A High Performance IP Traffic Generation Tool
Based on the Intel IXP2400 Network Processor

Raffaele Bolla, Roberto Bruschi, Marco Canini, and Matteo Repetto

Department of Communications, Computer and Systems Science,
DIST—University of Genova, Via Opera Pia 13, 16145 Genova, Italy
{raffaele.bolla, roberto.bruschi}@unige.it, marco@reti.dist.unige.it,
matteo.repettoCunige.it

Abstract. Traffic generation is essential in the processes of testing and
developing new network elements, such as equipment, protocols and ap-
plications, regarding both the production and research area. Tradition-
ally, two approaches have been followed for this purpose: the first is based
on software applications that can be executed on inexpensive Personal
Computers, while the second relies on dedicated hardware. Obviously,
performance in the latter case (in terms of sustainable rates, precision in
delays and jitters) outclasses that in the former, but also the costs usually
grow of some order of magnitude. In this paper we describe a software IP
traffic generator based on a hardware architecture specialized for packet
processing (known as Network Processor), which we have developed and
tested. Our approach is positioned between the two different philoso-
phies listed above: it has a software (and then flexible) implementation
running on a specific hardware only slightly more expensive than PCs.

1 Introduction

The current Internet is characterized by a continuous and fast evolution, in terms
of amount and kind of traffic, network equipment and protocols. Heterogeneous
equipment, protocols and applications (also referred to as “network elements”),
high transmission rates in most of Internet branches and the need of fast de-
velopment (to quickly fulfil new services’ requirements and to reduce time to
market) are at present the most critical issues in Internet growth. In this con-
text, every network element should be carefully tested before being used in real
networks: an error in a device or a protocol could easily result in technical prob-
lems (e.g., packet losses, connection interruptions, degradation in performance)
and it could lead to significative economic damage in production environments.

Many of the tests on a new network element require the ability to generate
synthetic traffic off-line; such traffic should be sufficiently complex, fast (high-
rates) and, in a word, realistic to cover a good deal of operating conditions. Thus,
the possibility to create realistic network traffic streams is very useful today, and
it is essential to reduce development times and bugs in new network elements.
Moreover, the availability of good synthetic traffic sources helps researchers in

understanding network dynamics and in designing suitable modifications and
improvements in current protocols and equipment.

The generation of traffic streams is a quite “simple” task in simulated en-
vironments; on the contrary, the generation of real traffic on a testbed setup
involves some critical issues related to precision, scalability and costs. Until now,
two antithetical approaches have been traditionally followed for network traffic
generation. The first one is based on software applications that do not require
specific hardware, but can be executed on general purpose machines, such as
inexpensive Personal Computers (PC). The second one is based on the develop-
ment of specialized hardware.

The characteristics and functionalities of software tools can be very sophisti-
cated but, at the same time, they can maintain a high flexibility level and (often)
offer an open source approach: in other words, they are modifiable and adaptable
to the specific requirements of the experiments to carry out. The main drawback
of this approach is the architecture of the PC, which limits the precision and the
maximum reachable performance; this is a heavy limitation today, with Internet
traffic that increases continuously and network equipment that must manage a
huge amount of traffic (from Gigabits to Terabits per second).

Several techniques can be used in PC-based network traffic generation, de-
pending on the final goal. Quite often, it is useful to generate only a single stream
of IP packets, characterized by the inter-arrival time between two consecutive
packets; this stream can be used to test network equipment such as routers and
switches with standard performance analyses, as those defined in RFC 2544 [1]
and 2889 [2]. Examples of applications oriented to this type of generation are
Iperf [3] and Netperf [4]. These two tools generate IP packets by starting from
a fixed structure and by varying some fields (e.g., the source and destination
addresses, the TOS, etc.); more advanced applications are able to keep into ac-
count also the behaviour of the transport protocols, by representing the traffic
generation as a set of file transfers over TCP or UDP (see, for example, Har-
poon [5]). All these tools do not care about packet contents; however, when the
element under test is an application (such as a Web server or a DNS), this is
not acceptable. Thus, other tools have been designed with this goal, for example
WebPolygraph [6]. One common drawback of the above cited software tools is
that each of them can generate only a specific type of traffic stream, which is
not representative of the heterogeneous traffic flowing on a generic Internet link.
Software such as Tcpreplay and Flowreplay [7] log the traffic on some links and
then generate identical streams, by possibly changing some parameters in the
IP packets. Unfortunately, in this case, the traffic streams are always the same
and the registration of long sequences of traffic requires large amounts of fast
memory.

The second approach, namely the custom hardware devices, is the most pop-
ular solution in the industrial environment. Suitable architectures have been
designed (often by using also standard components) to minimize delays and jit-
ters introduced in packet generation; here all the functionalities are implemented
“near” the hardware, without the intermediation of a general purpose operating

system (that may be present at a higher level to facilitate the configuration and
the control of the instrument and the management of the statistical data). The
development of such equipment is usually very expensive, based on proprietary
solutions and carried out for professional and intensive use only. Thus, the fi-
nal result is that the tools are configurable, but not modifiable or customizable,
and very expensive. All these elements, together with the high final cost of each
device, make this kind of tools not much attractive, especially for academic re-
searchers or small labs. Examples of such products are Caldera Technologies
LANforge-FIRE [8], CISCO I0S NetFlow [9], Anritsu MD1231A IP/Ethernet
Analyser [10] and SmartBits AX/400 [11].

Starting from these considerations, we have decided to build an open source
traffic generator that could be situated in the middle between the existent ap-
proaches: it should be flexible and powerful enough to be useful in most of the
practical situations, but less expensive than professional equipment. To real-
ize all these objectives we need to work near the hardware, but we also need
to implement all the functionalities in software, to reduce development costs
and make customization effective. Among different technologies we have taken
into account, we found our ideal solution in the Network Processors: these are
devices conceived for fast packet processing, often with the high degree of flex-
ibility needed for implementing the desired algorithms; moreover their cost is
lower than custom hardware devices.

Several Network Processor architectures are available from different man-
ufacturers [12]; we have found the Intel IXP2400 to be the best compromise
between computation power and flexibility. Moreover, this chip is available on
an evaluation board, the Radisys ENP-2611, which represents the cheapest way
to access this kind of Network Processors. Until now, we know only another
similar approach to the problem of traffic generation [13], but it implements a
very simple structure, which is unable to generate realistic traffic. In this work
we describe a structure for a high-speed IP/Ethernet traffic generator based on
the Intel IXP2400 Network Processor that we have developed and tested. The
requirements of this device are to be able to transmit more than 1 Gbps of traf-
fic (to saturate all the Gigabit Ethernet lines of the ENP-2611) and to generate
multiple traffic streams simultaneously, each of them with different statistical
characteristics and header contents. Our aim is to model the more representa-
tive traffic classes in the Internet, such as real-time and Best Effort; moreover,
we would like to have the chance to manage Quality of Service (by using the
TOS field).

In the following, after briefly describing the IXP2400 architecture, we focus
on two main issues. The first concerns the question if the Network Processor can
be effectively utilized for traffic generation: the IXP2400 has been designed for
packet processing, not explicitly for packet generation, and we were not sure that
it can saturate the Gigabit interfaces, as we would like for a high-performance
tool. The second issue regards the design of an application framework that ex-
ploits the Network Processor architecture to build a flexible tool for traffic gen-
eration. We have named such framework PktGen and, as will described in detail

later, it consists of several applications running on different processors of the
IXP2400. PktGen is very simple to use, as it provides a comfortable user graph-
ical web interface; moreover, it can also be modified without much effort, as it
is mostly written in C. Preliminary tests have been carried out to demonstrate
the correcteness and the performance of such tool.

The rest of the paper is organized as follows: Sect. 2 gives a brief overview
of the Intel IXP2400, whereas the successive Sect. 3 explains how the Network
Processor architecture is used to build a packet generator. Section 4 describes
PktGen in details by analysing all its components, whereas in Sect. 5 we re-
port some performance tests about PktGen and a comparison with UDPGen, a
well-known software PC-based traffic generator. Finally, in Sect. 6 we give our
conclusions and we report some ideas for future work.

2 The IXP2400 Architecture

Figure 1 shows the main components of the Intel IXP2400 architecture and the
relationships among them. The IXP2400, as some other Network Processors,
provides several processing units, different kinds of memory, a standard inter-
face towards MAC components and some utility functions (e.g. hash and CRC
calculation). The “intelligence” resides in the processing units, which can use
the other peripherals though several internal buses.

For what concerns processing, the IXP is equipped with two kinds of micro-
processors which play very different roles in the overall architecture: one XScale
CPU and eight MicroEngines. The XScale is a generic RISC 32-bit processor,
compatible with the ARM V5 architecture, but without the floating point unit.
This processor is mainly used to control the overall system and to process net-
work control packets (such as ICMP and routing messages). Due to its com-
patibility with the industry based standards (ARM), it is possible to use on it
both the Linux and VaWorks [14] (derived from Windows) Operating Systems
(OS); this is a great advantages as many existent applications and libraries can
be compiled and used on this processor (greatly decreasing development time
and increasing efficiency). For what concerns Linux, two different distributions
are available at the moment: Montavista [15,16], based on a 2.4.18 kernel, and
Fedora [17], with a more recent 2.6.9 kernel.

Accordingly to our aim of building an open-source tool, we have opted for
Linux OS; in particular we have chosen the Montavista distribution, which was
already available at the beginning of the project (Fedora has been released only
recently). This choice enables us to develop software for this processor in stan-
dard C or C++ languages.

The other processing units of the IXP are the Microengines (ME). They
are minimal RISC processors with a reduced set of instructions (about 50),
optimized for packet processing; they provide logical and arithmetic operations
on bits, bytes and dwords but not the division nor the floating point functions.
The MEs have access to all the shared units (SRAM, DRAM, MSF, etc.) and
they are used along the fast data path for packet processing; they can be used

DRAM

SRAM
External
Media
Device(s)
A A

Y
SRAM
| Controller 0 | v XScale
Media Switch SRAM DRAM Core
Fabric Controller 1 Controller 0
A A -~ A A A
h 4 v h 4
-~ [y Fy
v v v
A A
v v v
Y A A
YyYvYvYy YyYyvvy Yy A 4

PCI Scratchpad ME ME
0:1 0:0
A

i

Hash
ME L[ME
1:2 1:3
SHat ME Cluster 0 ME Cluster 1
IXP2400

Optional host
CPU, PCI

bus devices

Fig. 1. The IXP architecture.

in different ways (e.g., in parallel or sequentially) to create the framework that
best fits the computational needs of network equipment.

No operating system is required on the ME, thus no software scheduler is
available for multi-threaded programming. A simple round robin criterion is used
to execute more threads (up to 8) on a ME; the programmer has the burden to
write the code for each thread in a way that periodically releases the control of
the ME to the other ones. Internally, each ME is equipped with specific registers
for at most 8 hardware contexts (corresponding to the threads) and a shared low
latency memory; moreover, some dedicated units are available for specific tasks
(CRC computation and pseudo-random number generation).

ME programming can be made by assembler language or by microC; the
latter has the same instruction set as C plus some non-standard extensions,

o () T () o o (]

Microengine Microengine Microengine
& XScale

Fig. 2. A standard IXP2400 fast-path.

and it makes the learning of the language itself and the programming of the
MicroEngines simpler and faster.

The IXP2400 can use three types of memories: scratchpad, SRAM and DRAM.
The scratchpad has the lowest latency time, it is integrated into the IXP2400
chip itself, but it is only 16 KB in size. The main feature of this memory is the
support for 16 FIFO queues with automatic get and put operations, very useful
to create transmission requests for a transmission driver.

The SRAM and the DRAM are not physically placed internally to the IXP-
2400, but the NP chip provides only the controllers. The SRAM has a lower
latency than the DRAM, but its controller supports up to 64 MB against 1 GB
of the DRAM one. DRAM is usually used for storing the packets, while SRAM
is reserved for the packet metadata, that are smaller but need to be accessed
more frequently than packets themselves.

The last notable component is the Media Switch Fabric (MSF), that is
an interface to transfer packets to/from the external MAC devices. Inside the
IXP2400, the MSF can access directly the DRAM, resulting in high performance
in storing/retrieving packets, while the external interface can be configured to
operate in the UTOPIA, POS-PHY, SPI3 or CSIX modalities.

Finally, we can mention the hash unit, the PCI unit (used to provide a
communication interface towards a standard external PCI bus) and the Control
and status register Access Proxy (CAP), for the management of the registers
used in the inter-process communication.

In our environment the IXP2400 is mounted on a Radisys ENP-2611 devel-
opment board, that includes three optical Gigabit Ethernet ports (for fast-path
data plane traffic), SRAM e DRAM sockets, a PCI connector (to access the
IXP2400 SRAM and DRAM modules) and a further FastEthernet port for “di-
rect” communications with the XScale processor.

A more detailed knowledge of the architectures of the IXP2400 and the
Radisys development board is useless for the purpose of the paper. On the con-
trary, it is interesting to analyse how a standard packet processing phase takes
place in the fast-path of the Network Processor.

Figure 2 shows a standard fast-path structure: packets are received from one
Ethernet interface by a RX driver, passed to the Microengines (and eventually
to the XScale) for the required processing and finally delivered to the TX driver
for transmission over the physical line. The events that occur inside the Network
Processor during this path crossing are the following:

1. A packet is received from the physical interface and delivered to the MSF.

2. The MSF buffers the packet and it notifies the RX driver, running on a
MicroEngine.

3. The RX driver commands the MSF to transfer the buffered packet in the
DRAM; then it creates a metadata structure for that packet, which is in-
serted in the SRAM. An identificator of the packet is put in a specific ring
queue of the scratchpad, for successive processing.

4. A Microengine thread gets the packet identificators (queued from the RX
driver) and starts the packet processing phase. The operations that occur on
the packet are application-specific and they may range from a simple routing
between ports to more advanced features, such as firewalling, natting, etc;
these operations can be carried out by a single thread or by multiple threads
(each of them should perform a simple task), and sometime by the XScale.
The latter is usually involved very rarely (e.g., it processes the routing update
packet exchanged between routers or the control information directed to the
Network Processor), as the presence of an operating system enables more
complex operations, but results in slower execution times. During this phase
the data are stored in the SRAM and both the packet data and metadata
could be modified; finally the packet identifier is inserted in a ring queue for
transmission (again in the scratchpad memory).

5. The transmission driver continuously checks the transmission ring queue,
looking for new identifiers of the packets to be transmitted; each time it
finds a new identifier, it gets the metadata from the SRAM and it instructs
the MSF for transmission.

6. The MSF gets the packet from the DRAM and transfers it to the physical
interface for the transmission.

3 Traffic Generation

In order to generate network traffic, the very basic tasks that we need to real-
ize are the creation and transmission of the packets. The first issue to solve is
the choice of where to locate the functions for creating and then transmitting
the packets; in particular the two alternatives are the Xscale processor, which
offers developers a well known environment and programming language, or the
Microengines, faster for this task but less easily programmable.

In this context we have carried out several tests, in which the same algorithm
(which transmits the same 60' bytes sized packet for a given number of times)
has been implemented as:

1. a kernel space application running on XScale, which has been developed by
using the Resource Manager? library;

! The actual packet size is 64 bytes, but the last 4 bytes are the CRC computed and
appended by the PM3386 MAC device located on the Radisys board.

2 Resource Manager is part of Intel IXA Portability Framework; although the IXA is
not supported by the Radisys ENP-2611, in this case we succeeded in using part of
it for our code.

Table 1. Comparative results for different generation methods.

Generation method |Average pps’rate

From XScale - kernel mode 468 kpps

From XScale - user mode 658 kpps

From Microengine 842 kpps

2. a user space application running on XScale, which uses the “mmaped” mem-
ory to access hardware features;
3. a microcode application running on a Microengine.

In the first and second case the algorithm has been implemented as C code
and compiled by using the available GCC compiler with all the optimizations
enabled. The effort required to develop a kernel module is greater then that
required to build a user space application. However, given the availability of
the Resource Manager library, the overall readability of code results enhanced
with respect to the direct mapped memory usage in the user space application.
On the other hand the Resource Manager library is specifically engineered for
control plane tasks, thus it is not optimized to handle the transmission of packets
efficiently.

For the third approach we have chosen to implement the algorithm in microC
language, which is certainly easier than microengine assembly, while it preserves
the same potential strength. In this case we were faced with a new programming
model and payed extra time to get a base skill for it. Indeed, the results (Table
1) were not fulfilling the expectations and the attempts to tune the code did not
give effective performance gains.

The main difference between generation from XScale (in both ways) and
from Microengines is that in the first case we write a packet in DRAM for each
transmission, while in the second case we always use the packets already present
in the DRAM: actually, the high latency times of this kind of memory prevent
the XScale code to keep up with higher packet generation rates.

For our purpose, it is more important to send similar packets at high rates
rather than sending potentially completely different packets at low rates. Thus,
we choose to have a set of packets (in the simplest case only one) always present
in memory and to use Microengines to transmit each time one of the available
packets. With this approach we can reach the maximum physical rate for a single
port: 1.488 kpps, which for a packet size of 64 bytes is equivalent to 1 Gbps.

Obviously, transmitting the same packet can be of limited interest (especially
for what regards header field contents, such as the source/destination addresses
and the TOS); moreover, to store a great number of packets differing only for
a few fields (or some combination of them) is not a clever solution. Thus, we
introduced the concept of packet template to indicate a common structure of

3 Packets per second

packet with a few fields that can be assigned dynamically at each transmission
(according to some rules or some predefined sets of values), while the others have
a fixed value.

We can make the concept of packet template clearer with an example. Sup-
pose we want to generate a stream of UDP packets. Now suppose that we assign
a fixed value to the source IP address and leave the destination IP address un-
specified, since we have a list of possible destination addresses. Without the
template mechanism we would create a duplicate of the same packet for each
destination IP address; instead, with the template mechanism, only one packet
is buffered and the list of possible destination IP addresses has to be passed to
the packet generator software. The same software, at run time, will put one of
those addresses in the packet’s destination IP address field. In this way, a lot of
memory has been saved and can be used for other packet templates.

The great benefit of this model is that we can reach the highest transmission
rate while preserving all the flexibility required for a network traffic generator.
The disadvantage is that all packet templates need to be available in memory
before the generation can start.

This implies that the available physical memory represents an upper bound
to the number of usable packet templates, but this is not a great issue, since the
size of DRAM memory is large enough to store an amount of packet templates
adequate for the characterization of many different traffic streams (the actual
number of packets depends on their size).

4 The PktGen Framework

The IXP2400 architecture is well suited to be used to create a network traffic
generator framework, including both a packet generator engine and a flexible
and intuitive configuration interface. We have realized a software tool including
three main components (see Fig. 3):

Abyss HTTP
Server

LIBI1

s
PME Hardware \7PM
Abstraction Device
Library driver

ouwdg pPusdyy| soudg o8

XSecal

MicroEngines

Fig. 3. Software architecture of PktGen.

— the packet generator, an application written in microC and running on the
MicroEngines, whose main task is the generation of packets with predefined
statistical characteristics; using multiple instances of the application it is
possible to simultaneously generate a set of traffic streams with homogeneous
or heterogeneous characteristics;

— the PktGen core controller, an application running on the XScale, with the
goal to initialize and control the packet generators on the MEs, including
the packet templates to be used;

— agraphical interface, HTML based and accessible by a standard web browser,
used to easily configure the packet generator parameters.

At present PktGen is able to generate two kinds of traffic, which we consider
very significant in testing IP-devices; they can be identified as Constant Bit Rate
(CBR) and Best Effort (BE) or bursty streams.

For the BE streams we use a bursty model in which packets are generated in
random-sized bursts with random inter-arrival times. The statistics of the two
random variables can be modified quite simply, by passing the related proba-
bility density functions to PktGen; in our tests, we have used an exponential
density function for both the inter-arrival times and the burst sizes. We think to
introduce more kinds of traffic in the future; the structure of PktGen is flexible
enough to perform this task in a simple and quick manner.

The Packet Generator The packet generator is a microC code compiled to run
on a single MicroEngine in 4-threads mode. This means that actually there are 4
instances of packet generators concurrently executing on the same MicroEngine.
Multiple instances of packet generators can run on more MicroEngines without
conflicting with one another; in our configuration 5 MicroEngines are reserved
for the packet generation task, thus we are free to simultaneously use up to 20
packet stream generators. Indeed, up to 7 MicroEngines can be used for packet
generators; one ME must be reserved to the TX driver.

This PktGen component has been engineered to efficiently handle the gen-
eration of packets for both CBR and BE traffic models. Independently of the
traffic model, the packet generator provides a setup and an operational interface
controlled by the core component. The references to packet templates are for-
warded to the packet generator through the setup interface, while the operational
interface is used to control the generator state (running, stopped).

The two main tasks of the packet generators are the insertion of the variable
fields in packet templates and the generation of random variables for statistical
traffic characterization (inter-arrival times and burst sizes). At present, we have
chosen to work with 4 variable fields in the packet template: Source and Destina-
tion IP addresses, TOS value and Total Length. Indeed, there is a fifth dynamic
field, the Header Checksum, but it is defined indirectly by the values of the other
fields. Moreover, each of the four instances running on the same MicroEngine is
able to store up to 160 packet template references: thus, we can obtain a great
number of packet patterns that can differ, for example, for payload contents
(protocol type and data).

To enable statistical traffic characterization, a hardware uniform pseudo-
random number generator is used in conjunction with a set of off-line samples
for an arbitrary probability distribution function (that are evaluated by the core
controller at setup time, as explained in the following) to dynamically generate
values for a given probability density function.

The Core Controller The core controller component of PktGen running on
the XScale processor is built in C language. As shown in Fig. 3, this component
is located on top of the software stack that starts from the Linux kernel. The
two major sub-components are the ME Controller and Random Number Ser-
vices. The former allows the PktGen Core Controller to start, stop and setup
packet generators, by encapsulating all the hardware details (features coming
from kernel modules as ME Hardware Abstraction Library, PM3386 and SPI-3
device drivers) and by interfacing with the user space libraries provided with the
IXP2400 (libizp and libenp2611, see Fig. 3). The latter is dedicated to handle
all the mathematics involved in computing the samples for a given probability
density function that are passed to packet generators and used at run time to
give a statistical characterization to each traffic stream.

The flexibility of changing the probability density function is one of the main
features of PktGen; however, the lack of a floating point unit and the scarceness
of memory make the random number generation one of the most critical issues of
the entire framework. For this reason a few more words on this topic are needed.

By using the graphical interface the user can specify the analytical formula
of any desired density function; the core controller can compute the distribution
function (by means of the libmatheval [18] and gsi* [19] libraries) used to find a
set of values with the inversion method [20]. Such values are first converted into
an integer representation (despite the lack of the floating point unit the XScale
can work with this kind of numbers by means of software libraries, but the MEs
cannot) and then passed to the packet generator that randomly picks up one of
them with a uniform distribution.

The set of values representative of the desired probability density function
must be stored in the SRAM memory, because the latency of the DRAM is too
high. Unfortunately, the SRAM on the Radisys board is only 8 MB; thus we
cannot store a great number of probability samples; the user can choose to use
256 or 64K samples (corresponding to one or two byte per sample).

Clearly, the integer conversion and the use of a limited number of samples (up
to 64K) introduce a precision loss in the final traffic statistical characterization;
we are still investigating the effects on the traffic generation and looking for
techniques to minimize the errors introduced.

The Graphical Interface A simple, yet powerful, WEB-based interface is
provided to facilitate the use of PktGen. This interface allows the user to create

4 Gnu Scientific Library

Fig. 4. Testbed 1: Measuring the maximum performance of PktGen.

a different configuration for each desired traffic profile, to save the configuration
for later reuse and to run simulations.

To ensure fast code development and maintenability we have used the Abyss
HTTP server to provide the graphical interface, while to conform to standard
file formats used by many existent tools we have adopted an XML coding of the
configuration files.

5 Results

The main result of our activity is PktGen itself: it is a proof that our initial
objectives were feasible and we succeeded in achieving them. As a matter of
fact, we were able to fully saturate all the three Gigabit interfaces of the Radisys
board.

Nonetheless, we are interested in a thorough evaluation of the performance
of our tool, expecially for what concerns precision in generation (conformance of
packet flows to the statistical description); most of these tests are planned for
the immediate future, but some of them have been already carried out and can
give an idea of the potentialities of the framework.

The main difficulties we have met concern our lack of a measurement powerful
enough testing our generator. The PC architecture cannot sustain the packet rate
from PktGen and thus no software tools can be used as meters; indeed, we would
need hardware devices that are currently out of the project’s budget.

Thus, we have carried on only a few simple measurements on PktGen per-
formance, and to do this we have written a simple packet meter in microC to
run it on one MicroEngine. This tool can measure the mean packet rate for any
kind of traffic and the jitter for CBR traffic only.

Our measurement tests have been devoted to two main issues: the first was
to evaluate the PktGen maximum performance (see Fig. 4), and the second was
to compare PktGen with a software tool running on a high-end PC (Fig. 5).

The PktGen maximum performance has been evaluated by means of the
testbed shown in Fig. 4, where PktGen runs on one Network Processor and the
other is used as the meter. In the worst case of minimum packet size (64 bytes),
as reported in Fig. 6, we were able to generate a maximum Constant Bit Rate
traffic of 1488.096 kpps, corresponding to 1 Gbps, with a high level of precision:
the maximum measured jitter is below 2% of packet delay interarrival time in
the CBR stream.

Fig. 5. Testbed 2: Comparison with generation from UDPGen.

1488100 — 2.0 : ’ :
PktGen (NP) —— PktGen (NP) ——
g
g 1488098 S sl
g 5
€ 1488096] .
B E 10
> 1488094 3
g 3
= 1488092 § %
=
1488090 e 00 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
(a) Measured generation rate over (b) Delay variations (jitters) at
60 s. peak rate.

Fig. 6. Maximum performance of PktGen.

In the second testbed, we compared PktGen with a well-known software tool,
namely UDPGen. The latter is used to transmit UDP packets and thus is quite
similar to our application, which, however, works at the IP layer. We can see
from Fig. 7 how PktGen overcomes UDPGen in terms of precision for what
concerns both mean rate and jitter. Again, tests have been carried out for CBR
traffic in the worst case of 64 byte packet size. Finally, it is worth noting that
this analysis is limited to a maximum mean rate of 814 kpps, because this is
the peak rate obtainable with UDPGen (whereas PktGen can reach about 1488
kpps).

6 Conclusions and Future Work

We have shown that high-performance traffic generation with a Network Pro-
cessor (in particular with the Intel IXP2400) is possible.

The main result of our activity, namely PktGen, is an open source framework
written mostly in C and is easily customizable by everyone; also the microcode

0.016

PktGen (NP) —— 20 | PktGen (NP) —— |
I 0.014 udpgen (PC) = udpgen (PC)
S 0012 | 5
2 S 15}
3 0010 | c
2 3]
T 0.008 | £
S E ol
B 0.006 | 3
2 0004 z
g - g ST
= 0.002 | =
0. . o . . . b .
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
Theoretical rate [kpps] Theoretical rate [kpps]

(a) Error of measured rate vs de- (b) Jitter at different desired rates.
sired rate.

Fig. 7. Comparison between PktGen (running on the Network Processor) and UDPGen
(running on a high-end PC) with Constant Bit Rate traffic.

used in the MicroEngines is quite intuitive and simple to learn. PktGen is also
able to fully saturate the three Gigabit interfaces of the development board (the
ENP-2611), reaching a maximum aggregate packet generation rate of about 4464
kpps (3 Gbps).

We can therefore conclude that our aim is completely achieved: we have
demonstrated how it is possible to build an open source, customizable, high-
speed and precise packet generator without specific hardware; the cost is less
expensive than that of a professional device (the Radisys ENP-2611 costs about
$ 5000).

We consider this only a first important step in this field: in fact, we think
that more work has to be done in this direction.

First of all we have planned to extend the PktGen functionalities to include
also a packet meter, able to collect detailed and precise information on network
traffic streams (mean rate, jitter, packet classification, etc.); this is necessary to
have a counterpart to the generator, with the same noteworthy characteristics
(open source, low cost, high performance and precision).

The second important goal is to port PktGen to a more performing architec-
ture, for example to the IXP 2800, in order to realize a more and more powerful
traffic generator.

Other minor evolutions are foreseen, such as the introduction of additional
traffic shapes in PktGen, the comparison with professional devices and its uti-
lization in our research activities on Quality of Service, high-speed networks,
and Open Router architecture [21].

7

Acknoledgements

We would like to thanks Intel for its support to our work. Intel gave us the two
Radisys ENP-2611 development board with IXP2400 Network Processor that
we have used for the development of PktGen and have funded our research in
the last year.

References

10.

11.

12.

13.

14.

15.

16.

17.

Bradner, S., McQuaid, J. Benchmarking methodology for network in-
terconnect devices. RFC 2544, IETF (1999) Available online, URL:
http://www.ietf.org/rfc/rfc2544.txt.

Mandeville, R., Perser, J.: Benchmarking methodology for LAN
switching devices. RFC 2889, IETF (2000) Available online, URL:
http://www.ietf.org/rfc/rfc2889.txt.

Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K.: Iperf. Available online,
URL: http://dast.nlanr.net/Projects/Iperf/ (2005)

Jones, R., Choy, K., et al: Netperf. Available online, URL:
http://www.netperf.org/ (2005)

Sommers, J., Barford, P.: Self-configuring network traffic generation. In: Pro-
ceedings of the 4th ACM SIGCOMM Conference on Internet Measurement 2004,
Portland, OR - USA, IMT 04 (2004)

Rousskov, A., Wessels, D.: Web Polygraph. Available online, URL:
http://www.web-polygraph.org/ (2004)

Turner, A.: Tcpreplay. Available online, URL: http://tcpreplay.sourceforge.net/

(2005)

Caldera Technologies, C.: LANforge-FIRE. Available online, URL:
http://www.candelatech.com/ (2005)

Cisco Systems, C.: IOS netflow feature. Available online, URL:

http://www.cisco.com/en/US /tech/tk812/tsd_technology_support_protocol_-
home.html (2005)

Anritsu, C.: IP/Ethernet analyser, Model: MD1231A. Available online, URL:
http://www.eu.anritsu.com/products/default.php?p=97&model=MD1231A
(2005)

Smartbits: AX/400. Available online, URL: http://www.netcomsystems.com/
(2005)

Comer, D.E.: Network Systems Design using Network Processors - Agere version.
Pearson Prentice Hall, Upper Saddle River, New Jersey - USA (2005)

University of Kentucky, L.f. A.N.: IXPKTGEN project. Available online. URL:
http://protocols.netlab.uky.edu/ esp/pktgen/ (2004)

Wind River, C.: Wind River Operating Systems. Available online, URL:
http://www.windriver.com/products/device_technologies/os/ (2005)

Montavista: Montavista Linux Preview kit. Available online, URL:
http://www.mvista.com/previewkit /index.html (2004)

Montavista: Montavista Linux Professional Edition. Available online, URL:
http://www.mvista.com/products/pro/ (2004)

Buytenhek, L.: Port of Fedora for XScale processor”. Available online, URL:
http://skrybele.wantstofly.org/ (2005)

18.

19.

20.

21.

GNU: Libmatheval library. Available online, URL:
http://www.gnu.org/software/libmatheval/ (2005)

GNU: Gsl library. Available online, URL: http://www.gnu.org/software/gsl/
(2005)

L’Ecuyer, P. In: Random Number Generation. Handbook of Computational Statis-
tics. Springer-Verlag (2004) pp. 35-70

Bolla, R., Bruschi, R.: A high-end linux based open router for IP QoS networks:
tuning and performance analysis with internal (profiling) and external measure-
ment tools of the packet forwarding capabilities. In: Proc. of the 3rd International
Workshop on Internet Performance, Simulation, Monitoring and Measurements
(IPS MoMe 2005), Warsaw - Poland, Institute of Telecommunications, Warsaw
University of Technology (2005)

