
AN EFFICIENT STATISTICAL-BASED GRADIENT COMPRESSION TECHNIQUE
FOR DISTRIBUTED TRAINING SYSTEMS

Ahmed M. Abdelmoniem * 1 Ahmed Elzanaty * 1 Mohamed-Slim Alouini 1 Marco Canini 1

ABSTRACT
The recent many-fold increase in the size of deep neural networks makes efficient distributed training challenging.
Many proposals exploit the compressibility of the gradients and propose lossy compression techniques to speed
up the communication stage of distributed training. Nevertheless, compression comes at the cost of reduced
model quality and extra computation overhead. In this work, we design an efficient compressor with minimal
overhead. Noting the sparsity of the gradients, we propose to model the gradients as random variables distributed
according to some sparsity-inducing distributions (SIDs). We empirically validate our assumption by studying
the statistical characteristics of the evolution of gradient vectors over the training process. We then propose
Sparsity-Inducing Distribution-based Compression (SIDCo) , a threshold-based sparsification scheme that enjoys
similar threshold estimation quality to deep gradient compression (DGC) while being faster by imposing lower
compression overhead. Our extensive evaluation of popular machine learning benchmarks involving both recurrent
neural network (RNN) and convolution neural network (CNN) models shows that SIDCo speeds up training by up
to ⇡41.7⇥, 7.6⇥, and 1.9⇥ compared to the no-compression baseline, Top

k
, and DGC compressors, respectively.

1 INTRODUCTION

As deep neural networks (DNNs) continue to become larger
and more sophisticated, and ever increasing amounts of
training data are used (Brown et al., 2020; Shoeybi et al.,
2019), scaling the training process to run efficiently on a
distributed cluster is currently a crucial objective that is at-
tracting a multitude of efforts (Kurth et al., 2018; Narayanan
et al., 2019; Peng et al., 2019; Verbraeken et al., 2020). Mod-
ern deep learning toolkits (Abadi et al., 2016; pytorch.org;
Sergeev & Balso, 2018) are capable of distributed data-
parallel training whereby the model is replicated and train-
ing data are partitioned among workers. Training DNNs in
such settings in practice relies on synchronous distributed
Stochastic Gradient Descent (SGD) or similar optimizers
(refer to Appendix A for more details). Let N be the num-
ber of workers, and x{i} 2 R

d denote the model param-
eters with d dimensions at iteration i. At the end of the
ith iteration, each worker runs the back-propagation algo-
rithm to produce a local stochastic gradient, gn

{i} 2 R
d, at

worker n. Then, each worker updates its model parame-
ters using the final gradient aggregated across all workers
as x{i+1} = x{i} � � 1

N

P
N

n=1 g
n

{i}, where � is the learn-
ing rate. Gradient aggregation involves communication,

*Equal contribution 1KAUST. Correspondence to: Marco
Canini <marco@kaust.edu.sa>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

which is either between the workers in a peer-to-peer fash-
ion (typically through collective communication primitives
like all-reduce) or via a parameter server architecture. Due
to the synchronous nature of the optimizer, workers can-
not proceed with the (i+ 1)th iteration until the aggregated
gradient is available. Therefore, in distributed training work-
loads, communication is commonly one of the predominant
bottlenecks (Fang et al., 2019; Lin et al., 2018).

Addressing this communication bottleneck is the focus of
this paper, where we pursue the path of improving train-
ing by reducing the communicated data volume via lossy
gradient compression. Compression entails two main chal-
lenges: (i) it can negatively affect the training accuracy
(because the greater the compression is, the larger the error
in the aggregated gradient), and (ii) it introduces extra com-
putation latency (due to the compression operation itself).
While the former can be mitigated by applying compres-
sion to a smaller extent or using compression with error-
feedback (Karimireddy et al., 2019; Lin et al., 2018), the
latter, if gone unchecked, can actually slow down train-
ing compared to not compressing. Surprisingly, much of
the prior works in this area ignored the computation over-
heads of compression. Given that modern clusters for deep
learning workloads nowadays use high speed, low latency
network fabrics (e.g., 100 Gbps Ethernet or InfiniBand),
we argue that the efficiency of compression needs to be
explicitly accounted for.

Motivated by the above observations, we propose SIDCo



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

compression.1 SIDCo builds on a sound theory of signal
compressibility and enjoys linear complexity in the size of
model parameters. Importantly, this affords for an imple-
mentation that parallelizes very efficiently using modern
GPUs and other hardware targets. Thus, our work addresses
a previously-overlooked yet crucial technical obstacle to us-
ing compression in practice, especially for communication-
bounded training of large models.

1.1 Related Work

Efficient communication in distributed training has received
extensive attention (Narayanan et al., 2019; Wangni et al.,
2018; Xu et al., 2020). One approach tries to maximize
the overlap between the computation and communication to
hide the communication overhead (Narayanan et al., 2019;
Peng et al., 2019). However, the gains from these methods
are bounded by the length of computation and are modest
when the training is dominantly communication-bound. Al-
ternatively, many approaches adopt methods that reduce the
amount of communication, volume (Lin et al., 2018) or fre-
quency (Dieuleveut & Patel, 2019). In this work, we focus
on gradient compression as it shows considerable benefits.

Gradient Compression is a well-known volume reduction
technique (Dutta et al., 2020; Fang et al., 2019; Lin et al.,
2018; Wangni et al., 2018; Xu et al., 2020). Each worker
applies a compression operator C to gn

{i} to produce a com-
pressed gradient vector that is transmitted for aggregation.
Generally, the compressor C involves quantization and/or
sparsification operations.

Gradient Quantization represents gradients with fewer
bits for each gradient element. Under some conditions,
quantization is known to achieve the same convergence as
no compression (Fu et al., 2020; Wu et al., 2018). Error com-
pensation (EC) is used to attain convergence when gradients
are quantized using fewer bits (Karimireddy et al., 2019;
Wu et al., 2018; Xu et al., 2020). Given the standard 32-bit
float number representation, the volume reduction of quan-
tization is limited by 32⇥, i.e., 1 bit out of 32 bits, which
may not be sufficient for large models or slow networks
and it requires expensive encoding to pack the quantized
bits (Gajjala et al., 2020).

Gradient Sparsification selects a subset of gradient ele-
ments. It is generally more flexible than quantization, as
it can reduce volume by up to d⇥ and adapts easily to net-
work conditions (Abdelmoniem & Canini, 2021). It was
shown that in some cases, up to 99.9% of the non-significant
gradient elements can be dropped with limited impact on
convergence (Aji & Heafield, 2017; Lin et al., 2018; Shi
et al., 2019). Gradient sparsification using Top

k
– selecting

1Our code release is available at https://github.com/
sands-lab/SIDCo.

the top k elements by their magnitude – is known to yield
better convergence compared to other compression schemes,
e.g., Random-k (Alistarh et al., 2018; Lin et al., 2018). How-
ever, Top

k
or its variants are notorious for being computa-

tionally inefficient (Xu et al., 2020). Top
k

selection does
not perform well on accelerators such as GPUs (Shanbhag
et al., 2018). For instance, in many cases, it is reported that
Top

k
imposes high overheads and worsens the run-time of

distributed training (Shi et al., 2019; Xu et al., 2020).

1.2 Background and Motivation

The main challenge with using gradient compression (e.g.,
sparsification or quantization) is the computational overhead
it introduces in the training. If the overhead is greater than
the reduction gains in communication time, the overall itera-
tion time increases. Hence, to be useful, a robust compressor
should have a low overhead (Fang et al., 2019; Shi et al.,
2019). As presented earlier, one of the dominantly robust
compressors is Top

k
, however it is also computationally

heavy (Fang et al., 2019; Shi et al., 2019; 2020). Because
of this, Top

k
, for large models, results in either an increased

training time or unsatisfactory performance benefits.

Numerous efforts based on algorithmic or heuristic ap-
proaches have been dedicated to enhancing the performance
of Top

k
(Jiang et al., 2018; Lin et al., 2018; Shanbhag et al.,

2018; Shi et al., 2019). Existing fast implementations of
Top

k
are compute-intensive (e.g., on CPU, the computa-

tional complexity is O(d log2 k)) (Shanbhag et al., 2018).
Recently, more optimized implementations for multi-core
hardware are proposed, which greatly depend on the data dis-
tribution and work best for a small number of k (Shanbhag
et al., 2018). For instance, the Radix select algorithm used
in PyTorch is O (db/re d) where b is the number of bits in
the data values and r is the radix size (pytorch.org). Yet,
using gradient vectors of various sizes, Top

k
is the slowest

on GPUs and not the fastest on CPUs, as shown later in our
micro-benchmark and in Appendix E.2.

In the context of gradient compression, Threshold-based
methods, aiming to overcome the overhead of Top

k
, select

in linear time gradient elements larger in magnitude than
a threshold ⌘. DGC (Lin et al., 2018) proposes to sample
a random subset of the gradients (e.g., 1%), apply Top

k

on the sampled sub-population to find a threshold which is
then used to obtain the actual Top

k
elements hierarchically.2

Even though DGC leads to improved performance over
Top

k
, its computational complexity is still in the same order

of Top
k
’s complexity. Threshold estimation methods on the

other hand, are shown to attain linear time complexity (Aji
2Aside from the expensive random sampling, in worst case,

DGC invokes Topk twice, once on the subset to obtain a thresh-
old and another to obtain k elements if the number of elements
obtained via the threshold are more than the target k.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

& Heafield, 2017; Alistarh et al., 2018; Dryden et al., 2016).

Recently, several works have leveraged certain features of
the gradients to enhance the training process (Fu et al., 2020;
Narang et al., 2018). Some approaches leveraged these fea-
tures and devised heuristics to estimate and find the Top

k

threshold which exhibits lower compression overhead com-
pared to Top

k
and DGC (Fang et al., 2019; Shi et al., 2019).

In particular, RedSync (Fang et al., 2019) finds the threshold
by moving the ratio between the maximum and mean values
of the gradient; GaussianKSGD (Shi et al., 2019) adjusts an
initial threshold obtained from fitting a Gaussian distribution
through an iterative heuristic to obtain the Top

k
elements.

Nevertheless, the threshold estimation of these methods is
of bad quality and the number of selected elements, k̂, varies
significantly from the target k (Section 4.1).

In this work, we propose a statistical approach to estimate
an accurate threshold for selecting the Top

k
elements with

minimal overhead. In particular, we exploit the compress-
ibility of the gradients and opt for SIDs that fit the gradients
well. For instance, double exponential (i.e., Laplace), dou-
ble gamma and double generalized Pareto distributions have
been used as sparsity-promoting priors in Bayesian estima-
tion framework (Armagan et al., 2013; Babacan et al., 2010;
Monga et al., 2018). Our study of the gradients supports the
assumption for their compressibility and suitability for mod-
eling the gradients as random variables (r.v.s) distributed
according to one of the SIDs.

To motivate our approach, we conduct initial micro-
benchmark experiments to evaluate the compression over-
head of sparsification techniques: Top

k
, DGC (which uses

random sub-sample for threshold calculation), RedSync and
GaussianKSGD (which heuristically estimate the threshold),
and one of our proposed SIDCo schemes that estimates
the threshold via a multi-stage fitting (Section 2). We use
both CPU and GPU to benchmark the performance (see Ap-
pendix D). We show the speed-up of different compres-
sors normalized by the compression speed of Top

k
. We

observe from the results that methods based on random sub-
sampling (e.g., DGC) excel on GPU (Figure 1a), but they
imposes huge overhead on CPU and leads to DGC perform-
ing significantly worse than Top

k
on CPU (Figure 1b). In

contrast, methods that are based on estimating a threshold
over which only k elements are selected, impose consis-
tently lower compression overhead compared to Top

k
and

DGC on both GPU and CPU. This shows that, except for lin-
ear time threshold-based methods, a variable compression
overhead is to be expected on different architectures (e.g.,
CPU, GPU, TPU, FPGA or AI chips).3 Figure 1c shows the

3We note that many efforts are dedicated to the optimization
and enabling of fast training on low-cost devices such as CPUs
instead of opting for expensive hardware accelerations (Beidi et al.,
2020; Das et al., 2018; Vanhoucke et al., 2011).

normalized actual compression ratio (i.e., k̂/k) for various
schemes; note that the heuristic approaches fail to obtain
the right threshold, leading to unpredictable behavior.

1.3 Contributions

In this work, we make the following contributions:

• We exploit the sparsity of the gradients via modeling the
gradients as r.v.s with SIDs and propose a multi-stage
fitting technique based on peak over threshold (PoT)
which works well with aggressive sparsification ratios
and adapts to the distribution changes of the gradient.

• We design SIDCo, a threshold sparsification method with
closed-form expressions for three SIDs to keep the com-
pression overhead as low as possible.

• We show that SIDCo consistently outperforms existing
approaches via an extensive set of numerical and experi-
mental evaluation on different benchmarks.

2 PROPOSED GRADIENT MODEL AND
THRESHOLD ESTIMATION

We discuss the compressibility of the gradients and their sta-
tistical distribution. Then, two threshold-based schemes are
proposed that leverage the compressibility of the gradients.

2.1 Gradient Compressibility

Signals, including gradient vectors of DNNs, can be effi-
ciently compressed by exploiting some of their inherent
features. Among these features, sparsity and compress-
ibility are the key drivers for performing signal compres-
sion (Elzanaty et al., 2019a;b; Mallat, 2009).

We start by a precise definition of compressible signals.

Definition 1 (Compressible Signals (Baraniuk et al., 2011)).
The signal g 2 R

d is compressible if the magnitudes of its
sorted coefficients obey the following power law decay:

g̃j  c1 j
�p 8j 2 {1, 2, · · · , d}, (1)

where g̃ is the sorted vector of |g| in descending order, g̃j
is the jth element of g̃, and p > 1/2 is the decay exponent,
for some constant c1. For compressible signals with power
law decay, the sparsification error, �k(g), is bounded as

�k(g) , kg � Tk {g}k2  c2 k
1/2�p, (2)

where kxk
q
=
⇣P

d

j=1 x
q

j

⌘1/q
is the `q norm of x, Tk {·} is

the Top
k

sparsification operator that keeps only the largest
k elements in magnitude and set the others to zero, Tk {g}
is a k-sparse vector with only k non-zero elements, and c2
is a constant. The signal is more compressible if it decays
faster, i.e., p is higher (DeVore, 1998).



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) Compression with GPU (b) Compression with CPU (c) Quality of Threshold Estimation

Figure 1. The compression speedups over Topk using different compression ratios (0.1, 0.01, 0.001), on (a) GPU and (b) CPU. (c) shows
the average estimation quality of the target k. The experiments are performed for VGG16 (Table 1) with the setup detailed in §4.

Table 1. Summary of the benchmarks used in this work.
Task Neural

Network Model Dataset Training
Parameters

Per-Worker
Batch Size

Learning
Rate Epochs Comm

Overhead
Local

Optimizer
Quality
metric

Language
Modeling RNN

LSTM
(Hochreiter & Schmidhuber, 1997)

2 layers-1500 hidden units

PTB
(Marcus et al., 1999)

66,034,000 20 22 30 94% NesterovMom-SGD Test Perplexity

Speech
Recognition RNN LSTM

5 layers-1024 hidden units
AN4

(AN4)
43,476,256 20 0.004 150 80% NesterovMom-SGD WER & CER

Image
Classification CNN

ResNet-20
(He et al., 2015)

CIFAR-10
(Krizhevsky, 2009) 269,467 512 0.1 140 10% SGD

Top-1 Accuracy
VGG16

(Simonyan & Zisserman, 2015) CIFAR-10 14,982,987 512 0.1 140 60% SGD

ResNet-50 ImageNet
(Deng et al., 2009) 25,559,081 160 0.2 90 72% NesterovMom-SGD

VGG19 ImageNet 143,671,337 160 0.05 90 83% NesterovMom-SGD

Property 1 (Gradients Compressibility). The gradients gen-
erated during the training of most DNNs are compressible
in the sense of Definition 1.

Reasoning. From Definition 1, it can be verified whether
the gradient vectors are compressible. In Appendix B.1, we
empirically validate that the gradients generated during the
training of widely-adopted DNNs respect the condition for
compressibility stated in (1) and (2).

2.2 Gradient Modeling

The target now is to find the distribution of the gradient
vector, while accounting for the compressibility of the gra-
dients. The selection of sparsity-promoting priors that are
able to efficiently capture the statistical characteristics of the
gradients with low computational complexity is a challeng-
ing task. However, we notice an essential property for the
distribution of the gradients that permits high compression
gains with low computational overhead.

Property 2. Gradients generated from many DNNs during
the training can be modeled as r.v.s distributed according
to some sparsity-inducing distributions, i.e., double expo-
nential, double gamma and double generalized Pareto (GP)

distributions. More precisely, we have

G ⇠̇ Distribution(⇥), (3)

where Distribution(·) is one of the three SIDs with parame-
ters indicated by the vector ⇥ that generally depends on the
iteration and worker’s data. Also, the probability density
function (PDF) of G, fG(g;⇥), is symmetric around zero.

Reasoning. Since the gradients are compressible as indi-
cated by Property 1, they can be well approximated by
sparse vectors with minimal error, as implied from (2).
Hence, the distributions that promote sparsity are good can-
didates for fitting (or modeling) the gradient vectors.4 For
instance, the double exponential, double gamma, double
GP, and Bernoulli-Gaussian distributions have been used
as priors that promote sparsity in (Armagan et al., 2013;
Babacan et al., 2010; Elzanaty et al., 2019b; Monga et al.,
2018). Property 2 is empirically verified for several DNN
architectures and datasets in Section 4 and Appendix B.2.

For instance, we consider the gradients resulting from
the training of ResNet-20 with SGD. The collected gra-
dients are fitted by the three proposed SIDs, i.e., double
exponential, double gamma, and double GP distributions.
In Figure 2, the empirical distribution of the gradients and
their absolutes, without EC mechanism, are shown along

4For threshold estimation, we are interested in the distribution
of the amplitude of a random element in the gradient vector.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

·10�2

0

200

400

600

Gradient g

P
D
F
,
f G

(g
)

Empirical
Double-exp.

Double-gamma
Double GP

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10�2

0

0.2

0.4

0.6

0.8

1

Absolute of the gradient g

C
D
F
,
f |

G
|(
g)

Empirical
Exponential
Gamma
GP

0.4 0.6 0.8 1
·10�20.9

0.95

1

(b)

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

·10�2

0

200

400

600

Gradient g

P
D
F
,
f G

(g
)

Empirical
Double-exp.

Double-gamma
Double GP

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10�2

0

0.2

0.4

0.6

0.8

1

Absolute of the gradient g

C
D
F
,
f |

G
|(
g)

Empirical
Exponential
Gamma
GP

0.4 0.6 0.8 1
·10�20.9

0.95

1

(d)

Figure 2. Fitting using the three SIDs for the gradient vector along with the empirical distribution generated from training ResNet-20 on
CIFAR10 using Topk compressor without EC mechanism, for the 100th [(a) PDF, (b) CDF] and 10000th [(c) PDF, (d) CDF] iterations.

with the distributions of the three fitted SID for two itera-
tions. We can notice in Figure 2a that the three proposed
distributions can capture the main statistical characteristic
of the gradients, as their PDFs approximate the empirical
distribution for most of the gradient domain. This can be
understood because of the compressibility of the gradients
illustrated before. The compressibility of r.v.s distributed
according to one of the SIDs can be attributed to the shape
of their PDFs, where the most probable values are those
with small amplitudes. From Figure 2a and Figure 2c, it can
be seen that the gradients at iteration 10000 (Figure 2c) are
more sparse than those at iteration 100 (Figure 2a), where
the PDF at iteration 10000 has higher values at smaller gra-
dient values and it has faster tail. Regarding the cumulative
distribution function (CDF) of the absolute value of the gra-
dients in Figure 2b and Figure 2d, we can see that the SIDs
well approximate the empirical CDF. However, at the tail of
the distribution, they tend to overestimate/underestimate the
CDF slightly. The reason is that the fitting is biased toward
the majority of the data with lower values, as the gradient
vector is sparse.

2.3 Single-Stage Threshold Estimator

We now describe the proposed compression scheme. First,
the threshold that yields the target compression ratio, � ,
k/d, is derived for each of the three proposed SIDs. Then,
we present a single-stage thresholding scheme for moder-

ate compression ratios. For aggressive compression ratios
with � ⌧ 1, e.g., �  0.001, we propose a multi-stage
thresholding scheme to accurately estimate the threshold.
The sparsification threshold can be computed from the fitted
distribution of the gradients as follows:

Lemma 1. For G⇠Distribution(⇥) with CDF FG(g;⇥),
the threshold ⌘ that yields the Top

k
vector with average

target compression ratio � , k/d can be derived as

⌘(�) = F�1
|G|(1� �; b⇥) (4)

= F�1
G

✓
1� �

2
; b⇥

◆
, (5)

where b⇥ is the estimated parameters for the gradient dis-
tribution, F|G|(g; b⇥) is the CDF of the absolute gradi-

ent , F�1
|G|(p;

b⇥) ,
n
g 2 R

+ : F|G|(g; b⇥) = p
o

is the in-
verse CDF of the absolute gradient at probability p, and
F�1
G

(p; b⇥) is the inverse CDF of the gradient, also known
as quantile function or percent-point function (PPF).

Proof. From Property 2, the gradients can be modeled as
r.v.s distributed according to a SID with CDF FG(g). Next,
we would like to drive a threshold ⌘ such that on average
the absolute values of k elements out of d are larger than
⌘. The problem can be seen as a binomial random process,
where the number of trials is d, the success probability is
the probability that the absolute of the gradient is larger



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

than ⌘, i.e., p , P {|G| � ⌘}, and the average number of
successes (exceedances) is k. In this process, the number
of exceedances is a binomial r.v. with d number of trials
and p probability of success (Papoulis & Pillai, 2002). The
mean of the number of exceedances is d p. In order to
have, on average, k elements out of d, we should have
P {|G| � ⌘} = �. Hence, the threshold ⌘ is the 100(1� �)
percentile of the distribution of absolute gradients as in (4).
From the symmetry of the gradient distribution around zero,
we have P {|G| � ⌘} = 2P {G  �⌘}. Therefore, from
(4), we get ⌘=�F�1

G

⇣
�/2; b⇥

⌘
=F�1

G

⇣
1��/2; b⇥

⌘
.

In the following, we report the threshold calculation for
gradients modeled by double exponential distribution. The
corresponding analysis for double gamma and GP is pre-
sented in Appendix B.3.

Corollary 1.1. For double exponentially distributed gra-
dients with scale parameter � and location zero (symmet-
ric around zero), i.e., G⇠Laplace(�), the threshold that
achieves � compression ratio can be computed as

⌘ = �̂ log

✓
1

�

◆
, �̂ , 1

d

dX

j=1

|gj | , (6)

where �̂ is the maximum likelihood estimate (MLE) of the
scale parameter.

Proof. For G⇠Laplace(�), the gradient absolute is mod-
eled as exponential distribution with scale �, |G| ⇠ Exp(�)
(Evans et al., 1994). From the inverse CDF of exponential
distribution at probability p, i.e., F�1

|G| = �� log(1� p), the
MLE of � (Evans et al., 1994), and (4), the threshold in (6)
follows.

Gradient compression through thresholding: After com-
puting the threshold, the compressed gradient vector is
found as bgj = C⌘ {gj} , gj I{|gi|�⌘}, for each j 2
{1, 2, · · · , d}, where the vector bg 2 R

d is the compressed
gradient vector, I{condition} is an indicator function that
equals one when the condition is satisfied and zero oth-
erwise. In the following, we denote by ḡ and k̂ the vector
that contains only the exceedance non-zero gradients and
their number, respectively.5

Possible issues in far tail fitting: The target compression
ratio � can be as low as 10�4. Therefore, in order to accu-
rately estimate the threshold, the fitted distribution should
tightly resemble the gradient distribution at the tail. This is
quite challenging because the estimation of the parameters
tends to account more for the majority of data at the expense
of the tail. Hence, the threshold obtained from single-stage
fitting is accurate up to some moderate compression ratios.

5Note that the compressed vector bgj coincides with the Topk

sparsified gradient with k = k̂, i.e., C⌘ {gj} = Tk̂ {gj}.

For lower compression ratios, the threshold tends to under-
estimate/overestimate the target �. Hence, a more accurate
tail fitting method is required to reduce the bias induced by
the majority of non-significant gradients, as we show next.

2.4 Multi-Stage Threshold Estimator

We propose a multi-stage fitting approach to overcome the
far tail estimation problem. For convenience, we start with
the two-stage approach. First, the gradients are fitted with
one of the three SIDs and compressed using the proposed
procedure in Section 2.3 with a threshold ⌘1 computed to
yield an initial compression ratio �1 , k1/d > �. Then,
the vector of the exceedance gradients, ḡ, is used to fit
another distribution, defined precisely below. Then, another
threshold ⌘2 is computed to achieve a compression ratio
�2 , k2/k1 with respect to the exceedance gradients. The
second compression ratio is chosen such that the overall
compression ratio of the original gradient vector is the target
ratio �, i.e., �2 = �/�1. Then, the estimated threshold from
the last stage is applied to compress the original gradient
vector. This procedure can be extended to multi-stages such
that � =

Q
M

m=1 �m, where M is the number of stages.

The remaining question is whether the exceedance (known
also as PoT) gradients have the same distribution as the
original gradients before the compression. The extreme
value theory in statistics can provide an answer for this
question (Coles, 2001; Kotz & Nadarajah, 2000; Leadbet-
ter, 1991; Smith, 1984). Let k̂m be the number of ex-
ceedance gradients after the mth thresholding stage. Then,
if we apply a threshold operator on a sequence of r.v.s,
|G1|, |G2|, · · · , |Gk̂m�1

|, the distribution of the exceedance
r.v.s, |Ḡ1|, |Ḡ2|, · · · , |Ḡk̂m

|, can be approximated by a GP
distribution for large enough threshold and vector dimen-
sion, irrespective of the original distribution of the gradients.

Next, we exploit the extreme value theory to compute the
threshold for the multi-stage approach.
Lemma 2. Considering that for the mth thresholding
stage with m � 2, the absolute of the exceedance gra-
dients, ¯|G|m, can be modeled as GP(↵m,�m, am), where
�1/2 < ↵m < 1/2, �m, and am = ⌘m�1 are the shape,
scale, and location parameters. The threshold that achieves
a compression ratio �m is obtained as

⌘m =
�̂m

↵̂m

⇣
e�↵̂m log(�m) � 1

⌘
+ ⌘m�1, (7)

↵̂m , 1

2

✓
1� µ̄2

�̄2

◆
, (8)

�̂m , 1

2
µ̄

✓
µ̄2

�̄2
+ 1

◆
, (9)

where ⌘m�1 is the threshold computed at the previous stage
and µ̄ and �̄2 are the sample mean and variance of |ḡm|�



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

⌘m�1, respectively. For the proof of Lemma 2, please refer
to Appendix B.3.3.
Corollary 2.1. If the absolute of the gradients is modeled
as exponentially distributed r.v.s, |Gm| ⇠ Exp(�m), the
distribution of the exceedance gradients over the threshold
⌘m�1, after proper shifting, is still exponentially distributed,
i.e., |Ḡm|� ⌘m�1 ⇠ Exp(�m). The new stage threshold is

⌘m = �̂m log

✓
1

�m

◆
+ ⌘m�1, (10)

�̂m , 1

k̂m�1

k̂m�1X

j=1

|ḡj |� ⌘m�1, (11)

where ḡj is the jth element of the vector ḡm. The proof is
provided in Appendix B.3.4.

In the proposed scheme, we exploit Corollary 2.1 such that
when the absolute of the gradients is fitted by an exponen-
tial distribution in the first stage, the latter stages for the
exceedance gradients are also fitted by exponential distribu-
tions, i.e., multi-stage exponential. On the other hand, for
gamma-fitted absolute gradients in the first stages, the latter
stages are fitted by a GP distribution, from Lemma 2, i.e.,
gamma-GP. Finally, for GP distributed absolute gradients
in the first stage, the GP is still used for the PoT data, from
Lemma 2, i.e., multi-stage GP.

3 SIDCO ALGORITHM

SIDCo leverages SIDs to obtain a threshold via the multi-
stage threshold estimator described in Section 2.4. We select
the number of stages, M , via an adaptive algorithm such that
the estimation error, averaged over Q iterations, is bounded
below a predefined error tolerance, i.e,

����̂ � �
���  ✏ �, 0  ✏ < 1 . (12)

First, we describe the algorithm that SIDCo follows to per-
form the gradient compression. The full pseudo-code is
shown in Algorithm 1 of the Appendix. The algorithm in
each iteration, takes as input the gradient vector and pro-
duces a compressed vector. The vector is sparsified through
the multi-stage fitting strategy described in Section 2.4. In
each stage, the function Thresh_Estimation uses the cho-
sen SID to obtain a threshold. The algorithm dynamically
adapts the number of stages M by monitoring the quality of
its estimated selection of elements and adjusting M using
function Adapt_Stages.

The algorithm starts by calling the sparsify function which
takes the gradient and target ratio as the parameters. Then,
the algorithm applies a multi-stage estimation loop of M
iterations. In each iteration, the vector is partially sparsified
with the previously estimated threshold obtained from the

previous stage m � 1. Then, given the ratio �m at loop
step m, the chosen SID distribution fitting is invoked via
the function Thresh_Estimation to obtain a new threshold.
At the last stage (i.e., step M of the loop), the resulting
estimation threshold should approximate the threshold that
would obtain the target ratio � of the input vector. Then,
the estimated threshold is used to sparsify the full gradient
vector and obtain the values and their corresponding indices.
For each invocation of the algorithm in each training itera-
tion, the algorithm maintains statistics like the average ratio
of the quality of its estimations over the past training steps
Q. Then, at the end of every Q training steps, the algorithm
invokes Adapt_Stages which adjusts the current number of
stages M based on user-defined allowable error bounds of
the estimation (i.e., ✏H and ✏L). After the adjustment, the
next algorithm invocation will use the new number of stages
M . The number of stages is adjusted only if the obtained
ratio is not within the error bounds.

3.1 Convergence Analysis

In the following, we present the convergence analysis of
SIDCo .
Lemma 3. Let �̂ be the average achieved compression ratio
of the proposed scheme with bounded discrepancy with
respect to the target � with error tolerance ✏ as in (12)
which is assured by Algorithm 1 in the Appendix. Also, let i
be the current training iteration, then the convergence rate
of the proposed scheme coincides with that of the SGD if

i > O

✓
1

�2 (1� ✏)2

◆
. (13)

Proof. The convergence of the proposed scheme would
mainly follow the existing convergence analysis of
Top

k
(Aji & Heafield, 2017; Alistarh et al., 2018; Stich et al.,

2018), because SIDCo is designed to estimate a threshold
for obtaining the top k elements. In contrast to Top

k
, the

number of non-zero elements in the proposed scheme is
a binomial r.v., K̂, and not a constant. Second, the ex-
pected value of the estimated number of non-zero elements,
k̂ , E{K̂}, may not coincide with the target k, due to a
possible mismatch between the assumed SID of the stochas-
tic gradients and their original distribution. The complete
proof is detailed in Appendix C.

The proper selection of the distribution as a SID permits the
actual compression rate to approach the designed compres-
sion ratio with small ✏. This can be seen from the extensive
numerical results in plots showing the estimation quality of
Figure 1c, Figure 5b, Figure 6c, and Figure 9. One can no-
tice that on average k̂/k ⇡ 1, hence it resembles Top

k
. For

some rare extreme cases, we have �̂ � 0.8 � (i.e., ✏ = 20%),
meaning that we need at most about 50% more iterations
than Top

k
to reach the rate of SGD.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) LSTM-PTB (Speed-up). (b) LSTM-PTB (Throughput). (c) LSTM-PTB (Estimation Quality).

(d) LSTM-AN4 (Speed-up). (e) LSTM-AN4 (Throughput). (f) LSTM-AN4 (Estimation Quality).

Figure 3. Performance of training RNN-LSTM on PTB [(a),(b),(c)] and AN4 [(d),(e),(f)] datasets.

4 EXPERIMENTAL EVALUATION

This evaluation answers the following questions:
• What benefits, in terms of training speed-up and model
quality, does SIDCo provide compared to state-of-the-art
approaches (gains in training time to accuracy)?
• Are the improvements of SIDCo only due to its faster
training over other schemes (training throughput gains)?
• How accurate is the the threshold estimation of SIDCo
compared to the state-of-the-art (estimation quality)?

In the following, we describe the main results, and present
more experimental results and scenarios in Appendix E.

4.1 Experimental Settings

Unless otherwise mentioned, the default settings of the ex-
periments are as follows.
Environment: We perform our experiments on 8 server
machines equipped with dual 2.6 GHz 16-core Intel Xeon
Silver 4112 CPU, 512GB of RAM, and 10 Gbps NICs. Each
machine has an NVIDIA V100 GPU with 16GB of mem-
ory. The servers run Ubuntu 18.04, Linux kernel 4.15.0.
We use PyTorch 1.1.0 with CUDA 10.2 as the ML toolkit.
We use Horovod 0.16.4 configured with OpenMPI 4.0.0 for
collective communication.

Benchmarks and hyper-parameters: The benchmarks
and hyper-parameters are listed in Table 1. We use both
CNN and RNN models for image classification and lan-
guage modeling tasks, respectively. We use compression
ratios (�) of 0.1 (10%), 0.01 (1%) and 0.001 (0.1%) to span
a wide range of the trade-off between compression and ac-
curacy similar to prior work (Aji & Heafield, 2017; Alistarh

et al., 2018; Lin et al., 2018). Further details of the envi-
ronment, tasks and settings of the experiments are given in
Appendix D.

Compressors: We compare SIDCo with Top
k
, DGC,

RedSync and GaussianKSGD. The EC mechanism is em-
ployed to further enhance the convergence of SGD with
compressed gradients (Karimireddy et al., 2019; Lin et al.,
2018). For SIDCo , we set �1 = 0.25, ✏ = 20%, and Q = 5
iterations to adapt the stages as in Algorithm 1. For con-
ciseness, we present the performance of SIDCo with double
exponential fitting (shown in the figures as SIDCo-E).6

Metrics: We quantify the performance of a given scheme
(i.e., SIDCo, Top-k, DGC, RedSync or GaussianKSGD) via
the following metrics:
• Normalized Training Speed-up: We evaluate the model
quality at iteration T (the end of training) and divide it by
the time taken to complete T iterations. We normalize this
quantity by the same measurement calculated for the base-
line case. This is the normalized training speed-up relative
to the baseline;
• Normalized Average Training Throughput: is the average
throughput normalized by the baseline’s throughput which
illustrates the speed-up from compression irrespective of its
impact on model quality;
• Estimation Quality: is the compression ratio (k̂/d) aver-
aged over the training divided by the target ratio (� = k/d)
along with the 90% confidence interval as error-bars.

Next, we present the results for the benchmarks in Table 1.
6The results for double GP (SIDCo-GP) and double gamma

(SIDCo-P), presented in Appendix F, are quite similar.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) Train loss vs iterations (b) Thresh. Estimation Quality.

(c) Train loss vs iterations (d) Thresh. Estimation Quality

Figure 4. The training performance for the LSTM model on PTB
and AN4 datasets with compression ratio of 0.001.
4.2 Recurrent Neural Networks (RNNs)

RNN-LSTM on PTB: This benchmark has the high-
est communication overhead (Table 1). In Figure 3a,
SIDCo shows significant speed-up over no-compression
by ⇡ 41.7⇥ and improves over Top

k
and DGC by up to

⇡ 7.6⇥ and ⇡ 1.9⇥, respectively. At high compression
ratio of 0.001, both RedSync and GaussianKSGD compres-
sion methods do not converge to the target loss and test per-
plexity (Figure 4a) and therefore they attain zero speed-ups.
Figure 3b shows that threshold estimation schemes includ-
ing SIDCo have the highest training throughput. However,
in Figure 3c, DGC and SIDCo are the only methods that
accurately estimate the target ratio with high confidence.
However, for GaussianKSGD at ratio of 0.001 and RedSync
at ratios of 0.01 and 0.001, the number of selected elements
is two orders-of-magnitude lower than the target. Moreover,
over the training process, the estimation quality of RedSync
has high variance, harming convergence. Figure 4b shows,
at target ratio of 0.001, RedSync causes significant fluctu-
ation in compression ratio and training does not converge.
GaussianKSGD results in very low compression ratio which
is close to 0 and far from the target leading to significantly
higher loss (and test perplexity) values compared to the
target values.

RNN-LSTM on AN4: Figure 3d shows that SIDCo
achieves higher gains compared to other compressors by
up to ⇡2.1⇥ for ratios of 0.1 and 0.01. Notability, at ratio
of 0.001, only SIDCo achieved the target character error
rate (CER). Thus, we ran other compressors for 250 epochs
to achieve the target CER (instead of the default 150), except
for GaussianKSGD, which does not converge. The gains of
SIDCo over the other compressors are increased by up to
⇡4⇥. The reason could be that the model is more sensitive
to compression (esp., in the initial training phase). SIDCo

starts as single-stage before performing stage adaptations,
leading to a slight over-estimation of k and so more gradient
elements are sent during training start-up. Throughput-wise,
Figure 3e shows that threshold-estimation methods includ-
ing SIDCo enjoy higher training throughput, explaining the
gains over the baseline. Similar to LSTM-PTB results, Fig-
ure 3f shows that on average, with low variance, SIDCo
closely matches the estimated ratios of DGC while other
estimation methods have poor estimation quality. Similar
to PTB, Figure 4d shows, at target ratio of 0.001, RedSync
causes significant fluctuation in compression ratio and Gaus-
sianKSGD results in very low compression ratio (close to
0) which is far from the target. This leads both methods to
achieve significantly higher loss (or test perplexity) values
compared to the target loss (or test perplexity) values.

4.3 Convolutional Neural Networks (CNNs)

ResNet20 and VGG16 on CIFAR-10: Figure 5a shows
that, for ResNet20, all compressors achieve somewhat com-
parable and modest speed-ups over the no-compression
baseline (except at ratio of 0.001, where accuracy is de-
graded and hence the lower speed-up than the baseline).
This is not surprising because ResNet20 is not network-
bound. However, for the larger VGG16 model, Figure 5c
shows that SIDCo achieves significant speed-ups over no-
compression, Top

k
and DGC by up to ⇡ 5⇥, 1.5⇥, and

1.2⇥, respectively. Figure 5b shows that, unlike other esti-
mation schemes, SIDCo can accurately achieve the target
ratio.

ResNet50 and VGG19 on ImageNet: In these experi-
ments, we set a time-limit of 5 hours per run to reduce our
costs. For calculating the speed-up, we compare the top-1
accuracy achieved by different methods at the end of train-
ing. First, for ResNet50 benchmark, we use compression
ratios of 0.1, 0.01, and 0.001. Figure 6a shows that SIDCo
achieves the highest accuracy that is higher than the baseline,
Top

k
and DGC by ⇡ 15, 3, and 2 accuracy points, i.e., nor-

malized accuracy gains of ⇡40%, 5%, and 4%, respectively.
Figure 6b shows that SIDCo attains the highest throughput
among all methods (except for RedSync at 0.1 compression).
Figure 6c shows that, unlike GaussianKSGD and RedSync,
which both result in estimation quality far from the target
with high variance, SIDCo estimates the threshold with very
high quality for all ratios. Similar trends are observed for
the VGG19 benchmark where we use compression ratio of
0.001. As shown in Figures 6d to 6f, SIDCo estimates the
threshold with high quality, and achieves the highest top-1
accuracy and training throughput among all methods. The
accuracy gains compared to the baseline, Top

k
and DGC

are ⇡34⇥, 2.9⇥, and 1.13⇥, respectively.

Takeaways: Our approach is simple in nature, which is
intentional, to make it applicable in practice. Nonetheless,



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) ResNet20-CIFAR-10 (Speedup). (b) ResNet20-CIFAR-10 (Est. Quality). (c) VGG16-CIFAR-10 (Speedup)

Figure 5. The training performance for ResNet20 [(a),(b)] and VGG16 [(c)] on CIFAR-10 dataset.

(a) ResNet50-ImageNet (Accuracy) (b) ResNet50-ImageNet (Throughput) (c) ResNet50-ImageNet (Est. Quality)

(d) VGG19-ImageNet (Accuracy) (e) VGG19-ImageNet (Throughput) (f) VGG19-ImageNet (Est. Quality)

Figure 6. The training performance for ResNet50 [(a), (b), (c)] and VGG19 [(d), (e), (f)] on ImageNet dataset.

our work goes beyond existing works that estimate a thresh-
old for Top

k
sparsification. These works either did not

leverage the statistical property of the gradients (DGC) or
assumed Gaussian distribution without a thorough study of
the gradient (e.g., RedSync, GaussianKSGD). On a GPU,
SIDCo improves over DGC by at least 2⇥, and the speed-
ups are significantly larger on the CPU as shown in Fig-
ure 1b and Appendix E.2. As a threshold estimation method,
SIDCo does not only benefit from the throughput gains
of threshold methods but also from the high quality of its
threshold estimation. The results in Figures 4 and 9 indicate
that existing estimation methods (e.g., RedSync and Gaus-
sianKSGD) fail to achieve consistent threshold estimation
behavior even though they may provide throughput gains.
Their throughput gains, in many cases, are due to severe
under-estimation of the target ratio, which results in lower
volumes of data sent compared to other compressors.

5 CONCLUSION

We solved a practical problem in distributed deep learn-
ing. We showed that the performance of compressors
other than threshold-based ones has high computational
costs whereas existing threshold-estimation methods fail
to achieve their target. To address these issues, we pro-
posed SIDCo , a multi-stage threshold-based compressor
through imposing a sparsity prior on the gradients. We eval-
uated SIDCo and compared it with popular compressors
using common benchmarks involving RNN and CNN ar-
chitectures. SIDCo, unlike existing threshold estimation
methods, can efficiently approximate the target threshold
and results in significant gains of up to ⇡41.7⇥, 7.5⇥, and
1.9⇥ over no-compression baseline, Top

k
and DGC com-

pression methods, respectively. Also, we expect further
gains for large and communication-bounded models. In
the future, we will explore ways to estimate a threshold for
which compression satisfies other quality targets.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
and Zheng, X. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI, 2016.

Abdelmoniem, A. M. and Canini, M. DC2: Delay-aware Compres-
sion Control for Distributed Machine Learning. In INFOCOM,
2021.

Abramowitz, M. and Stegun, I. A. Handbook of Mathematical
Functions, With Formulas, Graphs, and Mathematical Tables,
volume 55. US Government printing office, fourth edition,
1965.

Aji, A. F. and Heafield, K. Sparse Communication for Distributed
Gradient Descent. In EMNLP, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat,
S., and Renggli, C. The Convergence of Sparsified Gradient
Methods. In NeurIPS, 2018.

AN4. CMU Census Database, 1991.
http://www.speech.cs.cmu.edu/databases/an4/index.html.

Armagan, A., Dunson, D. B., and Lee, J. Generalized double
Pareto shrinkage. Statistica Sinica, 23(1), 2013.

Babacan, S. D., Molina, R., and Katsaggelos, A. K. Bayesian
Compressive Sensing Using Laplace Priors. IEEE Transactions
on Image Processing, 19(1), 2010.

Baraniuk, R., Davenport, M. A., Duarte, M. F., and Hegde, C.
An Introduction to Compressive Sensing, 2011. https://
legacy.cnx.org/content/col11133/1.5/.

Beidi, C., Medini, T., Farwell, J., Gobriel, S., Tai, C., and Shrivas-
tava, A. Slide : In defense of smart algorithms over hardware
acceleration for large scale deep learning systems. In MLSys,
2020.

Bond, S. A. A review of asymmetric conditional density func-
tions in autoregressive conditional heteroscedasticity mod-
els. In Knight, J. and Satchell, S. (eds.), Return Distribu-
tions in Finance, Quantitative Finance, chapter 2. Butterworth-
Heinemann, Oxford, 2001.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse,
C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. Language Models are Few-Shot Learners. arXiv
2005.14165, 2020.

Coles, S. An Introduction to Statistical Modeling of Extreme Values.
Springer London, 2001.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D. D., Avan-
cha, S., Banerjee, K., Sridharan, S., Vaidyanathan, K., Kaul, B.,
Georganas, E., Heinecke, A., Dubey, P., Corbal, J., Shustrov,
N., Dubtsov, R., Fomenko, E., and Pirogov, V. O. Mixed pre-
cision training of convolutional neural networks using integer
operations. In ICLR, 2018.

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le,
Q. V., Mao, M. Z., Ranzato, M., Senior, A., Tucker, P., Yang,
K., and Ng, A. Y. Large Scale Distributed Deep Networks. In
NeurIPS, 2012.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F. F.
ImageNet: a Large-Scale Hierarchical Image Database. In
CVPR, 2009.

DeVore, R. A. Nonlinear approximation. Acta Numerica, 7, 1998.

Dieuleveut, A. and Patel, K. K. Communication Trade-offs for
Local-SGD with Large Step Size. In NeurIPS, 2019.

Dryden, N., Jacobs, S. A., Moon, T., and Van Essen, B. Communi-
cation Quantization for Data-Parallel Training of Deep Neural
Networks. In Workshop on ML in HPC (MLHPC), 2016.

Dutta, A., Bergou, E. H., Abdelmoniem, A. M., Ho, C.-Y., Sahu,
A. N., Canini, M., and Kalnis, P. On the Discrepancy between
the Theoretical Analysis and Practical Implementations of Com-
pressed Communication for Distributed Deep Learning. In
AAAI, 2020.

Elzanaty, A., Giorgetti, A., and Chiani, M. Limits on Sparse Data
Acquisition: RIC Analysis of Finite Gaussian Matrices. IEEE
Transactions on Information Theory, 65(3), 2019a.

Elzanaty, A., Giorgetti, A., and Chiani, M. Lossy Compression
of Noisy Sparse Sources Based on Syndrome Encoding. IEEE
Transactions on Communications, 67(10), 2019b.

Evans, M., Hastings, N., and Peacock, B. Statistical distributions.
Wiley, New York, second edition, 1994.

Fang, J., Fu, H., Yang, G., and Hsieh, C.-J. RedSync: Reducing
synchronization bandwidth for distributed deep learning training
system. Journal of Parallel and Distributed Computing, 133,
2019.

Fu, F., Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and Cui, B.
Don’t Waste Your Bits! Squeeze Activations and Gradients for
Deep Neural Networks via TinyScript. In ICML, 2020.

Gajjala, R., Banchhor, S., Abdelmoniem, A. M., Dutta, A., Canini,
M., and Kalnis, P. Huffman Coding Based Encoding Techniques
for Fast Distributed Deep Learning. In DistributedML, 2020.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski,
L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv
1706.02677, 2017.

Gross, S. and Wilber, M. Training and investigating Residual
Nets, 2016. http://torch.ch/blog/2016/02/04/
resnets.html.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen,
E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., and Ng,
A. Y. Deep speech: Scaling up end-to-end speech recognition.
arXiv 1412.5567, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning
for Image Recognition. In Proc. of CVPR, pp. 770–778, 2015.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory.
Neural Computing, 9(8), 1997.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

Hosking, J. and Wallis, J. Parameter and Quantile Estimation
for the Generalized Pareto Distribution. Technometrics, 29(3),
1987.

Jiang, J., Fu, F., Yang, T., and Cui, B. SketchML: Accelerating
Distributed Machine Learning with Data Sketches. In SIGMOD,
2018.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M. Error
Feedback Fixes Sign SGD and other Gradient Compression
Schemes. In ICML, 2019.

Kotz, S. and Nadarajah, S. Extreme Value Distributions: Theory
and Applications. World Scientific, 2000.

Krizhevsky, A. Learning Multiple Layers of Features from Tiny
Images. Technical report, University of Toronto, 2009.

Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N.,
Phillips, E., Mahesh, A., Matheson, M., Deslippe, J., Fatica,
M., Prabhat, P., and Houston, M. Exascale Deep Learning for
Climate Analytics. In SC, 2018.

Leadbetter, M. R. On a basis for ‘Peaks over Threshold’ modeling.
Statistics & Probability Letters, 12(4), 1991.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. Deep Gradient
Compression: Reducing the Communication Bandwidth for
Distributed Training. In ICLR, 2018.

Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way.
Academic Press, 2009.

Marcus, M., Santorini, B., Marcinkiewicz, M., and Taylor,
A. Treebank-3, 1999. https://catalog.ldc.upenn.
edu/LDC99T42.

Minka, T. P. Estimating a Gamma distribution. Technical report,
Microsoft Research, 2002.

Monga, V., Mousavi, H. S., and Srinivas, U. Sparsity Constrained
Estimation in Image Processing and Computer Vision. In Hand-
book of Convex Optimization Methods in Imaging Science, pp.
177–206. Springer International Publishing, 2018.

Narang, S., Diamos, G., Elsen, E., Micikevicius, P., Alben, J.,
Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh,
G., and Wu, H. Mixed precision training. In ICLR, 2018.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., De-
vanur, N. R., Ganger, G. R., Gibbons, P. B., and Zaharia, M.
PipeDream: Generalized Pipeline Parallelism for DNN Training.
In SOSP, 2019.

Olver, F. Asymptotics and special functions. CRC Press, 1997.

Papoulis, A. and Pillai, S. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, 2002.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu, C., and
Guo, C. A Generic Communication Scheduler for Distributed
DNN Training Acceleration. In SOSP, 2019.

pytorch.org. PyTorch. https://pytorch.org/.

Sergeev, A. and Balso, M. D. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv 1802.05799, 2018.

Shanbhag, A., Pirk, H., and Madden, S. Efficient Top-K Query
Processing on Massively Parallel Hardware. In SIGMOD, 2018.

Shi, S., Chu, X., Cheung, K. C., and See, S. Understanding Top-k
Sparsification in Distributed Deep Learning. arXiv 1911.08772,
2019.

Shi, S., Zhou, X., Song, S., et al. Towards scalable distributed
training of deep learning on public cloud clusters. arXiv preprint
arXiv:2010.10458, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and
Catanzaro, B. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. ArXiv 1909.08053,
2019.

Simonyan, K. and Zisserman, A. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In ICLR, 2015.

Smith, R. L. Threshold Methods for Sample Extremes. In Statisti-
cal extremes and applications. Springer, 1984.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified SGD with
Memory. In NeurIPS, 2018.

Vanhoucke, V., Senior, A., and Mao, M. Z. Improving the speed of
neural networks on CPUs. In Deep Learning and Unsupervised
Feature Learning Workshop - NeurIPS, 2011.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen,
T., and Rellermeyer, J. S. A Survey on Distributed Machine
Learning. ACM Computing Surveys, 53(2), 2020.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient Sparsifica-
tion for Communication-Efficient Distributed Optimization. In
NeurIPS, 2018.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error Compensated
Quantized SGD and its Applications to Large-scale Distributed
Optimization. In ICML, 2018.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Com-
pressed communication for distributed deep learning: Survey
and quantitative evaluation. Technical report, KAUST, 2020.
http://hdl.handle.net/10754/662495.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

Algorithm 1 SIDCo Algorithm
Input: g the gradient vector to be compressed
Input: � the target compression ratio
Input: i the training iteration number
Input: Q: the frequency of invoking stages adaption
Input: (✏H ,✏L): upper and lower bounds of estimation error for adapting the stages.

1 /* The discrepancy tolerance ✏ in (12) can be computed as ✏ = max(✏H , ✏L) */

2 Define k̂, k̂avg: number of and average number of elements obtained from threshold estimation.
Function Sparsify(g, �)

3 /* Multi-stage threshold estimation */
4 temp = copy(g)

⌘0 = 0
for each stage m in (1,M ) do

5 temp = temp� ⌘m�1

⌘m = Thresh_Estimation(temp, �m, DIST )
bI = abs(temp) > ⌘m - find the index of top absolute values larger than ⌘m.
Use bI to filter temp which keeps the top values of temp and sets the others to zero.

6 if i mod Q == 0 then
7 /* Call stages adaption function to adjust number of stages */

8 M=Adapt_Stages(M , k̂avg

Q
)

k̂avg = 0

9 else
10 k̂avg = k̂avg + k̂

11 /* Threshold sparsification: find indices of top absolute values larger than
the threshold ⌘M, then use them to filter the elements of the gradient g */

12 return C
k̂
(g) = g[abs(g) � ⌘M ]

13 Function Thresh_Estimation(g, �, DIST)
14 if DIST is Exponential then
15 bµ = mean(abs(g))

return �bµ log(�)

16 if DIST is GPareto then
17 bµ, b� = mean_var(abs(g))

↵̂ = 0.5

✓
1� bµ2

b�2

◆

�̂ = 0.5 bµ
✓
bµ2

b� + 1

◆

return
�̂

↵̂
(exp(�↵̂log(�))� 1)

18 if DIST is Gamma then
19 bµ = mean(abs(g))

s = log(bµ) - mean(log(abs(g)))

↵̂ =
3� s+

p
(s� 3)2 + 24 s

12 s

�̂ =
bµ
↵̂

return ��̂ (log(�) + log(gamma(↵̂)))

20 Function Adapt_Stages(M, k̂avg)
21 /* Choose the number of stages */

22 if k̂avg > k ⇤ (1 + ✏H) then
23 M = M � 1

24 if k̂avg < k ⇤ (1� ✏L) then
25 M = M + 1

26 return min(max(M , 1),Mmax)



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

A DISTRIBUTED SYNCHRONOUS SGD
(DSSGD) WITH SPARSIFICATION

Here, we describe the Distributed Synchronous version of
SGD optimization algorithm which is the main work-horse
behind most of the distributed training (Aji & Heafield,
2017). Algorithm 2 presents the specifics of the algorithm
with sparsification. The algorithm executes in parallel on
each worker and starts with sampling a batch-sized sub-set
from the full training dataset. Then, each worker performs
a local pass including forward pass to obtain a loss value
followed by a backward pass to calculate the gradient vector
for updating the model parameters. At this point and before
moving along with the model update, the workers have to
synchronize by performing aggregation (or averaging) of
their gradient vectors and use the aggregated gradient for the
update. The gradient is sparsified using a chosen compressor
(e.g., Top

k
, DGC, SIDCo , .., etc) and target sparsification

ratio. For example, to invoke SIDCo compressor, one would
invoke function Sparsify of Algorithm 1 which takes as
input the gradient g and target sparsification ratio �. Then,
the aggregation can be either accomplished via means of
a parameter server which has a global copy of the model
parameters and receives the gradients from the workers and
update its local model and then the workers can pull the
up-to-date model parameters at any time (Dean et al., 2012).
The other way is to perform aggregation in a peer-to-peer
fashion via means of collective operation like All-Reduce
or All-Gather which requires no extra parameters server for
the aggregation (Sergeev & Balso, 2018). The peer-to-peer
collective communication methods are widely adopted by
most frameworks (pytorch.org; Sergeev & Balso, 2018) and
known to scale well in practice (Goyal et al., 2017) and
hence is adopted in this work.

A.1 Discussion on SIDCo Algorithm

We highlight a few technical aspects of SIDCo algorithm
presented in Algorithm 1. Scalability concerns: The com-
pression algorithm has no scalability issues since it exe-
cutes locally and does not rely on inter-node communica-
tion. Also, the compressor only depends on the size of the
gradient vector leading to the same compression time on all
the workers regardless of the number of training workers
that run in parallel.

Algorithm’s dependence on training iteration: the gra-
dient sparsity changes over iterations as shown in Fig-
ure 2 and Figure 8. The proposed algorithm leverages
extreme-value theorem to handle sparsity variations by
adapting the number of stages at each iteration. This en-
ables adaptive fitting of the gradient at each iteration via the
sparsity-inducing distribution enabling the estimation of an
approximate threshold that obtains the top k elements of the
gradient vector.

Algorithm 2 Sparsified Distributed Synchronous SGD
/* Worker n */

27 /* Initialization */
Input: D: Local Dataset
Input: B: Minibatch size per node
Input: N : The total number of workers
Input: �: The learning rate
Input: �: The target sparsification ratio
Input: x: Model parameters x = (x[0], x[1], ..., x[d])

28 /* loop till end of training */
29 for i = 0, 1, ... do
30 /* Calculate stochastic gradient */
31 gn

{i} = 0
for i = 1, ..., B do

32 Sample data point d from D
Calculate rf(x; d)
gn

{i} = gn

{i} +
1
B
rf(x; d)

33 /* Aggregate workers’ gradients */

34 Collective-Comm: Gn

{i} = 1
N

P
N

n=1 Sparsify(gn

{i}, �)

/* Update model parameters */
35 xn

{i+1} = xn

{i} + �Gn

{i}

Sparsity and compressability of the gradients: our al-
gorithm relies on a principled statistical approach, which
makes it robust to various sparsity levels of the gradient
given that the compressibility property holds. And if not,
most sparsifiers would be equally ineffective. Moreover,
the compressibility property is the reason why Top

k
is com-

monly used in the literature. Therefore, in this work, we
seek an approximate fast threshold estimation method that
exploits a common prior information of the gradients, while
preserving the convergence guarantee of Top

k
, albeit with

different rate depending on the accuracy of the estimated
threshold.

B GRADIENT FEATURES AND
DISTRIBUTION

B.1 Validation of Gradient Compressibility

The compressibility of the gradient vector allows efficient
compression for the gradients through sparsification tech-
niques, e.g., Top

k
and thresholding-based compression

(Elzanaty et al., 2019b; Xu et al., 2020). Here, we em-
pirically investigate the compressibility of the gradients
according to Definition 1. In order to verify the vector
compressibility, we consider the gradients generated while
the training of ResNet20. The absolute of the gradients
are sorted in descending order to obtain the vector g̃ with
d = 269722. In Figure 7a, the elements of the gradient
vector g̃, i.e., g̃j , are reported vs their index, for three itera-



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

tions in the beginning, middle, and end of the training.7 As
a benchmark, we report a power low decay example with
decay exponent p > 0.5, i.e., p = 0.7. It can be noticed that
the gradients follow a power-law decay with decay exponent
p > 0.7 > 0.5; hence, they are compressible from (1).

In Figure 7b, we report the sparsification error for the best
k approximation, e.g., the Top

k
, as a function of k. We also

report an example of the power decay model with decay ex-
ponent p� 0.5 = 0.2. We can see the best k approximation
error decays faster than the benchmark. Hence, the vector
can be considered compressible, according to (2).

We also validate this behavior for various models and
datasets, not reported here for conciseness. Therefore, the
gradient vectors can be considered compressible in the sense
of Definition 1.

B.2 Validation of Gradient Distributions

In this part, we discuss the distribution of the gradients
generated while training several neural networks. Since the
gradient vectors are compressible, SIDs can approximate
the gradient distribution. This feature, i.e. Property 2, is
numerically validated as follows.

First, we consider the gradients from training ResNet-20
with SGD. The generated gradient vector at iteration i is
compressed using Top

k
with � = 0.001, and the distributed

SGD is employed as described in Appendix A. We investi-
gate two cases: i) memoryless compression, where the Error
compensation (EC) mechanism is not applied, as shown in
Figure 2 ii) memory-based compression, where an EC mech-
anism is deployed by adding the sparsification error from
the previous iteration to the gradient vector before the Top

k

compression, i.e., g{i} = g{i} +
⇥
g{i�1} � Tk

�
g{i�1}

 ⇤
.

For both cases, we collect the uncompressed gradients from
the master worker, as different workers have similar gra-
dients in distributions. The gradient vectors are then nor-
malized by their `2 norm to easily visualize and compare
the evolution of the gradient distributions over various itera-
tions. Then, the collected gradients are fitted by the three
proposed SIDs, i.e., double exponential, double gamma, and
double GP distributions. The parameters of the distribution
are estimated as indicated in Corollary 1.1, Corollary 1.2,
and Corollary 1.3.

For the training with EC mechanism in Figure 8, it becomes
more challenging to fit the gradients, especially for larger
iterations, as can be seen in Figure 8c. This behavior arises
due to the addition of the sparsification error from the previ-
ous stage to the gradients, as the resulting distribution of the
gradients changes. More precisely, the gradient distribution

7Note that in Figure 7a, we focus only on the elements from 1
to 105, as for larger indices the amplitude of the vector elements
are sufficiently small.

is the convolution between the PDF of the error from the
last stage and PDF of the current gradient vector before the
EC. Therefore, the distribution of the gradients significantly
changes over the iterations. Therefore, single-stage fitting
suffers more when EC mechanism is used, particularly for
fitting the tail, as in Figure 8b and Figure 8d.

We also validate that the gradients generated from the other
networks in Table 1 can be well approximated with r.v.s
distributed according to one of the SIDs, which are not re-
ported here for conciseness. In general, there is a slight
variation in the fitting accuracy among the three SIDs for
various networks and datasets, due to the nature of the gra-
dients. For example, the double exponential distribution can
not capture well the gradients with an empirical distribution
that decays fast. In contrast, the double gamma and double
GP distributions have an additional shape parameter that
can approximate the behavior of sparser vectors with ↵ < 1.
Nevertheless, the double-exponential behaves well when the
distribution of the absolute of the gradients decays as fast
as the exponential distribution.

B.3 Analysis of Double Gamma and Double
Generalized Pareto Distributed Gradients

B.3.1 Threshold Calculation for Gamma Distributed
Gradients

Corollary 1.2. Considering that the gradients that can be
well-fitted by double gamma distribution with shape pa-
rameter ↵  1, the absolute of the gradient is gamma dis-
tributed (Bond, 2001), i.e., |G|⇠ gamma(↵,�). The sparsi-
fying threshold can be derived as

⌘(�) = �̂ P�1(↵̂, 1� �) (14)

' ��̂ [log(�) + log(�(↵̂))], (15)

where P (↵, x) , 1
�(↵)

R
x

0 t↵�1 e�t dt is the regularized
lower incomplete gamma function, and P�1(↵, p) , {x :
P (↵, x) = p} is the inverse of the regularized lower incom-
plete gamma function (Abramowitz & Stegun, 1965),

↵̂ , 3� s+
p

(s� 3)2 + 24 s

12 s
, �̂ , bµ

↵̂
, (16)

with s , log(bµ) � bµlog, bµlog , 1
d

P
d

i=1 log (|g|i) , and bµ
and b�2 are the sample mean and variance for the absolute
gradient vector |g|, respectively.

Proof. The gradients are modeled by double gamma dis-
tribution with ↵  1, with PDF defined in (Bond, 2001)
as

fG(g;↵,�) =
1

2

|g|↵�1e�|g|/�

�↵�(↵)
, for �1 < g < 1.

(17)



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.2

0.4

0.6

0.8

1

q = 0.7

q > 0.7

Gradient Index (j)

S
or
te
d
G
ra
d
ie
nt

C
oe
�
ci
en
ts
,
g̃ j

Gradients (first iteration, Epoch 01)
Gradients (first iteration, Epoch 15)
Gradients (first iteration, Epoch 30)

100 j�0.7

(a) The sorted magnitude of the gradients vs their indexes, and the
fitted curve via power law in (1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

·105

0

0.2

0.4

0.6

0.8

1

Number of Non-zero Elements, k

B
es
t
k
sp
ar
si
fi
ca
ti
on

er
ro
r,
�
k
(g
)

�k (first iter, Epoch 01)
�k (first iter, Epoch 15)
�k (first iter, Epoch 30)

5 j�0.2

(b) The approximation error for the Topk vs the number of non-
zero elements, k.

Figure 7. The compressibility property of the gradients

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

·10�2

0

100

200

300

400

500

600

Gradient g

f G
(g
)

Empirical
Double-exp.

Double-gamma
Double GP

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10�2

0

0.2

0.4

0.6

0.8

1

Absolute of the gradient g

f |
G
|(
g)

Empirical
Exponential
Gamma
GP

0.4 0.6 0.8 1

·10�2

0.9

0.95

1

(b)

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

·10�2

0

200

400

600

800

1,000

Gradient g

f G
(g
)

Empirical
Double-exp.

Double-gamma
Double GP

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10�2

0

0.2

0.4

0.6

0.8

1

Absolute of the gradient g

f |
G
|(
g)

Empirical
Exponential
Gamma
GP

4 6 8
·10�30.9

0.95

1

(d)

Figure 8. Gradient fitting using the three SIDs for the gradient vector along with the empirical distribution generated from training
ResNet-20 on CIFAR10 dataset using Topk compressor with EC mechanism, for the 100th [(a) PDF, (b) CDF] and 10000th [(c) PDF, (d)
CDF] iterations.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

Hence, the absolute of the gradient is modeled as gamma
distribution with PDF

f|G|(g;↵,�) =
g↵�1e�g/�

�↵�(↵)
, for 0  g < 1. (18)

The CDF of the gamma r.v. which can be written from (18)
as

F|G|(g;↵,�) =

Z
g

0

t↵�1e�t/�

�↵�(↵)
dt (19)

=

Z
g/�

0

z↵�1e�z

�(↵)
dz , P (↵, g/�), (20)

where P (↵, x) is the regularized lower incomplete gamma
function (Abramowitz & Stegun, 1965). The threshold in
(14) follows from the inverse of the CDF at 1� �, as illus-
trated in (4) and by substituting the parameters of the gamma
distribution with their estimates ↵̂ and �̂. Nevertheless, cal-
culating the threshold involves the inverse of incomplete
gamma function which can be computationally heavy. In
the following we provide a closed-form approximation for
the threshold. First, we would like to find a closed-form
approximation for the inverse lower incomplete function at
1� �, i.e., x , P�1(↵̂, 1� �). Starting from the bound on
P (↵̂, x) in (Olver, 1997), we have

P (↵̂, x) = 1� � � 1� x↵̂�1 e�x

�(↵̂)
for ↵̂  1, x > 0.

(21)

After some manipulations, we get

x  � log (��(↵̂))� (1� ↵̂) log(x), for ↵̂  1, x > 0,
(22)

x  � log (�)� log (�(↵̂)) , for ↵̂  1, x � 1.
(23)

Finally, by substituting P�1(↵̂, 1� �) with (23) in (14), we
get

⌘  ��̂ [log(�) + log(�(↵̂))] , for ↵̂  1, x � 1 (24)

with equality if ↵̂ = 1. For 0 < x < 1 or ↵̂ > 1, the bound
does not hold, however, it provides a good approximation
for the threshold when ↵̂ is close to one.

For estimating the pentameters, let us start by the PDF of
the gamma distribution, defined as

f|G|(g;↵,�) =
g↵�1e�g/�

�↵�(↵)
for x > 0, ↵,� > 0

(25)

where ↵ and � are the shape and scale parameters, respec-
tively. The shape parameter can be estimated from the
absolute gradient vector |g| using MLE as the solution of

 (↵)� log(↵) + log(bµ)� bµlog = 0, (26)

where  (x) , d�(x)
dx

is the digamma function,
bµ , 1

d

P
d

i=1 |g|i is the sample mean, and bµlog ,
1
d

P
d

i=1 log (|g|i) (Papoulis & Pillai, 2002). On the other
hand, the scale parameter can be estimated as �̂ = bµ/↵.
Nevertheless, the shape parameter estimation in (26) in-
volves solving a non-linear equation with a special function.
Hence, it increases the computational complexity for the
scheme, leading to higher time overhead for the compres-
sion. In order to reduce the complexity, we propose to
employ a simpler closed-form approximation for the shape
parameter, i.e.,

↵̂ =
3� s+

p
(s� 3)2 + 24 s

12 s
, �̂ =

bµ
↵
, (27)

where s , log(bµ)� bµlog (Minka, 2002).

B.3.2 Threshold Calculation for Generalized Pareto
Distributed Gradients

Corollary 1.3. For gradients distributed as double gener-
alized Pareto r.v.s, the absolute of the gradients is mod-
eled as GP distributed r.v.s, |G| ⇠ GP(↵,�, a), where
0 < ↵ < 1/2, �, a = 0 are the shape, scale, and loca-
tion parameters. The sparsifying threshold that achieves a
compression ratio � is

⌘ =
�̂

↵̂

⇣
e�↵̂ log(�) � 1

⌘
, (28)

where

↵̂ , 1

2

✓
1� µ̂2

�̂2

◆
, �̂ , 1

2
µ̂

✓
µ̂2

�̂2
+ 1

◆
, (29)

with µ̂ and �̂2 being the sample mean and variance for the
absolute gradient vector, |g|, respectively.

Proof. the gradients can be well-fitted by double GP distri-
bution with PDF, indicated in (Armagan et al., 2013) as8

fG(g) =
1

2�

✓
1 + ↵

|g|
�

◆�( 1
↵+1)

,

0 < ↵ <
1

2
, �1 < g < 1 (30)

Hence, the absolute of the gradients can be modeled as GP
distributed r.v.s with PDF

f|G|(g) =
1

�

✓
1 + ↵

g

�

◆�(1/↵+1)

, 0 < ↵  1

2
, g � 0

(31)

8The double GP distribution resembles the Laplacian distribu-
tion for ↵ ! 0. Similarly, the GP becomes exponential distribu-
tion for ↵ = 0.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

and the corresponding CDF can be written from (Hosking
& Wallis, 1987) as

F|G|(g) = 1�
✓
1 + ↵

g

�

◆�1/↵

. (32)

The inverse CDF can be written from (32) as

F�1
|G|(p) =

�

↵

⇣
e�↵ log(1�p) � 1

⌘
. (33)

From (4) and (33) and by substituting the distribution pa-
rameters with their estimates, provided below, the threshold
in (28) follows.

Unfortunately, there are no closed-form maximum like-
lihood (ML) estimators for the parameters of GP distri-
butions. Hence, the ML estimates have to be computed
through complex numerical optimization. Alternately, the
parameters can be estimated in closed-from through the
moment matching (MM) method under some conditions
on the shape parameter (Hosking & Wallis, 1987). More
precisely, for the considered range of the shape parameter,
i.e., �0.5 < ↵ < 0.5, the first and second moments exit and
they can be written as

µ =
�

1 + ↵
, S2 =

�2

(1 + ↵)2(1 + 2↵)
, (34)

where µ and S2 are the mean and mean square, respec-
tively. Therefore, from (34) through the MM method, the
parameters can e estimated as

↵̂ =
1

2


1� µ̂2

�̂2

�
, �̂ =

1

2
µ̂


µ̂2

�̂2
+ 1

�
, (35)

where µ̂ and �̂2 are the sample mean and variance for the
absolute gradient vector, |g|, respectively.

B.3.3 Proof of Lemma 2

The distribution of the PoT absolute gradients for the mth
stage can be approximated as GP distribution from Theorem
4.1 in (Coles, 2001) with CDF

F|Ḡm|(g) =1�
✓
1 + ↵m

g � ⌘m�1

�m

◆�1/↵m

,

g � ⌘m�1,�1/2 < ↵m < 1/2, (36)

where the first and second moments of the r.v. |Ḡm| are finite
and the PDF is smooth for �1/2 < ↵m < 1/2 (Hosking &
Wallis, 1987). The inverse CDF can be written from (36) as

F�1
|Ḡm|(p) =

�m

↵m

⇣
e�↵m log(1�p) � 1

⌘
+ ⌘m�1. (37)

The threshold in (7) follows from (4) and (37) and by sub-
stituting the distribution parameters with their estimates

derived as from (34)

↵̂m =
1

2


1� µ̄2

�̄2

�
, �̂m =

1

2
µ̄


µ̄2

�̄2
+ 1

�
, (38)

where the sample mean µ̄ and the variance �̄2 are computed
from absolute of the PoT gradients shifted by the threshold,
i.e., |g̃m|� ⌘m�1.

B.3.4 Proof of Corollary 2.1

The complementary cumulative distribution function
(CCDF) of the exceedance r.v. can be written as

P
�
|Ḡm| � g

 

= P

n
|Gm| � g

��� |Gm| > ⌘m�1

o
, 8g � ⌘m�1 (39)

= P

n
|Gm| � ⌘m�1+y

��� |Gm|>⌘m�1

o
, 8y,g�⌘m�1�0

(40)

=
1� F|Gm|(⌘m�1 + y)

1� F|Gm|(⌘m�1)
= e�

g�⌘m�1
�m . (41)

From (41), the PoT gradients is distributed as exponential
r.v. with location ⌘m�1. Hence, the r.v. |Ḡm| � ⌘m�1 is
exponentially distributed. Consequently, the threshold can
be calculated from (6) after proper shifting.

C PROOF OF LEMMA 3 FOR THE
CONVERGENCE ANALYSIS

Let f̄ : Rd ! R be a function that is required to be min-
imized. This function can be a convex or non-convex L0-
smooth function (Karimireddy et al., 2019). Also, the ex-
pected value of the stochastic gradient vector equals the
oracle gradient, and the second moment of the stochastic
gradient is upper bounded by some constant, i.e., �2

0 .

Let us start first with the assumption that the genie-aided dis-
tribution for the amplitude of the stochastic gradient, FG(g),
is known.9 Hence, the threshold ⌘ is calculated as in Equa-
tion (5) for some compression ratio �.10 After applying the
threshold based compression operator C⌘, the number of
non-zero gradients in the sparsified vector is a r.v. distributed
as binomial distribution with number of trials d and success
probability �. Hence, the expected number of non-zero gra-
dients matches that of Top

k
, i.e., E

�
kC⌘{g}k0

 
= �d = k.

Therefore, the threshold based compression technique, de-
signed to keep the k largest gradients in magnitude, has the

9The genie-aided distribution assumption is relaxed later.
10Note, the genie-aided distribution of gradients’ amplitude,

FG(g), is not similar to the oracle gradient, rf̄(x{i}).



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

same k-contraction property of Top
k

on average

E

n
kC⌘{g}� gk22

o
= E

n
kTk{g}� gk22

o

 (1� �)E
n
kgk22

o
. (42)

From (42) and Theorem II in (Karimireddy et al., 2019) for
compressed SGD adopted with the EC technique, we have

min
i2[I]

E{
��rf̄

�
x{i}

���2
2
}  4(f̄(x0)� f̄⇤) + L0 �2

0

2
p
I + 1

+
4L2

0 �
2
0 (1� �)

�2 (I + 1)
, (43)

where f̄⇤ is a minimum value for the function f̄ , and I is the
number of iterations over which the function is minimized.
Therefore, the rate of convergence of the threshold based
scheme with genie-aided distribution coincides with that
of Top

k
designed with the same compression ratio � in

remark 4 in (Karimireddy et al., 2019). In other words, after
I > O

�
1/�2

�
iteration, the thresholding scheme coincides

with the SGD convergence rate.

Now let us move to a more realistic case where we do
not know the genie-aided distribution of the gradients. In-
deed, there can be a discrepancy between the original and
estimated distribution F̂G(g), which weakens the assump-
tion of SID. In this case, the threshold is estimated as
⌘̂ = F̂�1

G
(1� �), leading to an error in the resulting average

compression ratio, �̂ , k̂/d, quantified as

�̂ � � , 1

d

�
E
�
kC⌘̂{g}k0

 
� E

�
kC⌘{g}k0

 �
(44)

= FG (⌘(�))� FG(⌘̂(�)). (45)

In Algorithm 1, the number of thresholding stages are
adapted such that

����̂ � �
���  ✏ �, 0  ✏ < 1 . (46)

Hence, the actual compression ratio can be bounded as

� (1� ✏)  �̂  � (1 + ✏) . (47)

For �̂ � �, the proposed scheme convergences with a rate
faster than that of Top

k
, as the total number of iterations re-

quired to reach the SGD’s rate is I > O

⇣
1

�2 (1+✏)2

⌘
, which

is smaller than that required for Top
k
. The reason is that

the proposed scheme, in this case, has a better contraction
property on average. On the other hand, for �̂  �, af-
ter number of iterations I > O

⇣
1

�2 (1�✏)2

⌘
, the proposed

scheme coincides with the SGD convergence rate, requiring
more iterations than Top

k
. In Lemma 3, we report only the

worst-case convergence rate, requiring more iterations.

D EXPERIMENTAL SPECIFICATIONS

Cluster 1 - Dedicated Environment

• 8 nodes per experiment
• GPUs per node: 1 ⇥ Tesla V100-SXM2 with 16GB of

GPU memory
• GPU inter-connection: traversing PCIe and the SMP in-

terconnect between NUMA nodes
• CPU: Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz, 16

cores
• System memory: 512 GiB
• Ethernet: 25 Gbps SFI/SFP+ - Ethernet
• Network Topology: Star network topology
• OS: Ubuntu 18.04 + Linux Kernel v4.15
• Environment: Horovod’s Docker container on Docker-

Hub
• Software: PyTorch 1.1.0, Horovod 0.16, and OpenMPI

v4.0

Cluster 2 - Shared Environment

• 1 node per experiment
• GPUs per node: 8 ⇥ Tesla V100-SXM2 with 32GB of

GPU memory
• GPU inter-connection: traversing PCIe and the SMP in-

terconnect between NUMA nodes
• CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, 16

cores
• System memory: 512 GiB
• Ethernet: 100 Gbps - InfiniBand
• Network Topology: Fat Tree topology
• OS: CentOS 7.7 + Linux Kernel v3.10
• Environment: Miniconda 4.3
• Software: PyTorch 1.3, Horovod 0.18, and OpenMPI 4.0

D.1 Further Experimental and Evaluation Details

Here, we present more details on our experimental settings,
benchmarks, hyper-parameters, etc. First, we describe the
three benchmarks used in this work which covers three
commonly used ML tasks in practice. The benchmarks also
cover both RNN and CNN architectures.

Image Classification: We studied ResNet20 anf VGG16
on Cifar10, and ResNet-50 and VGG19 on ImageNet. Ci-
far10 consists of 50,000 training images and 10,000 valida-
tion images in 10 classes (Krizhevsky, 2009), while Ima-
geNet contains over 1 million training images and 50,000
validation images in 1000 classes (Deng et al., 2009). We
train CIFAR10 models with vanilia SGD (without Momen-
tum) and ImageNet models with Nesterov-momentum SGD
following the training schedule in (Gross & Wilber, 2016).
The warm-up period is set to 5 epochs for all schemes.

Language Modeling: The Penn Treebank corpus (PTB)
dataset consists of 923,000 training, 73,000 validation and



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

82,000 test words (Marcus et al., 1999). We adopt the 2-
layer LSTM language model architecture with 1500 hidden
units per layer (Hochreiter & Schmidhuber, 1997). We use
Nesterov-momentum SGD with gradient clipping, while
learning rate decays when no improvement has been made
in validation loss. The warm-up period is 5 epoch out of the
30 epochs.

Speech Recognition: The AN4 dataset contains 948 train-
ing and 130 test utterances (AN4). We use DeepSpeech
architecture without n-gram language model (Hannun et al.,
2014), which is a multi-layer RNN following a stack of
convolution layers. We train a 5-layer LSTM of 800 hidden
units per layer with Nesterov momentum SGD and gradi-
ent clipping, while learning rate anneals every epoch. The
warm-up period is 5 epochs out of 150 epochs.

Further Evaluation Details: For training speed-up, we
evaluate the speed-up based on the time-to-accuracy of the
method that is when it can achieve (or exceed) a certain
training accuracy or test perplexity. The target test accuracy
is 75% for ResNet20 and 80% for VGG16 on CIFAR-10.
The target test perplexity is 105 for PTB benchmark. The
target CER is 55 for AN4. We compare no compression,
existing and proposed sparsification methods with ratios of
(k = 0.1, 0.01, 0.001) using 8 nodes.

E EXTRA EXPERIMENTS, AND RESULTS

In the following, we present more results including more de-
tailed metrics and experimental scenarios. In the following,
we refer to 1-stage double Gamma followed by M �1 stage
Generalized Pareto and multi-stage Generalized Pareto, and
multi-stage double exponential are refereed to SIDCo-GP,
SIDCo-P, and SIDCo-E respectively.

E.1 Further Metrics and Experimental Scenarios

Quality of Estimation Methods: Figure 9 shows the
smoothed (or running average) of the compression ratio
for all benchmarks and the three ratios (0.1, 0.01, and
0.001) used in the experiments. The results signify the
quality of the obtained threshold throughout the training
for DGC, RedSync, GaussianKSGD and the three SIDCo
methods. The results, in general, reinforce our previous
observation that SIDCo schemes perform quite well and
achieve nearly the same threshold quality as of the sampling
methods of DGC. SIDCo schemes are also significantly
better than the other estimation methods (i.e., RedSync
and GaussianKSGD). Moreover, other estimation methods
(e.g., RedSync and GaussianKSGD) generally results in
high oscillations and their over/under-estimation can be
up to ⇡±60⇥ the target. We also observe, in few cases,
that the multi-stage SIDCo -GP (i.e., Gamma-Pareto) re-
sults in slight over-estimation which is at most 2 times the

target ratio. This could be attributed to the inaccuracies
from the first-stage threshold estimation that uses closed-
form moment-matching approximation used for fitting the
double-Gamma distribution.

To support the observation presented in Figure 18d in which
SIDCo, unlike all other methods, achieved the target Charac-
ter Error Rate (CER) because it over-estimated the threshold
at early stage of training. In particular Figure 9o shows
that SIDCo-E algorithm, at the beginning of training, uses
the single-stage fitting for the target ratio which leads to
threshold over-estimation for few iterations until it settles
at the final number of stages. So, thanks to the multi-stage
adaptation technique, it can reach to the appropriate number
of stages which allows it stay at the target compression ra-
tio. The initial extra-volume at the beginning of training, at
this extreme sparsification ratio for this benchmark, leads to
significant improvement in accuracy gains and explains the
results presented in Figure 3d.

Training Loss: we present the training loss vs run time
plots for all benchmarks using all ratios. Figure 10 shows
the convergence of all schemes over time and the results in
general confirm the speed-up results presented in Section 4.1
and Appendix F. The results highlight the gains in terms of
time and accuracy from employing compression over the
no-compression. They also signify that most compressors
(except for GaussianKSGD and RedSync) achieve same
accuracy as Top

k
but at lower overhead than Top

k
.

VGG19 on ImageNet: We also present similar metrics
(i.e., smoothed compression ration and training loss vs
runtime) for the VGG19 benchmarks in Figure 11. The
results in Figure 11a show that all SIDCo methods esti-
mate the threshold with high accuracy. They also show
that GaussianKSGD miserably fails to estimate the thresh-
old and RedSync experiences significantly high variability.
Figure 11a also shows that SIDCo methods have notice-
ably higher speed-ups over all other schemes (esp., Top

k
,

RedSync and GaussianKSGD).

CPU as the Compression Device: In this experiment, in-
stead of using the GPU as the compression target, we use
the CPU device as the compression device and report on the
average training throughput. Due to the slow speed of the
experiment, we only run the experiment for two epochs as
we are interested in the throughput numbers. We compare
the performance of Top

k
, DGC and SIDCo -E. Figure 12

presents the average training throughput (the first 10 itera-
tions are excluded in the average). First, we note that the
throughput on CPU is relatively high for Top

k
method which

consistently performed the worst when GPU is the target
compression device. In contrast, DGC is now performing
the worst among all methods due to the slow performance



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) ResNet20 on CIFAR10 - Ratio 0.1. (b) ResNet20 on CIFAR10 - Ratio 0.01. (c) ResNet20 on CIFAR10 - Ratio 0.001.

(d) VGG16 on CIFAR10 - Ratio 0.1. (e) VGG16 on CIFAR10 - Ratio 0.01. (f) VGG16 on CIFAR10 - Ratio 0.001.

(g) ResNet50 on ImageNet - Ratio 0.1. (h) ResNet50 on ImageNet - Ratio 0.01. (i) ResNet50 on ImageNet - Ratio 0.001.

(j) PTB on LSTM - Ratio 0.1. (k) LSTM on PTB - Ratio 0.01. (l) LSTM on PTB - Ratio 0.001.

(m) LSTM on AN4 - Ratio 0.1. (n) LSTM on AN4 - Ratio 0.01. (o) LSTM on AN4 - Ratio 0.001.

Figure 9. Smoothed compression ratio for all benchmarks at different ratios.

of random sampling on CPU device. On the other hand,
SIDCo consistently performs the best even on CPU as the
target device. These results are not surprising as it closely
matches the observations from the micro-benchmark results
(Appendix E.2).

Full ImageNet training on Multi-GPU node: In Fig-
ure 13, we present the results for training both ResNet50
and VGG19 on ImageNet fully for 90 epochs using a sin-
gle node equipped with 8 Nvidia-V100 32GB GPUs in the
shared cluster presented in Appendix D. Each allocation of



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) ResNet20 on CIFAR10 - Ratio 0.1. (b) ResNet20 on CIFAR10 - Ratio 0.01. (c) ResNet20 on CIFAR10 - Ratio 0.001.

(d) VGG16 on CIFAR10 - Ratio 0.1. (e) VGG16 on CIFAR10 - Ratio 0.01. (f) VGG16 on CIFAR10 - Ratio 0.001.

(g) ResNet50 on ImageNet - Ratio 0.1. (h) ResNet50 on ImageNet - Ratio 0.01. (i) ResNet50 on ImageNet - Ratio 0.001.

(j) PTB on LSTM - Ratio 0.1. (k) LSTM on PTB - Ratio 0.01. (l) LSTM on PTB - Ratio 0.001.

(m) LSTM on AN4 - Ratio 0.1. (n) LSTM on AN4 - Ratio 0.01. (o) LSTM on AN4 - Ratio 0.001.

Figure 10. Smoothed training loss vs wall run-time for all benchmarks at different target sparsity ratios.

a node in the shared cluster is limited to 24 hours of run-
time. We use compression ratio of 0.1 for ResNet50 and
0.01 for VGG19. Figure 13a and 13d show the top-1 test
accuracy at the end of the training either due to finishing
the 90 epochs or allocation is revoked. They shows that

that compression can achieve the same or higher accuracy
than no-compression baseline. Also, in case of VGG19,
compression speed-ups allow the training to converge faster
and hence the higher accuracy. Figure 13b and Figure 13e
show the training throughput and that all methods super-



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) Smoothed compression ratio. (b) Training loss.

Figure 11. Performance metrics of training VGG19 on ImageNet using ratio of 0.001.

(a) ResNet20 on CIFAR10 (TPut). (b) VGG16 on CIFAR10 (TPut). (c) LSTM on PTB (TPut).

Figure 12. Throughput when CPU is the compression device: (a) ResNet20 , (b) VGG16 and (c) LSTM-PTB.

sedes Top
k
. Moreover, SIDCo schemes achieve higher

throughput than DGC and Top
k
. Finally, Figure 13c and

Figure 13f show the estimation quality and they show that
the quality is very bad for Gaussian-based fitting methods
while SIDCo schemes can achieve same estimation quality
as of the sampling of DGC.

E.2 Compression Complexity of DNN models

Compression Overhead of Real Models: In Figure 14
and Figure 15, we present the compression speed-up over
Top

k
and the latency overhead for some models includ-

ing ResNet20, VGG16, ResNet50 and RNN-LSTM used
in training CIFAR10, ImageNet and PTB datasets, respec-
tively. The results confirms the results, presented earlier, for
VGG16, where Threshold-based methods including SIDCo
outperforms Top

k
and DGC both on GPU and CPU as tar-

get compression device over all models in comparison. The
results also show that DGC outperforms Top

k
on the GPU

device while Top
k

outperforms DGC on the CPU device.
Overall, for flexibility reasons and the compatibility with
various devices, both Top

k
and DGC are not preferable.

E.3 Compression Complexity using Synthetic
Gradients Vectors of Different Sizes

Here, we run the micro-benchmark using synthetic gradient
vectors initialized based on input size of (0.26, 2.6, 26, 260)
Million elements which is equivalent to ⇡(1, 11, 114, 1140)
MBytes of gradient data sent in each iteration, respectively.
We aim to measure the performance of each compressor
in terms of the speed-up over Top

k
and latency for wide

range of gradient sizes. The results match the former ob-
servations on DNN models of different sizes. In particular,
Figure 16 shows the speed-up over Top

k
on GPU and CPU

for each size of the synthetic gradient vectors. We again can
observe that on GPU, all methods are faster than Top

k
and

all threshold estimation methods achieve higher speed-ups
over DGC and nearly same speed-ups among each other
which is attributed to the slow performance of Top

k
(or

sorting) operations on GPU. On the CPU, in contrary, we
observe that DGC is the slowest method and Top

k
excels

over it which is attributed to slow performance of random
sampling on CPU. Threshold estimation methods maintains
same speed-ups on both GPU and CPU (but with relatively
different compression times on CPU and GPU).



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) Training accuracy. (b) Training Throughput. (c) Estimation Quality.

(d) Training accuracy. (e) Training Throughput. (f) Estimation Quality.

Figure 13. Training Performance of ImageNet on ResNet50 [(a), (b), (c)] and VGG19 [(d), (e), (f)] using the multi-GPU node.

(a) ResNet20 on GPU (b) VGG16 on GPU (c) ResNet50 on GPU (d) LSTM on GPU

(e) ResNet20 on CPU (f) VGG16 on CPU (g) ResNet50 on CPU (h) LSTM on CPU

Figure 14. Compression speed-up over Topk of compressing gradient vector of different models using various compressors and ratios on
GPU (a,b,c,d) and CPU (e,f,g,h).

F RESULTS OF ALL SIDS

Here, in Figure 18, we include the results for the other two
SIDs discussed in Appendix B.3.2, i.e., double Gamma
and Generalized Pareto. Note that the two multi-stage
SID added here are the 1-stage double Gamma followed
by M � 1 stage of Generalized Pareto and multi-stage Gen-
eralized Pareto which are refereed to as SIDCo -GP and
SIDCo-P, respectively. The results and observations are, in
general, match the ones we made earlier in Section 4.1 for
SIDCo-E. However, we observe that, in some cases, SIDCo

-E achieves slightly better speed-ups compared to SIDCo
-GP and SIDCo -P. This is because of better and slightly
lower overhead estimation of the exponential-based thresh-
old which requires only the calculation of the mean of the
gradient vector (Algorithm 1). Specifically, in these cases,
SIDCo-GP which achieves on average the target compres-
sion ratio but it tends to have slightly higher variance in
terms of the estimation quality (e.g., Figure 18c and Fig-
ure 18c). Hence, while variance might be a problem, if it is
within the pre-defined tolerance range from the target ratio
(✏L,✏H ), the impact on the performance would be negligible.



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) ResNet20 on GPU (b) VGG16 on GPU (c) ResNet50 on GPU (d) LSTM on GPU

(e) ResNet20 on CPU (f) VGG16 on CPU (g) ResNet50 on CPU (h) LSTM on CPU

Figure 15. Compression latency of different models using various compressors and ratios on GPU (a,b,c,d) and CPU (e,f,g,h).

(a) 0.26 Mil Elem Tensor on GPU (b) 2.6 Mil Elem Tensor on GPU (c) 26 Mil Elem Tensor on GPU (d) 260 Mil Elem Tensor on GPU

(e) 0.26 Mil Elem Tensor on CPU (f) 2.6 Mil Elem Tensor on CPU (g) 26 Mil Elem Tensor on CPU (h) 260 Mil Elem Tensor on CPU

Figure 16. Compression speedups over Topk of synthetic tensors using various compressors and ratios on GPU (a,b,c,d) and CPU (e,f,g,h).

(a) 0.26 Mil Elem Tensor on GPU (b) 2.6 Mil Elem Tensor on GPU (c) 26 Mil Elem Tensor on GPU (d) 260 Mil Elem Tensor on GPU

(e) 0.26 Mil Elem Tensor on CPU (f) 2.6 Mil Elem Tensor on CPU (g) 26 Mil Elem Tensor on CPU (h) 260 Mil Elem Tensor on CPU

Figure 17. Compression latency of synthetic tensors using various compressors and ratios on GPU (a,b,c,d) and CPU (e,f,g,h).



An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems

(a) LSTM-PTB (Speed-up). (b) LSTM-PTB (Throughput). (c) LSTM-PTB (Est. Quality).

(d) LSTM-AN4 (Speed-up). (e) LSTM-AN4 (Throughput). (f) LSTM-AN4 (Est. Quality).

(g) ResNet20-CIFAR10 (Speedup). (h) ResNet20-CIFAR10 (Est. Quality). (i) VGG16-CIFAR10 (Speedup).

(j) ResNet50-ImageNet (Accuracy). (k) ResNet50-ImageNet (Throughput). (l) ResNet50-ImageNet (Est. Quality).

(m) VGG19 on ImageNet (Accuracy). (n) VGG19 on ImageNet (Throughput). (o) VGG19 on ImageNet (Est. Quality).

Figure 18. Performance of using 8 nodes for training LSTM on PTB [(a),(b),(c)], a LSTM on AN4 [(d),(e),(f)], CIFAR10 on ResNet20
[(g),(h)] and VGG16 [(i)], and training ResNet50 [(j), (k), (l)] and VGG19 [(m), (n), (o)] on ImageNet dataset.


