeddings. Notably, the server model is unaware of which
client made a request.

Finally, users define a Strategy class to configure clients
and server models and aggregate updates from both. The

strategy also tracks client requests and determines which
server model should handle each request and when.
Example:We illustrate how to implement SplitFed [39] in
our framework. A SplitFed client trains the lower layers of
the model. It first performs a forward pass on its model seg-
ment, then sends the resulting embeddings and labels to
the server, and waits for the gradients in return. Once the
gradients are received, the client completes the backprop-
agation step. This logic can be implemented in the client’s
fit method as follows:2

1 output = model(batch["images"])

2 gradient = server_model_proxy.serve_grad_request(

3 embeddings=output , labels=batch["labels"]

4) # returned value is stored to the `gradient ` variable

5 optimizer.zero_grad ()

6 output.backward(gradient)

7 optimizer.step()

The SplitFed server receives the embeddings and labels sent
by clients, performs a forward pass, computes the loss, and
backpropagates the loss until obtaining the gradients to be
returned to the client. This can be implemented as follows:

1 def serve_grad_request(self , embeddings , labels):

2 embeddings.requires_grad_(True)

3 output = self.model(embeddings)

4 loss = F.cross_entropy(output , labels)

5 self.optimizer.zero_grad ()

6 loss.backward ()

7 self.optimizer.step()

8 return embeddings.grad

The developer can then customize the behavior of the strat-
egy by deciding how many clients should train concurrently,
aggregating clients’ and server models’ updates, setting the
number of models to be trained on the server, and deciding
whether the client’s requests should be processed immedi-
ately or should be batched with requests from other clients.
Thus, by modifying the strategy, one can switch between
SplitFed v1 and SplitFed v2 without code changes.

3.4 Implementation

We implement SplitBud as an extension of the Flower FL
library [3], adding the necessary logic to support SL-based
training. Below, we highlight some key features we intro-
duce.
First, we introduce a server_model_proxy attribute for

every client. This component establishes and manages a
gRPC communication channel with the server, serving as
the interface for client-to-server communication. Clients can
issue requests using either unary gRPCs, which follow a
request-response pattern and are recommended by gRPC’s
documentation [14], or streaming gRPCs. While SplitBud
supports both, we find that streaming gRPCs reduce commu-
nication overhead.
2The presented code uses PyTorch, but SplitBud is DL framework-agnostic.

Towards a Unified Framework for Split Learning EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 1: SL algorithms and lines of code (LoC).

LoC Client LoC Server Model

SplitFed v1 [39] 7 8
SplitFed v2 [39] 7 8

U-Shaped SL [40] 13 15
StreamSL [32] 7 7

FedSL [16] 11 7
LocFedMix-SL [28] 17 25

SplitAvg [30] 17 21

Clients can invoke any method on server_model_proxy
as long as the corresponding method is implemented in the
server model, passing any number of arguments. Two special
arguments configure the request behavior: _streams_ speci-
fies whether unary or streaming gRPCs should be used, while
type determines the response handling strategy – clients
can either block execution until a response is received or con-
tinue processing, handling the asynchronous invocation’s
return value later.

On the server side, SplitBud employs an asyncio-based
service to receive and process client requests. The service
first deserializes and parses the request. It then provides
request metadata to the strategy, which determines the ap-
propriate server model for processing. The service waits until
the strategy signals that the request is ready, then triggers
computation on the designated server model and returns the
results to the client.

4 Preliminary framework evaluation

We now evaluate the framework. Our goal is not only to
show the efficiency of the implementation and the ease with
which new algorithms may be implemented, but also to
demonstrate the potential benefits of split learning over full
on-device training. The code reproducing our results is at
https://github.com/BorisRado/split_learning_algorithms.
To demonstrate SplitBud’s flexibility, we implement a

selection of state-of-the-art SL algorithms. Table 1 lists the
algorithms and the number of lines of code required to imple-
ment their training logic in SplitBud.3 Notably, implement-
ing all algorithms requires little effort and minimal code.

4.1 Scalability w.r.t. number of participants

We first analyze how training times vary in a traditional
SL setting while varying the number of clients. In SL, all
clients share the same server resources. Thus, increasing the
number of clients can lead to resource contention, potentially
increasing per-round training time due to queuing delays and
limited server-side computing capacity. SplitBud enables us

3We do not consider the code for model definition, data loading, etc.

1 4 8 12 16
20

30

40

50

60

layer 1

1 4 8 12 16

layer 2
CPU full
model
CPU partial
model
A100
V100
P100

Number of clients

R
ou

nd
 tr

ai
n

tim
e

[s
]

Figure 2: Round train time w.r.t. number of participating

clients, size of the client model, and GPU type on the server.

to scale the number of clients by simply starting more client
instances, with no changes needed to the code.
Setting: We train a ResNet-18 model using the SplitFed v1
algorithm, where each client trains a client-side encoder
model and a separate server-side classification head. Since
clients have the same computing resources (four cores of an
Intel Xeon Silver 4112 processor and 8 GB of RAM), they train
the same model architecture, specifically the initial ResNet
layers up to and including either the first (layer 1) or second
(layer 2) residual block. Thus, the server, equipped with
eight CPU cores, 16 GB of RAM, and a GPU accelerator (we
vary 3 types), trains the remaining three or two residual
blocks, along with the final fully connected layer.

We vary the number of participants from 1 to 16 and report
the average training time on a dataset with 400 data points.
As baselines, we consider the time required to train the full
model locally as in FL (“CPU full model”), and the time to
train only the client-sidemodel by performing a forward pass
on the client-side model and backpropagating a randomly
generated gradient (“CPU partial model”).
Results: Figure 2 shows the average time for a training
round. We see that SL significantly speeds up training. Train-
ing a model on devices takes 51.1 s, while by employing SL
with an A100 GPU on the server, the time decreases to 26.8
and 35.4 s depending on whether the client offloads the last
three or two residual blocks, respectively. When only one
client is training, the process is bottlenecked by the client, as
CPU partial model takes 20.7 (layer1) and 31.1 s (layer2).
The increase over this lower bound is caused by increased
CPU-GPU data movement, data serialization-deserialization,
communication delay, and server training time.
As the number of clients grows, training time increases,

influenced by the number of server-trained layers and GPU
type.When training a larger portion of the network (layer 1),
V100 and P100 GPUs experience significant slowdowns due
to resource saturation. Consequently, SL becomes slower
than full-device training when more than 10 − 12 clients
participate, depending on the GPU. In contrast, the A100
GPU handles the load better, with 16 clients requiring only

https://github.com/BorisRado/split_learning_algorithms

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Boris Radovič, Marco Canini, Samuel Horváth, Veljko Pejović, and Praneeth Vepakomma

0 10 20 30 40
Train epoch

1.0

1.5

2.0

Lo
ss

0 1000 2000 3000
Elapsed time [s]

FedAvg
SplitFed v1
Heterogeneous
SplitFed v1

Figure 3: Evaluation of the training loss through training

both w.r.t. training epoch and training time.

32.4 s – still significantly faster than full-model training on
devices.

Training a smaller segment on the server (layer2) reduces
GPU load, keeping time increases modest. Even with 16
clients, training is faster than full-model training on devices.

4.2 Training different model sizes on clients

In the previous experiment, we assumed that clients had
uniform computing resources. However, in practice, it is
often the case that compute resources vary, with some de-
vices being equipped with high computational resources and
memory while others have more modest resources. In such
cases, different clients can decide to offload different parts
of the computational graph to the server. SplitBud allows
practitioners to easily implement these use cases.
Setting: We fine-tune a pre-trained ResNet 18 model [17]
with three algorithms, namely a) FedAvg, in which clients
fully train themodel locally, b) SplitFed v1, in which all clients
train until themaxpool layer, and c)Heterogeneous SplitFed v1,
in which powerful devices train the model locally while weak
clients offload the residual blocks and the last fully connected
layer to the server. Note, that in all cases, an independent
full model is trained for every client. Thus, the next version
of the global model is in all cases an average of the models
trained in the previous iteration, regardless of whether they
have been trained on the client or the server. We run the
experiments on CoLExT [5], an experimentation testbed for
DCML with 20 clients (8 OrangePi5B, 4 LattePandaDelta3,
2 JetsonAGXOrin, 4 JetsonOrinNano, 2 JetsonXavierNX). In
the case of Heterogeneous SplitFed v1 all Jetson devices train
themodel locally in full while the LattePandas and OrangePis
offload part of the computational graph to the server.
Results: Figure 3 reports the evolution of the loss on the
clients’ datasets over the training round (left plot) and time
(right plot). As expected, the loss curves are the same in all
variants: since SL offloads part of the computational graph
to the server, it does not alter the computations. The minor
differences arise due to the fact that the random number
generators are not synchronized between the clients and the
server; thus, the stochastic behavior of the dropout layer is

25 500.6

0.7

0.8

0.9 Pretrained

0 100 200

From scratch

FedSL
SplitFed v1
SplitFed v2
SplitAvg

Evaluation epoch

A
cc

ur
ac

y

Figure 4: Evolution of the average test accuracywhen training

from scratch or fine-tuning a pre-trained ResNet 18 model.

not consistent. This, however, does not yield any significant
behavioral differences in terms of convergence.
When training the model fully on-device, the per-round

train time4 is 188.1 ± 0.9 s. This relatively high time is due
to stragglers, i.e., devices that take more time to train than
others. As FedAvg is a synchronous scheme, it waits until
all participants finish training before proceeding to the next
iteration. When all clients offload part of the computational
graph to the server, the time decreases to 79.6±0.5 s. Despite
the significant speed-up, this solution is still sub-optimal, as
powerful devices, which could train a model locally suffi-
ciently fast so as to not slow down the training process, still
offload computation to the server. This adds unnecessary
overhead to the server. Therefore, the optimal solution from
a training-time perspective is offloading the computational
graph to the server only when necessary as demonstrated
by Heterogeneous SplitFed v1, where the per-round time
decreases to 55.3 ± 0.4 s.

4.3 Comparing algorithm convergence

Wenow compare the algorithms’ convergence behavior. Note
that our aim is not to conclude on absolute algorithm perfor-
mance as we do not optimize hyperparameters.
Setting:We run the algorithms using 8 clients, each equipped
with a dataset with 800 training and 200 test images, and
compare the evolution of the average test accuracy through-
out training. We consider both the case of training the model
from scratch or fine-tuning a pretrained model.
Results: We present in Figure 4 the evolution of test accu-
racy, focusing on four algorithms for simplicity. We observe
that algorithms that involve training a single model on the
server (represented by a solid line) converge quickly, but ulti-
mately achieve lower accuracy compared to those that train
a separate model for each client on the server (represented
by a dashed line). This difference can be attributed to the
imbalanced updates discussed in [21, 28].

4By per-round training time, we refer to the time elapsed fromwhen training
parameters are sent to participants to when the last participant’s update is
received, as measured by the server.

Towards a Unified Framework for Split Learning EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

5 Split Learning – What next?

Overall, SL has received significantly less attention than FL.
For instance, a cursory bibliographical search shows that
since 2024 over 20,000 papers have mentioned FL, whereas
only 1,500 have referenced SL.5 This disparity is surprising,
given that the SL protocol discussed in this paper can be
seen as a generalization of FL. In essence, SL allows clients to
offload computation to a server, whereas FL restricts them to
local training. This is evident in the SL protocol formulated
in § 2 – if clients do not offload to the server in step 3, the
protocol reduces to FL, making steps 2 and 5 unnecessary.

We argued that SL can be seen as redistributing computa-
tion across entities without altering the computations them-
selves. In this context – assuming each client trains its own
server-side model – SL can complement any FL algorithm
by reducing the computational burden on the client side. Im-
portantly, this redistribution does not affect the convergence
behavior of the algorithms (cf. Figure 3).
We identify a gap in the literature regarding the number

of models trained on the server. As we also demonstrated (cf.
Figure 4), having all clients train a shared server-side model
can lead to lower accuracy than assigning each client its own
model. However, the latter approach is memory-intensive.
A promising research direction is optimizing the number of
server-side models and, more broadly, exploring strategies
to balance resource efficiency with model performance. Ulti-
mately, the goal is to make SL scalable and effective for large
deployments involving thousands or millions of clients.
From a privacy standpoint, SL is less protective than FL,

as the server in SL has access to strictly more data. In FL, the
server sees only the model weights before and after client
training. In addition to this, SL exposes also the evolution of
server-sideweights and intermediate data embeddings.More-
over, in algorithms that do not use a U-shaped architecture,
clients must also transmit target labels to the server. Shar-
ing labels is particularly problematic in language modeling,
where sharing the target labels implies sharing all the input
data due to the nature of the next-token prediction training
task. However, to our knowledge, the U-shaped architecture
has only been applied with a single client at a time [31, 40] or
when each client trains its own server model [33]. Both ap-
proaches face severe limitations, as we discussed. However,
there is no technical reason preventing one from developing
a more general SL algorithm with U-shaped architecture. We
leave the exploration of this to future research.
The benefits of SL extend towards democratization of

machine learning. On the one hand, SL enables resource-
constrained clients to train large models. On the other, it
facilitates a more balanced distribution of compute resources.
Unlike FL, where clients perform all the computation while

5Source: Google Scholar. Values checked on February 5, 2025.

the server remains underutilized, and centralized training,
where the server performs all the work while edge devices
are idle, SL allows both clients and the server to contribute
data and compute proportionally to their resources.

We hope that SplitBud will foster research in these direc-
tions, making FL and SL coexist and strengthen each other.

6 Related work

Parallel Split Learning combines FL and SL, allowing mul-
tiple clients to concurrently train while the server assists
in training and aggregation [12, 39]. Variants differ in how
server-side models are managed: SplitFed v1 [39] maintains
separate heads per client, SplitFed v2 [39] shares a com-
mon head, and SFGL [12] trains multiple server-side models.
SplitFed v3 [13] addresses non-IID data by keeping client-
side model segments private. Recent works have tackled
challenges such as communication overhead [2, 6, 16], server-
client update imbalance [21, 28], heterogeneous model parti-
tioning [9, 35], and security aspects of training [1].
DistributedMachine Learning Frameworks: Several frame-
works support multi-node training. Petals [4] enables split
training for large language models but restricts clients to
train only the layers they own. FusionLLM [37] supports
arbitrary models, automatic differentiation, and heteroge-
neous software. Both frameworks focus on implementing
pipeline parallelism [27], using data from a single client. In
contrast, SplitBud is designed for SL algorithms, support-
ing data aggregation across clients, concurrent multi-client
training, and simultaneous model training on the server.

7 Conclusion

We introduced SplitBud, a flexible framework for imple-
menting and evaluating SL algorithms. By unifying SL im-
plementations, SplitBud facilitates systematic exploration
of SL’s strengths, limitations, and integration with FL. Our
experiments demonstrated its versatility across multiple SL
algorithms, while our analysis highlighted key challenges
faced by SL, including privacy, server-side model manage-
ment, and resource efficiency.

Acknowledgments

This publication is based upon work supported by the King
Abdullah University of Science and Technology Research
Funding (KRF) under Award No. ORA-CRG2021-4699. The
research presented in this paper was partly funded by Slove-
nian Research Agency projects “Context-Aware On-Device
Approximate Computing” (J2-3047) and “approXimation for
adaptable distributed artificial intelligence” (N2-0393).

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Boris Radovič, Marco Canini, Samuel Horváth, Veljko Pejović, and Praneeth Vepakomma

References

[1] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit Ah-
met Çamtepe, Yansong Gao, Hyoungshick Kim, and Surya Nepal. 2020.
Can We Use Split Learning on 1D CNN Models for Privacy Preserving
Training?. In ASIA CCS.

[2] AhmadAyad, Melvin Renner, and Anke Schmeink. 2021. Improving the
Communication and Computation Efficiency of Split Learning for IoT
Applications. In IEEE Global Communications Conference, GLOBECOM
2021.

[3] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcol-
let, and Nicholas D. Lane. 2020. Flower: A Friendly Federated Learning
Research Framework. (2020).

[4] Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Maksim Ri-
abinin, Younes Belkada, Artem Chumachenko, Pavel Samygin, and
Colin Raffel. 2023. Petals: Collaborative Inference and Fine-tuning of
Large Models. In ACL.

[5] Janez Božič, Amandio R Faustino, Boris Radovič, Marco Canini, and
Veljko Pejović. 2024. Where is the Testbed for my Federated Learning
Research? (2024).

[6] Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Pra-
neeth Vepakomma, Vivek Sharma, and Ramesh Raskar. 2021. AdaSplit:
Adaptive Trade-offs for Resource-constrained Distributed Deep Learn-
ing. (2021).

[7] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation
and Communication Efficient Federated Learning for Heterogeneous
Clients. In ICLR.

[8] Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin
Fan, and Qiang Yang. 2023. FATE-LLM: A Industrial Grade Federated
Learning Framework for Large Language Models. (2023).

[9] Wenhao Fan, Penghui Chen, Xiongfei Chun, and Yuan’an Liu. 2025.
MADRL-based model partitioning, aggregation control, and resource
allocation for cloud-edge-device collaborative split federated learning.
IEEE Trans. Mob. Comput. (2025).

[10] Flower. 2024. Introducing FlowerLLM. https://flower.ai/blog/2024-03-
14-introducing-flowerllm/. Accessed: 2 Feb 2025.

[11] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra
Thapa, Kyuyeon Kim, Seyit Ahmet Çamtepe, Hyoungshick Kim, and
Surya Nepal. 2020. End-to-End Evaluation of Federated Learning and
Split Learning for Internet of Things. In International Symposium on
Reliable Distributed Systems, SRDS 2020.

[12] Yansong Gao, Minki Kim, Chandra Thapa, Alsharif Abuadbba, Zhi
Zhang, Seyit Camtepe, Hyoungshick Kim, and Surya Nepal. 2022. Eval-
uation and Optimization of Distributed Machine Learning Techniques
for Internet of Things. IEEE Trans. Computers (2022).

[13] Manish Gawali, C. S. Arvind, Shriya Suryavanshi, Harshit Madaan,
Ashrika Gaikwad, K. N. Bhanu Prakash, Viraj Kulkarni, and Anirud-
dha Pant. 2021. Comparison of Privacy-Preserving Distributed Deep
Learning Methods in Healthcare. In MIUA.

[14] gRPC documentation. 2025. Performance Best Practices. https://grpc.
io/docs/guides/performance. Accessed: 27 Jan 2025.

[15] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep
neural network over multiple agents. J. Netw. Comput. Appl. (2018).

[16] Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun
Moon. [n. d.]. Accelerating federated learning with split learning
on locally generated losses. https://fl-icml.github.io/2021/papers/FL-
ICML21_paper_6.pdf. Accessed: 2023-11-16.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR.

[18] Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis,
Stylianos I. Venieris, and Nicholas D. Lane. 2021. FjORD: Fair and Ac-
curate Federated Learning under heterogeneous targets with Ordered

Dropout. In NeurIPS.
[19] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and

Koji Yamamoto. 2023. Distillation-Based Semi-Supervised Federated
Learning for Communication-Efficient Collaborative Training With
Non-IID Private Data. IEEE Trans. Mob. Comput. (2023).

[20] Kairouz, Peter and McMahan, H Brendan and Avent, Brendan and Bel-
let, Aurélien and Bennis, Mehdi and Bhagoji, Arjun Nitin and Bonawitz,
Kallista and Charles, Zachary and Cormode, Graham and Cummings,
Rachel and others. 2021. Advances and Open Problems in Federated
Learning. Foundations and Trends® in Machine Learning (2021).

[21] Mohammad Kohankhaki, Ahmad Ayad, Mahdi Barhoush, and Anke
Schmeink. 2024. Parallel Split Learning with Global Sampling. (2024).

[22] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. (2016).

[23] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated
Learning via Model Distillation. (2019).

[24] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020.
Ensemble Distillation for Robust Model Fusion in Federated Learning.
In NeurIPS.

[25] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B. Letaief. 2020.
Client-Edge-Cloud Hierarchical Federated Learning. In ICC.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In AISTATS.

[27] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In SOSP.

[28] Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh
Raskar, Mehdi Bennis, and Seong-Lyun Kim. 2022. LocFedMix-SL:
Localize, Federate, and Mix for Improved Scalability, Convergence,
and Latency in Split Learning. In WWW.

[29] Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia,
Roberto Gonçalves Pacheco, and Rodrigo S. Couto. 2025. Early-Exit
Deep Neural Network - A Comprehensive Survey. ACM Comput. Surv.
(2025).

[30] Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma,
Ramesh Raskar, Mehdi Bennis, Moongu Jeon, and Jinho Choi. 2021.
Server-Side Local Gradient Averaging and Learning Rate Acceleration
for Scalable Split Learning. (2021).

[31] Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree
Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar. 2019. Split Learn-
ing for collaborative deep learning in healthcare. (2019).

[32] Boris Radovič, Mohammed Aljahdali, Marco Canini, Veljko Pejović,
and Zuhair Khayyat. 2024. Train your cake and eat it too! Repurposing
collaborative training to tailor LLMs to private data without sharing.
(2024).

[33] Boris Radovič, Marco Canini, and Veljko Pejović. 2024. Review and
comparative evaluation of resource-adaptive collaborative training for
heterogeneous edge devices. ACM Trans. Model. Perform. Eval. Comput.
Syst. (2024).

[34] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMa-
han. 2021. Adaptive Federated Optimization. In ICLR.

[35] Eric Samikwa, Antonio Di Maio, and Torsten Braun. 2022. ARES: Adap-
tive Resource-Aware Split Learning for Internet of Things. Comput.
Networks (2022).

[36] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang,
and Chengqi Zhang. 2022. FedProto: Federated Prototype Learning
across Heterogeneous Clients. In AAAI.

https://doi.org/10.1145/3320269.3384740
https://doi.org/10.1145/3320269.3384740
https://doi.org/10.1109/GLOBECOM46510.2021.9685493
https://doi.org/10.1109/GLOBECOM46510.2021.9685493
https://doi.org/10.1109/GLOBECOM46510.2021.9685493
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://doi.org/10.18653/v1/2023.acl-demo.54
https://doi.org/10.18653/v1/2023.acl-demo.54
https://doi.ieeecomputersociety.org/10.1109/SEC62691.2024.00027
https://doi.ieeecomputersociety.org/10.1109/SEC62691.2024.00027
https://arxiv.org/abs/2112.01637
https://arxiv.org/abs/2112.01637
https://arxiv.org/abs/2112.01637
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://arxiv.org/abs/2310.10049
https://arxiv.org/abs/2310.10049
https://doi.ieeecomputersociety.org/10.1109/TMC.2025.3530482
https://doi.ieeecomputersociety.org/10.1109/TMC.2025.3530482
https://flower.ai/blog/2024-03-14-introducing-flowerllm/
https://flower.ai/blog/2024-03-14-introducing-flowerllm/
https://doi.org/10.1109/SRDS51746.2020.00017
https://doi.org/10.1109/SRDS51746.2020.00017
https://doi.org/10.1109/TC.2021.3135752
https://doi.org/10.1109/TC.2021.3135752
https://doi.org/10.1109/TC.2021.3135752
https://doi.org/10.1007/978-3-030-80432-9_34
https://doi.org/10.1007/978-3-030-80432-9_34
https://grpc.io/docs/guides/performance
https://grpc.io/docs/guides/performance
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1016/j.jnca.2018.05.003
https://fl-icml.github.io/2021/papers/FL-ICML21_paper_6.pdf
https://fl-icml.github.io/2021/papers/FL-ICML21_paper_6.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
https://doi.org/10.1109/TMC.2021.3070013
https://doi.org/10.1109/TMC.2021.3070013
https://doi.org/10.1109/TMC.2021.3070013
https://ieeexplore.ieee.org/document/9464278
https://ieeexplore.ieee.org/document/9464278
https://arxiv.org/abs/2407.15738
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1910.03581
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://doi.org/10.1109/ICC40277.2020.9148862
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3698767
https://doi.org/10.1145/3698767
https://arxiv.org/abs/2112.05929
https://arxiv.org/abs/2112.05929
https://arxiv.org/abs/1912.12115
https://arxiv.org/abs/1912.12115
https://openreview.net/forum?id=FGupKd365r
https://openreview.net/forum?id=FGupKd365r
https://dl.acm.org/doi/10.1145/3708983
https://dl.acm.org/doi/10.1145/3708983
https://dl.acm.org/doi/10.1145/3708983
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1016/j.comnet.2022.109380
https://doi.org/10.1016/j.comnet.2022.109380
https://doi.org/10.1609/aaai.v36i8.20819
https://doi.org/10.1609/aaai.v36i8.20819

Towards a Unified Framework for Split Learning EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[37] Zhenheng Tang, Xueze Kang, Yiming Yin, Xinglin Pan, Yuxin Wang,
Xin He, Qiang Wang, Rongfei Zeng, Kaiyong Zhao, Shaohuai Shi,
Amelie Chi Zhou, Bo Li, Bingsheng He, and Xiaowen Chu. 2024. Fu-
sionLLM: A Decentralized LLM Training System on Geo-distributed
GPUs with Adaptive Compression. (2024).

[38] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2016.
BranchyNet: Fast inference via early exiting from deep neural net-
works. In ICPR.

[39] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, Seyit
Camtepe, and Lichao Sun. 2022. SplitFed: When Federated Learning
Meets Split Learning. In AAAI.

[40] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh
Raskar. 2018. Split learning for health: Distributed deep learning
without sharing raw patient data. (2018).

[41] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart
Heim, and Marius Hobbhahn. 2024. Will we run out of data? Limits of
LLM scaling based on human-generated data. (2024).

[42] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson
Ho, and Marius Hobbhahn. 2022. Machine Learning Model Sizes and
the Parameter Gap. (2022).

[43] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing
Xie. 2022. Communication-efficient federated learning via knowledge
distillation. Nat. Commun. (2022).

https://arxiv.org/abs/2410.12707
https://arxiv.org/abs/2410.12707
https://arxiv.org/abs/2410.12707
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2207.02852
https://arxiv.org/abs/2207.02852
https://doi.org/10.1038/s41467-022-29763-x
https://doi.org/10.1038/s41467-022-29763-x

	Abstract
	1 Introduction
	2 Background
	3 SplitBud
	3.1 Design goals
	3.2 Programming abstraction
	3.3 Programming API
	3.4 Implementation

	4 Preliminary framework evaluation
	4.1 Scalability w.r.t. number of participants
	4.2 Training different model sizes on clients
	4.3 Comparing algorithm convergence

	5 Split Learning – What next?
	6 Related work
	7 Conclusion
	Acknowledgments
	References

