
Scheduling Multi-flow Network Updates
in Software-Defined NFV Systems

Yujie Liu∗, Yong Li∗, Marco Canini†, Yue Wang∗, Jian Yuan∗
∗ Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
† ICTEAM, Université catholique de Louvain, Belgium

Abstract—Combining Network Functions Virtualization (NFV)
with Software-Defined Networking (SDN) is an emerging solution
to provide fine-grained control over scalable and elastic packet
processing functions. Due to changes in network policy, traffic
characteristics, or physical topology in Software-Defined NFV
(SDNFV) systems, the controller needs to carry out network
updates frequently, i.e., change the data plane configuration from
one state to another. In order to adapt to a newly desired
network state quickly, the network update process is expected
to be completed in the shortest time possible. However, the
update scheduling schemes need to address resource constraints
including flow table sizes, CPU capacities of Virtualized Net-
work Functions (VNFs) and link bandwidths, which are closely
coupled. Thus, the problem is difficult to solve, especially when
multiple flows are involved in the network update. In this work we
investigate the multi-flow update problem in SDNFV systems, and
formulate it as a mixed integer programming problem, which is
NP-complete. We propose an approximation algorithm via linear
relaxation. By extensive simulations, we demonstrate that our
algorithm approaches the optimal solution, while requiring 10x-
100x less computing time.

I. INTRODUCTION

Network functions (NFs), or middleboxes, are widely de-
ployed in enterprise, carrier and data center networks, and play
an important role in enforcing security, boosting performance,
and enabling novel functionality. Recently, Network Func-
tion Virtualization (NFV) [1] has gained increasing interest
in academia and industry as it enables dynamic middlebox
deployment in Virtual Machines (VMs) running on generic
hardware rather than in expensive and dedicated devices. As
such, NFV brings the advantages of reducing capital and op-
erational expenses and improving the efficiency and flexibility
of implementing service chains. In this context, Software-
Defined Networking (SDN) provides a flexible mechanism to
steer network traffic through a desired set of NFs. A growing
number of studies [4]–[6] focus on combining NFV with SDN
to achieve scalable, elastic, and on-demand network control.

In Software-Defined NFV (SDNFV) systems, a network up-
date is defined as changing the network forwarding state from
an initial configuration to the expected configuration. Network
updates need to be implemented frequently for various reasons.
When changes occur in traffic distribution or network topol-
ogy, it is desired to dynamically adjust the network forwarding
policy to meet traffic demands, perform planned maintenance
and deal with network failures. Moreover, VNFs need to be
migrated from one physical server to another to guarantee

performance or enforce new policies. For example, when the
CPU usage of an VNF (hereinafter referred to as “NF”) is
high, we need to offload a part of the traversing traffic to
another NF to avoid degrading its processing performance.

However, considering the resource constraints, how to
schedule network updates in SDNFV systems is still an open
question. It is especially challenging when the forwarding
states of multiple flows need to be updated simultaneously.
This is because forwarding the traffic of a flow consumes three
kinds of resources, which restrict the update process.

First, the flow table sizes of SDN switches are limited. Dif-
ferent from traditional networks, to perform pattern matching,
the commonly used flow table is made of TCAM (Ternary
Content Addressable Memory), which is expensive and power
hungry. If during the update, a large amount of flow table
entries are required to be added to a switch in excess to its
TCAM capacity, the switch will refuse to install more rules
or even drop them silently, resulting in an incorrect network
configuration. Thus, from the perspective of switches, the flow
table constraint should be considered.

Second, the CPU resource allocated to an NF is limited.
If the CPU of an NF is highly utilized, its processing latency
can increase, degrading the network performance. We should
orchestrate the update of the flows, and restrict the traffic
processed by NFs to avoid overloading the CPU.

Third, the link bandwidth is another limited resource. If a
large flow is moved to a busy link during the update, the link’s
utilization could get significantly higher than that in the initial
state. In order to guarantee network performance, congestion-
freedom should be ensured during the update.

Making the problem even more challenging, we observe
that these three constraints are coupled. Updating the flows’
forwarding path will bring changes in the utilization of these
three kinds of resources.

Network update schemes should not only satisfy these three
constraints, but also be finished as quickly as possible. On one
hand, the network needs to adjust to the new state quickly to
adapt to changes in topology or traffic. On the other hand,
network updates introduce additional overhead in terms of flow
table memory [2] or controller’s memory and communication
bandwidth. Minimizing the update time can efficiently reduce
the overhead.

Recent works have focused on network updates in SDN
[11]–[18]. However, none of these prior works has considered



NF deployment in the system models, and did not analyze how
NFs’ CPU resources impact on the network update process. A
growing number of studies [3], [19] investigated the problem
of NF migration, and focused on preserving consistency of
NF state during the migration. We study the problem from
a larger perspective by considering NF migration problem
in the scenarios where multiple flows’ forwarding states are
affected at the same time and analyzing how the network
resources impact on the update process. These NF state update
mechanisms [3], [19] can be incorporated into our scheme to
implement NF state migration and ensure consistency.

In this paper, we investigate the problem of multi-flow
network update in SDNFV systems. We make the following
contributions:
• We study the multi-flow update problem in SDNFV

systems with a multi-step strategy, which to the best
of our knowledge, is the first study of this problem.
Aiming to minimize the update time, we formulate it as
a mixed integer programming (MIP) problem, which is
NP-complete.

• We propose a linear programming based algorithm via
linear approximation to solve the multi-flow update prob-
lem in polynomial time.

• By extensive simulations with real traffic traces, we
demonstrate that the proposed algorithm performs close
to the optimal solution while completing with only 10x-
100x less computing time.

II. OVERVIEW

We consider an SDNFV system consisting of a logically
centralized controller, SDN switches and NFs running on
commodity servers of an NFV platform. SDN switches for-
ward packets and their flow tables are configured by the SDN
controller via an SDN southbound protocol such as OpenFlow.
NFs run on generic compute resources via virtualization
technology. Through interactions with SDN switches and NFs,
we posit that the SDNFV controller (hereinafter referred to
as “the controller”) obtains a global view of the system. In
this context, we aim to propose a network update scheduling
mechanism that runs at the controller. When a network update
is required, the controller computes an update solution. Then,
to implement the update solution, it needs to reconfigure the
forwarding path of the flows, which include updating not only
the switches’ flow tables but also the related flow state of the
NFs.

We start by illustrating an example to introduce the network
update problem in SDNFV systems, and then discuss the
challenges of the problem that we need to address.
Example. We now illustrate the details of the network update
process with an example shown in Fig. 1. For simplicity, the
controller is not shown. Fig. 1 (a) depicts the initial network
state. There are three active flows destined to S5: F1, F2,
and F3, which originate from S1, S6, and S7, respectively.
Their traffic rates are 20%, 50% and 60% of link capacity,
respectively. The flows traverse different types of NFs and
consume 60%, 20% and 70% of CPU resources, respectively.

F1: 0.2 F3: 0.6F2: 0.5

Link 
capacity: 1

NF1 
CPU: 60% NF2 

CPU: 20%

NF3 
CPU: 70%

FTU: 50% FTU: 
60% FTU: 10%

S2

S5

S4S3

S6 S7
S8

S1

(a) Initial network state

F1’: 0.2F3’: 0.6F2’: 0.5

Link 
capacity: 1

NF1 
CPU: 20%

NF2 
CPU: 70%

NF3 
CPU: 60%

FTU: 50%FTU: 60% FTU: 
10%S2

S5

S4S3

S6 S7
S8

S1

Newly added link

(b) Final network state

Fig. 1. A network update scenario caused by adding a new link.

We assume that S2, S3 and S4 have the same flow table
capacity, which is smaller than that of other switches. Each
flow is a large traffic aggregate that occupies multiple flow
table entries, and forwarding F1, F2 and F3 brings 50%, 60%
and 10% Flow Table Utilization (FTU) in S2, S3, and S4

respectively.
When S1 and S8 are connected by a newly added link as

shown in Fig. 1 (b), the controller decides to carry out a
network update to reduce the average number of hops traversed
by flows. Then, the paths of three flows F1, F2 and F3 and
their NFs, need to change from the initial network state shown
in Fig. 1 (a) to the state shown in (b).

However, note that during the update certain links may
experience higher utilization compared to their initial or final
state. The same applies to CPU cycles at NFs and flow tables,
which could be occupied more than what it is necessary
in either state. For example, let us consider updating F1,
F2, and F3 simultaneously. Since it is inherently difficult to
synchronize the update of multiple flows across devices, in
case that F3’s update is started earlier than F2, the utilization
of the link between S3 and S5 may exceed 100% in the
intermediate state.

In fact, it is generally impossible to complete the update
of several flows in one step due to these resource constraints.
Thus, we propose a multi-step strategy to solve the network
update problem. However, addressing this problem is not
straightforward as we face several challenges as follows.
Challenge 1: How to finish network updates as quickly as
possible? To avoid service disruptions and adjust the network
to the new intended state, we should complete the update
process as quickly as possible. To speed up the update process,
we expect to update several flows concurrently in each step.
For example, if the network resources are doubled in Fig. 1,
any update solution is feasible. Among these solutions, we
prefer to update all flows in a single step, as it is the most
efficient approach. Thus, in a multi-step strategy, we aim to
reduce the total update time by minimizing the number of
update steps.
Challenge 2: How to meet resource constraints during
network update? The network update process is restricted by
network resources. To analyze the constraints that need to be
considered, we present four update plans in Fig. 2 that solve
the problem shown in Fig. 1.
CPU constraint: NFs’ CPU capacity is a constraint. The



F1: 0

F3: 0.6F2: 0.5

Link 
capacity: 1

NF1 
CPU: 0%

NF2 
CPU: 20%

NF3 
CPU: 130%

FTU: 0% FTU: 
60%

FTU: 60%

F1’: 0.2

S2

S5

S4S3

S6 S7 S8

S1

(a) If F1 is updated first, NF3’s CPU
is overloaded.

F1: 0.2

F3: 0.6F2: 0

80% 0% 70%

FTU:110% 0% 10%

F2’: 0.5
S2

(b) If F2 is updated first, S2’s flow
table is over utilized.

F1: 0.2 F3: 0F2: 0.5

LU=110%

60% 90%
0%

50% 70% 0%

F3’: 0.6

S3

S5

(c) If F3 is updated first, link conges-
tion occurs.

F3’:0.3F1: 0.2 F3: 0.3F2: 0.5

60% 55%
35%

50% 10%70% S3

S5

(d) A feasible update plan is obtained
considering these constraints.

Fig. 2. The first step of four possible update plans: (a) an update plan without considering the CPU load of NFs, (b) an update plan without considering the
constraint of flow table, (c) an update plan without considering the constraint of link bandwidth and (d) a feasible update plan.

performances of NFs are closely correlated with their CPU
usage. If an NF is overloaded, the packets traversing it will
experience increased processing delay or be dropped, leading
to severe service degradation. For example, if we move F1

to its new path first, the packets of F3 and F ′1 will both be
sent to NF3, and the CPU load of NF3 will be above 100%
as presented in Fig. 2 (a). Thus, it is important to ensure that
NFs’ CPU utilizations are below a certain level.
Flow table constraint: A switch’s flow table size is another
constraint. A flow table contains entries that specify the
forwarding policies for different flows, and its capacity is
limited. For example, as depicted in Fig. 2 (b), if F2 is moved
to its new path first, S2 has to steer the packets of F1 and
F ′2. The FTU of S2 will become 50%+ 60% = 110%, which
means that S2 cannot support this move and the plan will fail
in practice. Therefore, when planning the multi-flow update,
it is essential to guarantee that flow table constraints are not
violated.
Link bandwidth constraint: A link’s bandwidth is also a
constraint. During the update, several flows may traverse the
same links. If the link utilization is too high, congestion occurs
and packet loss rate increases. For example, assuming that at
the first step F3 is moved to its new path, as presented in
Fig. 2 (c), the link between S3 and S5 will carry the traffic
of F2 and F ′3 and its utilization becomes 110%. Thus, the
link utilization should be below a certain threshold during the
update in order to guarantee congestion-freedom.

The first step of a feasible update plan is shown in Fig. 2 (d),
where we split F3 into two subflows each with half of the
traffic, and move one subflow to the new path at the first
step. Then the CPU load on NF2 and the link utilization
on the link between S3 and S5 will increase by half of that
consumed by F3, and the FTU of S3 reaches 70%. This is
because the rules need to be conservatively added to setup a
new path, no matter how much traffic is redirected on it. Then,
the update is successfully completed by moving F1, F2 and
the remaining subflow of F3, without violating the constraints
of NFs, switches and links.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the mathematical model of the
SDNFV system and formulate the multi-step network update
scheduling as an optimization problem.

A. System Model

We now formally model the SDNFV system. In such a
system, there are M NFs denoted by set M and S switches
denoted by set S, which are connected by L directed links
denoted by set L. K active flows need to update their path,
and each flow should be processed by several NFs. We define
a “flow” as an aggregation of packets that go from the same
ingress switch to the same egress switch and traverse the same
set of NFs. Thus, the “flow” considered in our model can be a
set of actual flows, which may span multiple flow entries. We
use bj to represent the traffic rate of flow j, and cj to represent
the CPU load on the NFs to process flow j. For a flow, the
CPU usage of an NF is proportional to its traffic rate. We also
use dj to represent the number of flow entries that need to be
installed per switch to route flow j. Note that dj ≥ 1.

In the network, the old forwarding paths are denoted by
{P1, · · · , Pj , · · · , PK} with Pj as the path of flow j, and the
new paths are denoted by {P ′1, · · · , P ′j , · · · , P ′K}. A path from
source usr to destination ude is defined as a list of traversed
nodes (including both switches and NFs) and the links con-
necting them, denoted by {usr = u0, u1, u2, · · · , uk = ude},
where ui ∈ M ∪ S is the next hop node of ui−1 and the link
(uj−1, uj) ∈ L. Each NF is connected to a switch. The paths
are loop-free and each node has only one next hop.

We use Rb(l), Rf (s), and Rc(m) to denote the bandwidth
of link l, the flow table size of switch s and the processing
capacity of NF m, respectively. The max number of steps is
denoted by N . Let fi(l) represent the maximum traffic load on
link l during the ith update step. Note that f0(l) indicates the
initial link load. Similarly, we use ni(s) and gi(m) to denote
the maximum number of flow entries on switch s, and the
maximum CPU load for NF m in step i.

B. Problem Formulation

In the multi-step network update scheduling, our goal is to
finish the update as quickly as possible while considering the
resource constraints. Thus, we set the limit on the number
of steps to be N and find the optimal update solution with
the minimum number of steps. We use binary variable Ii, i ∈
{1, · · · , N} to indicate whether the network update is finished
at step i. To further describe how the flows are updated in each



step, we use xij to denote the fraction of flow j that is updated
from Pj to P ′j in step i. Thus, xij is constrained by: 0 ≤ xij ≤ 1,∀1 ≤ i ≤ N ;∑N

i=1
xij = 1,∀j;

(1)

which ensures that the migrated traffic volume of a flow is not
larger than its total rate at any step, and the traffic of every
flow should be moved to the new path in N steps. Moreover,
Ii is restricted by the linear combination of xij as follows: Ii ≥

∑K

j=1

1

N
xij , i ∈ {1, · · · , N};

Ii ≥ Ii+1, i ∈ {1, · · · , N − 1}.
(2)

Since Ii is a binary variable, we can observe that Ii = 1, when
any value of xij ,∀j, is above zero; Ii = 0, when xij ,∀j, are
all zeros. The constraint of Ii ≥ Ii+1 ensures that as long as
the update is finished in the ith step, there will be no more
update operations in subsequent steps. Thus, the optimization
goal can be represented by min

∑N
i=1 Ii.

Next, we analyze the constraints of the problem. Concerning
the link data rate, f0(l) represents the initial traffic rate on
each link, and it is calculated by f0(l) =

∑K
j=1 bjαjl, where

if l ∈ Pj , αjl = 1; otherwise, αjl = 0. In the worst case,
the max link utilization in step i occurs, when old flows have
not started to migrate their traffic and new flows have already
moved to link l. In this case, we need to guarantee that the
link is not congested. If l ∈ P ′j , xijbj should be added to
fi(l); if link l ∈ Pj , xijbj should be subtracted from fi(l);
otherwise, the value of fi(l) will not change. In this way, we
can calculate fi(l) iteratively as follows:

fi(l) =

K∑
j=1

bj [(1−
i−1∑
a=0

xaj)αjl + (

i∑
a=0

xaj)α
′
jl]. (3)

If l ∈ P ′j , α′jl = 1; otherwise, α′jl = 0. We set x0j = 0 to
include the expression of f1(l) in this equation.

Similarly, concerning the max CPU usage per NF, we derive
the formula of gi(m) as follows:

gi(m) =

K∑
j=1

cj [(1−
i−1∑
a=0

xaj)γjm + (

i∑
a=0

xaj)γ
′
jm]. (4)

If m ∈ P ′j , γ′jm = 1; otherwise, γ′jm = 0.
With regard to the constraint of flow table size, we focus

on the maximum number of flow entries on the switches in
each step, denoted by ni(s). For the original number of flow
table entries in each switch, we have n0(s) =

∑K
j=1 djβjs.

The value of βjs is determined by the network topology as
follows. If s ∈ Pj and the next hop of s is some NF m, at
most double flow entries are required to forward traffic (in
order to steer traffic through the NF), i.e., βjs = 2; if s ∈ Pj ,
in the case that its next hop is not an NF, dj flow entries are

needed, i.e., βjs = 1. If s does not belong to Pj , βjs = 0.
Thus, we have:

βjs =


2,∃m, (s,m) ∈ Pj ;

1, s ∈ Pj ,∀m, (s,m) /∈ Pj ;

0, s /∈ Pj .

(5)

In the worst case, only when the whole flow has been updated,
the old flow entries can be removed. Thus, we can derive the
expression of ni(s) as follows,

ni(s) =

K∑
j=1

dj(sgn(1−
i−1∑
a=0

xaj)βjs + sgn(
i∑

a=0

xaj)β
′
js).

(6)
sgn(x) is the signum function. The expression of β′js is similar
with that of βjs in (5), except that Pj is replaced with P ′j .

Finally, by combining the objective and the constraints, we
formulate the optimization problem P1 as follows:

min
∑N

i=1
Ii

s.t.


gi(m) ≤ η ·Rc(m),∀i,m; (7a)
fi(l) ≤ θ ·Rb(l),∀i, l; (7b)
ni(s) ≤ Rf (s),∀i, s; (7c)
(1), (2); (7d)

where 0 < θ = maxi,l
fi(l)
Rb(l)

≤ 1 represents the maximum
allowed link utilization during the update, and 0 < η ≤ 1
represents the CPU load threshold. The number of steps in
the optimal solution of P1 is denoted by Nopt. We can prove
that P1 is NP-complete by transforming it to the problem of
Fastest Update Scheduling (FUS), which has been proved NP-
complete in Theorem 2 of [13].

IV. APPROXIMATION ALGORITHM

We aim to seek an efficient algorithm for the multi-flow
network update problem P1. We first change it to P2 that has
a linear objective, and then relax the integer constraints to
obtain a linear programming problem P3. Since the solution
of P3 does not always satisfy the constraints of P1, we further
propose a linear programming based approximation algorithm
LIPBA with polynomial computation complexity. Now we
introduce the main idea of the solution process.

A. Problem Reformulation
Since the objective function of the problem P1 contains

integer variables, we first attempt to reform the objective
function. We vary N from 1 to Nmax with every increment
of 1, and examine whether a feasible update solution with N
steps exists. With a given value of N , we use maximum link
utilization as the optimization goal to minimize potential con-
gestions, which is represented by min θ. Thus, we formulate
the optimization problem P2 as follows,

N : 1 ∼ Nmax{
min θ

s.t. Constraints (1), (7a)–(7c).

Until a feasible solution is obtained with N (2)
opt steps.

(8)



Algorithm 1 LIPBA: Our LP-based approximation algorithm.
1: Solve P3 by increasing N from 1 to Nmax, and obtain the

optimal solution xij and the minimum number of steps
N

(3)
opt.

2: For each flow j, choose to update its entire traffic in step
i independently with probability xij .

3: If some constraint is not satisfied, obtain a feasible solu-
tion by adjusting the update plan.

If a feasible solution cannot be found within Nmax steps,
we suppose that the network update problem is infeasible
in practice. Note that there does not always exist an update
plan for an arbitrary network update problem without violating
these three kinds of constraints. The solution of P2 is equal
to that of P1, which is denoted by N (2)

opt = Nopt.

B. Linear Programming Relaxation

Let us consider the reformulated problem P2. Since the
flow table constraints in (7c) contain integer variables, P2

is also NP-complete [11]. Thus, we relax the constraints
and transform the problem into a Linear Programming (LP)
problem. For simplicity, we use σij to denote

∑i
a=0 xaj .

We can observe that sgn(1 − σ(i−1)j)βjs + sgn(σij)β′js ≥
(1−σ(i−1)j)βjs+σijβ′js. If and only if σ(i−1)j , σij ∈ {0, 1},
the equality holds. Based on this inequality, we relax the flow
table constraints and obtain an LP problem P3 as follows,

N : 1 ∼ Nmax
min θ

s.t.


Constraints (1), (7a), (7b);
K∑
j=1

dj [(1− σ(i−1)j)βjs + σijβ
′
js] ≤ Rf (s),∀s, i.

Until a feasible solution is obtained with N (3)
opt steps.

(9)
Note that P3 is a linear relaxation of P2, which can be solved
in polynomial time. The optimal solution of P3 provides a
lower bound for P2, i.e., N (3)

opt ≤ Nopt. If the optimal solution
of P3 satisfies σij ∈ {0, 1},∀i, j, it meets the constraints of
P2 and is also the optimal solution for P2. Otherwise, the
optimal solution of P3 is not a feasible solution for P2. Thus,
we further propose an approximation algorithm to obtain a
feasible solution.

C. An LP-based Approximation Algorithm

As shown in Algorithm 1, we present a LInear Programming
Based Approximation algorithm (LIPBA). It first obtains the
optimal solution of P3, and then adjusts the solution to fit
the feasible region of P2. Specifically, for each flow j, the
algorithm updates its traffic in step i independently, with
probability equal to xij .

If the solution of Algorithm 1 satisfies the constraints of
P3, it is also the optimal solution for P2, i.e., N (4)

opt = N
(2)
opt,

where N (4)
opt denotes the number of steps in the optimal solution

of LIPBA. Otherwise, we can obtain a feasible solution by
adjusting the update plan: if a link capacity or CPU constraint
of a step is violated, we add an update step and separate a part
of the traffic to be updated in this step into the extra step; if
a flow table constraint of a step is violated, we add an update
step and schedule some flows to be updated in the extra step.
P3 can be solved in polynomial time, and the computation
complexity of the adjustment process is also polynomial of
the instance size. Thus, LIPBA is a polynomial time algorithm
for the multi-flow update problem.

V. PERFORMANCE EVALUATION

A. Experimental Settings

We evaluate the performance of LIPBA and compare it
with three other update schemes: 1) Optimal, which seeks
the optimal solution of the flow update problem P1 using
YALMIP toolbox [8] and Gurobi Optimizer; 2) OP, which
uses the same toolbox to solve the problem P2; and 3) DoRe,
which is an extension to an existing greedy heuristic algorithm
[17] to solve P1.

DoRe first normalizes the resource utilization of each flow
by the available resource capacities of its traversed links,
NFs, and switches, and defines the resource with the largest
utilization as the dominant resource. Then all flows are sorted
by the utilizations of their dominant resources and examined in
descending order. If updating a flow does not violate resources,
it will be scheduled in the current step; otherwise, it will be
skipped and re-examined in the next step. The scheduling
process is repeated until the network update is completed,
or it ends when there is not enough resource to update the
remaining flows.

Since NFs are widely deployed in datacenters, we select the
Fat Tree [9] topology to carry out simulations, which is widely
used in data center networks, with 20 nodes and 32 links. For
the traffic rate of each flow, we use the real packet-level traces
from a data center of a university (EDU1 in [10]). The capacity
of each link is set to 1 GBps, and the flow table size of each
switch is set to 1000 rules. The number of flows K is set to
40. We scale down the traffic data to fit into the link capacity,
and assume the number of flow entries required by different
flows follows uniform distribution of [d− δd, d+ δd], where d
is set to be 7 and δd is set to be 3. The CPU usage per flow
follows uniform distribution of [c − δc, c + δc], and we set c
to be 0.05 and δc to be 0.04.

Initially, each flow should go through a certain set of NFs,
and the number of NFs on each flow’s path follows the
uniform distribution of [1, 3]. We select M switches to connect
to the NFs. Note that in Fat Tree only the switches at the
edge layer can be connected with NFs. We consider a typical
network update scenario: Forwarding-Change, where the link
weights are reassigned to simulate events which can cause flow
updates, such as failed links or dynamic traffic engineering.
We set M to 10 and Mmig to 5 by default. The simulations
are run on a computer with an Intel Core2 Quad CPU Q9400
and 4 GB memory.



1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

4

4.5

CPU Capacity

T
h

e
 N

u
m

b
e

r 
o

f 
U

p
d

a
te

 S
te

p
s

 

 

OP
LIPBA
DoRe
Optimal

(a) The number of update steps (b) Max CPU usage

(c) Success rate (d) Computing time

Fig. 3. Performance of the update solutions as a function of the CPU capacity
of NFs under the topology of Fat Tree.

B. Preliminary Results

We compare the performance of our solution LIPBA with
the optimal one. Since CPU allocated to NFs is an important
resource in SDNFV systems, we vary the CPU capacity per
NF from 1 to 2 units to evaluate its impact on the update
process. We run the simulation 50 times using the topology
of Fat Tree, and present the averaged results in Fig. 3. As
shown in Fig. 3 (a), the number of update steps of all solutions
decreases, when NFs have more powerful CPUs. Optimal and
OP obtain the same number of steps, which indicates that
transforming Optimal into OP is a proper method. LIPBA takes
about 1.3x steps compared with the optimal solution, when the
normalized value of each NF’s CPU capacity is 1. The max
CPU usage during the update process decreases with the in-
crease in CPU capacity, as represented in Fig. 3 (b). When the
CPU capacity is 1.4 and 1.8 units, DoRe cannot achieve 100%
success rate1, as shown in Fig. 3 (c). However, all the other
solutions successfully solve the update problem for all cases
of the simulation. Regarding the computing time as shown
in Fig. 3 (d), we observe that Optimal�OP>LIPBA>DoRe.
Specifically, LIPBA saves 10x-100x computing time compared
with Optimal. By contrast, DoRe computes the solution with
the shortest time, but its success rate is up to 8% lower.

VI. CONCLUSION

In this paper, we focus on reducing the update time for
multi-flow update in SDNFV systems. The link bandwidth,
flow table memory and CPU capacities of NFs are three
interrelated network resources that impact the update process.
By jointly considering these three constraints, we formulate
the network update problem as a mixed integer programming
problem, which is NP-complete. Thus, we propose a linear

1We say that an update is successful if it can be completed without violating
any of the problem constraints.

approximation based polynomial-time algorithm to solve it.
Extensive simulations based on real traffic traces demonstrate
that the proposed algorithm approaches to the optimal solution
with only 10x-100x less computing time and achieves high
success rate.
Acknowledgments. This work was supported by the National
Basic Research Program of China (973 Program) under grants
2013CB329105, the National Nature Science Foundation of China
(Grant No. 61273214), and also supported (in part) by European
Union’s Horizon 2020 research and innovation program under the
ENDEAVOUR project (grant agreement 644960).

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” in IEEE
Comm. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. SIGCOMM’12, August 13-
17, 2012, pp. 323–334.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, et al., “OpenNF: En-
abling innovation in network function control,” in Proc. SIGCOMM’14,
August 17-22, 2014, pp. 163–174.

[4] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags,” in Proc. NSDI’14, April 2-4, 2014, pp. 533–
546.

[5] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in SIG-
COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, Aug. 2013.

[6] Y. Zhang , N. Beheshti , L. Beliveau, et al., “Steering: A software-
defined networking for inline service chaining,” in Proc. ICNP’13,
October 7-10, 2013, pp. 1–10.

[7] S. Jain, A. Kumar, S. Mandal, et al., “B4: Experience with a globally-
deployed software defined WAN,” in Proc. SIGCOMM’13, August 12-
16, 2013, pp. 3–14.

[8] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB Computer Aided Control Systems Design,” in Proc. IEEE
Int. Symp. Comput. Aided Control Syst. Design 2004, September 2-4,
2004, pp. 284–289.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM’08, August 17-22,
2008, pp. 63–74.

[10] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. IMC’10, November 1-3, 2010,
pp. 267–280.

[11] C. Y. Hong, S. Kandula, R. Mahajan, et al., “Achieving high utilization
with software-driven WAN,” in Proc. SIGCOMM’13, August 12-16,
2013, pp. 15–26.

[12] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,,
“zUpdate: Updating Data Center Networks with Zero Loss,” in Proc.
SIGCOMM’13, August 12-16, 2013, pp. 411–422.

[13] X. Jin, H. H. Liu, R. Gandhi, et al., “Dynamic scheduling of network
updates,” in Proc. SIGCOMM’14, August 17-21, 2014, pp. 539–550.

[14] N. P. Katta, J. Rexford, and D. Walker, “Incremental Consistent Up-
dates,” in Proc. HotSDN’13, August 16, 2013.

[15] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
Customizable Consistency Properties in Software-Defined Networks,”
in Proc. NSDI’15, May 4-6, 2015, pp. 73–85.

[16] P. Perešı́ni, M. Kuźniar, M. Canini, and D. Kostić., “ESPRES: Transpar-
ent SDN Update Scheduling,” in Proc. HotSDN’14, August 22, 2014,
pp. 73–78.

[17] Y. Liu, Y. Li, Y. Wang, A. V. Vasilakos, and J. Yuan, “Achieving Efficient
and Fast Update for Multiple Flows in Software-Defined Networks,” in
Proc. DCC’14, August 18, 2014, pp. 77–82.

[18] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust sdn control plane for transactional network updates,” in Proc.
INFOCOM’15, April 6-May 1, 2015.

[19] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System Support for Elastic Execution in Virtual Middle-
boxes,” in Proc. NSDI’13, April 2-5, 2013, pp. 227–240.


