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Abstract
The operational challenges posed in enterprise net-

works present an appealing opportunity for automated
orchestration by way of Software-Defined Networking
(SDN). The primary challenge to SDN adoption in the
enterprise is the deployment problem: How to deploy
and operate a network consisting of both legacy and SDN
switches, while benefiting from simplified management
and enhanced flexibility of SDN.

This paper presents the design and implementation of
Panopticon, an architecture for operating networks that
combine legacy and SDN switches. Panopticon exposes
an abstraction of a logical SDN in a partially upgraded
legacy network, where SDN benefits can extend over the
entire network. We demonstrate the feasibility and eval-
uate the efficiency of our approach through both testbed
experiments with hardware switches and through simula-
tion on real enterprise campus network topologies entail-
ing over 1500 devices. Our results suggest that when as
few as 10% of distribution switches support SDN, most
of an enterprise network can be operated as a single SDN
while meeting key resource constraints.

1 Introduction
Software-Defined Networking (SDN) has the potential
to provide a principled solution to both simplify man-
agement and enhance flexibility of the network. SDN
is a paradigm that offers a programmatic, logically-
centralized interface for specifying the intended network
behavior. Through this interface, a software program acts
as a network controller by configuring forwarding rules
on switches and reacting to topology and traffic changes.

While commercial SDN deployment started within
data-centers [19] and the WAN [11], the roots of today’s
SDN arguably go back to the policy management needs
of enterprise networks [4, 5]. In this paper, we focus on
mid to large enterprise networks, i.e., those serving hun-
dreds to thousands of users, whose infrastructure is phys-
ically located at a locally-confined site. We choose this

environment due to its complexity as well as the practical
benefits that SDN network orchestration promises.

Enterprises stand to benefit from SDN on many dif-
ferent levels, including: (i) network policy can be de-
clared over high-level names and enforced dynamically
at fine levels of granularity [4, 8, 22], (ii) policy can dic-
tate the paths over which traffic is directed, facilitating
middlebox enforcement [28] and enabling greater net-
work visibility, (iii) policy properties can be verified for
correctness [15, 16], and (iv) policy changes can be ac-
complished with strong consistency properties, eliminat-
ing the chances of transient policy violations [30].

Existing enterprises that wish to leverage SDN how-
ever, face the problem of how to deploy it. SDN is not a
“drop-in” replacement for the existing network: SDN re-
defines the traditional, device-centric management inter-
face and requires the presence of programmable switches
in the data plane. Consequently, the migration to SDN
creates new opportunities as well as notable challenges:
Realizing the benefits. In the enterprise, the bene-
fits of SDN should be realized as of the first deployed
switch. Consider the example of Google’s software-
defined WAN [11], which required years to fully de-
ploy, only to achieve benefits after a complete overhaul
of their switching hardware. For enterprises, it is undesir-
able, and we argue, unnecessary to completely overhaul
the network infrastructure before realizing benefits from
SDN. An earlier return on investment makes SDN more
appealing for adoption.
Eliminating disruption while building confidence.
Network operators must be able to incrementally deploy
SDN technology in order to build confidence in its reli-
ability and familiarity with its operation. Without such
confidence, it is risky and undesirable to replace all pro-
duction control protocols with an SDN control plane
as a single “flag-day” event, even if existing deployed
switches already support SDN programmability. To in-
crease its chances for successful adoption, any network
control technology, including SDN, should allow for a
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small initial investment in a deployment that can be grad-
ually widened to encompass more and more of the net-
work infrastructure and traffic.
Respecting budget and constraints. Rather than a
green field, network upgrade starts with the existing de-
ployment and is typically a staged process—budgets are
constrained, and only a part of the network can be up-
graded at a time.

To address these challenges, we present Panopticon,
a novel architecture for realizing an SDN control plane
in a network that combines legacy switches and routers
with SDN switches that can be incrementally deployed.
We call such networks transitional networks. Panopticon
abstracts the transitional network into a logical SDN, ex-
tending SDN capabilities potentially over the entire net-
work. As an abstraction layer, Panopticon is responsible
for hiding the legacy devices and acting as a “network
hypervisor” that maps the logical SDN abstraction to the
underlying hardware. In doing so, Panopticon overcomes
key limitations of current approaches for transitional net-
works, which we now briefly review.

1.1 Current Transitional Networks
We begin with the “dual-stack” approach to transitional
or “hybrid” SDN, shown in Figure 1a, where the flow-
space is partitioned into several disjoint slices and traf-
fic is assigned to either SDN or legacy processing [21].
To guarantee that an SDN policy applies to any arbitrary
traffic source or destination in the network, the source or
destination must reside at an SDN switch. Traffic within
a flow-space not handled by SDN forwarding and traf-
fic that never traverses an SDN switch may evade policy
enforcement, making a single SDN policy difficult to re-
alize over the entire network.

In summary, this mode’s prime limitation is that it does
not rigorously address how to realize the SDN control
plane in a partial SDN deployment scenario, nor how
to operate the resulting mixture of legacy and SDN de-
vices as an SDN. It thus requires a contiguous deploy-
ment of hybrid programmable switches to ensure SDN
policy compliance when arbitrary sources and destina-
tions must be policy-enforced.

The second approach (Figure 1b) involves deploying
SDN at the network access edge [6]. This mode has the
benefit of enabling full control over the access policy and
the introduction of new network functionality at the edge,
e.g., network virtualization [19]. Unlike a data-center
environment where the network edge may terminate at
the VM hypervisor, the enterprise network edge termi-
nates at an access switch. At the edge of an enterprise
network, to introduce new functionalities not accommo-
dated by existing hardware involves replacing thousands
of access switches. This mode of SDN deployment also
limits the ability to apply policy to forwarding decisions
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Figure 1: Current transitional network approaches vs. Pan-
opticon: (a) Dual-stack ignores legacy and SDN integra-
tion. (b) Full edge SDN deployment enables end-to-end
control. (c) Panopticon partially-deployed SDN yields an
interface that acts like a full SDN deployment.

within the network core (e.g., load balancing, waypoint
routing).

1.2 Panopticon
Panopticon realizes an SDN control plane for incremen-
tally deployable software-defined networks. Our main
insight is that the benefits of SDN to enterprise networks
can be realized for every source-destination path that in-
cludes at least one SDN switch. Thus, we do not man-
date a full SDN switch deployment—a small subset of all
switches may suffice. Conceptually, a single SDN switch
traversed by each path is sufficient to enforce end-to-end
network policy (e.g., access control). Moreover, traffic
which traverses two or more SDN switches may be con-
trolled at finer levels of granularity enabling further cus-
tomized forwarding (e.g., traffic load-balancing).

Based on this insight, we devise a mechanism
called the Solitary Confinement Tree (SCT), which
uses VLANs to ensure that traffic destined to operator-
selected switchports on legacy devices passes through at
least one SDN switch. Combining mechanisms readily
available in legacy switches, SCTs correspond to a span-
ning tree connecting each of these switchports to SDN
switches, overcoming VLAN scalability limitations.

Just as many enterprise networks regularly divert traf-
fic to traverse a VLAN gateway or a middlebox, a natu-
ral consequence of redirecting traffic to SDN switches is
an increase in certain path lengths and link utilizations.
As we discuss later (§4), deployment planning requires
careful consideration to mind forwarding state capaci-
ties and to avoid introducing performance bottlenecks.
Consequently, Panopticon presents operators with var-
ious resource-performance trade-offs, e.g., between the
size and fashion of the partial SDN deployment, and the
consequences for the traffic.

As opposed to the dual-stack approach, Panopticon
(Figure 1c) abstracts away the partial and heteroge-
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neous deployment to yield a logical SDN. As we rea-
son later (§ 2.4), many SDN control paradigms can be
achieved in a logical SDN. Panopticon enables the ex-
pression of any end-to-end policy, as though the network
were one big, virtual switch. Routing and path-level pol-
icy, e.g., traffic engineering can be expressed too [2],
however the abstract network view is reduced to just the
deployed SDN switches. As more of the switches are
upgraded to support SDN, more fine-grained path-level
policies can be expressed.

In summary, we make the following contributions:

1. We design a network architecture for realizing an
SDN control plane in a transitional network (§ 2),
including a scalable mechanism for extending SDN
capabilities to legacy devices.

2. We demonstrate the system-level feasibility of our
approach with a prototype (§ 3).

3. We conduct a simulation-driven feasibility study
and a traffic performance emulation study using
real enterprise network topologies (with over 1500
switches) and traffic traces (§ 4).

2 Panopticon SDN Architecture
This section presents the Panopticon architecture, which
abstracts a transitional network, where not every switch
supports SDN, into a logical SDN. The goal is to en-
able an SDN programming interface, for defining net-
work policy, which can be extended beyond the SDN
switches to ports on legacy switches as well.

Our architecture relies on certain assumptions under-
lying the operational objectives within enterprise net-
works. To verify these, we conducted five in-person in-
terviews with operators from both large (≥10,000 users)
and medium (≥500 users) enterprise networks and later,
solicited 60 responses to open-answer survey questions
from a wider audience of network operators [20].

Based on our discussions with network operators, and
in conjunction with several design guidelines (e.g., see
[7, 13]), we make the following assumptions about mid
to large enterprise networks and hardware capabilities.
Enterprise network hardware consists primarily of Eth-
ernet bridges, namely, switches that implement standard
L2 mechanisms (i.e., MAC-based learning and forward-
ing, and STP) and support VLAN (specifically, 802.1Q
and per-VLAN STP). Routers or L3 switches are used
as gateways to route between VLAN-isolated IP subnets.
For our purposes, we assume a L3 switch is also capable
of operating as a L2 switch. In addition, we assume that
enterprises no longer intentionally operate “flood-only”
hub devices for general packet forwarding.

Under these assumptions about legacy enterprise net-
works, Panopticon can realize a broad spectrum of log-
ical SDNs: Panopticon can extend SDN capabilities to
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Figure 2: Transitional network of 8 switches (SDN switches
are shaded): (a) The SCTs (Solitary Confinement Trees) of
every SDNc (SDN-controlled) port overlaid on the physical
topology. (b) Corresponding logical view of all SDNc ports,
connected to SDN switches via pseudo-wires.

potentially every switchport in the network, however not
every port need be included in the logical SDN. We en-
vision an operator may conservatively choose to deploy
Panopticon only in part of the network at first, to build
confidence and reduce up-front capital expenditure, and
then iteratively expand the deployment.

To accommodate iterative expansion of the logical
SDN, we divide the set of switchports in the network into
SDN-controlled (SDNc) ports, that is, those that need to
be exposed to and controlled through the logical SDN
and legacy ports, those that are not. Note that while an
SDNc port is conceptually an access port to the logical
SDN network, it is not necessarily physically located on
an SDN switch (see port A in Figure 2): It may be con-
nected to an end-host or a legacy access switch.

We extend SDN capabilities to legacy switches by en-
suring that all traffic to or from an SDNc port is always
restricted to a safe end-to-end path, that is, a path that
traverses at least one SDN switch. We call this key prop-
erty of our architecture Waypoint Enforcement. The chal-
lenge to guaranteeing Waypoint Enforcement is that we
may rely only on existing mechanisms and features read-
ily available on legacy switches.

2.1 Realizing Waypoint Enforcement
Panopticon uses VLANs to restrict forwarding and guar-
antee Waypoint Enforcement, as these are ubiquitously
available on legacy enterprise switches. To conceptu-
ally illustrate how, we first consider a straightforward,
yet impractical scheme: For each pair of ports which in-
cludes at least one SDNc port, choose one SDN switch as
the waypoint, and compute the (shortest) end-to-end path
that includes the waypoint. Next, assign a unique VLAN
ID to every end-to-end path and configure the legacy
switches accordingly. This ensures that all forwarding
decisions made by every legacy switch only send packets
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along safe paths. However, such a solution is infeasible,
as VLAN ID space is limited to 4096 values, and often
fewer are supported in hardware for simultaneous use.
Such a rigid solution furthermore limits path diversity to
the destination according and cripples fault tolerance.
Solitary Confinement Trees. To realize guaranteed
Waypoint Enforcement in Panopticon, we introduce the
concept of a Solitary Confinement Tree (SCT): a scalable
Waypoint Enforcement mechanism that provides end-to-
end path diversity. We first introduce the concepts of cell
block and frontier. Intuitively, the role of a cell block is
to divide the network into isolated islands where VLAN
IDs can be reused. The border of a cell block consists of
SDN switches and is henceforth called the frontier.

Definition 1 (Cell Blocks). Given a transitional network
G, Cell Blocks CB(G) is defined as the set of connected
components of the network obtained after removing from
G the SDN switches and their incident links.

Definition 2 (Frontier). Given a cell block c ∈ CB(G),
we define the Frontier F (c) as the subset of SDN
switches that are adjacent in G to a switch in c.

Intuitively, the solitary confinement tree is a spanning
tree within a cell block, plus its frontier. Each SCT pro-
vides a safe path from an SDNc port π to every SDN
switch in its frontier—or if VLAN resources are scarce,
a subset of its frontier, which we call the active frontier.
A single VLAN ID can then be assigned to each SCT,
which ensures traffic isolation, provides per-destination
path diversity, and allows VLAN ID reuse across cell
blocks. Formally, we define SCT s as:

Definition 3 (Solitary Confinement Tree). Let c(π) be
the cell block to which an SDNc port π belongs. And
let ST(c(π)) denote a spanning tree on c(π). Then, the
Solitary Confinement Tree SCT(π) is the network ob-
tained by augmenting ST(c(π)) with the (active) fron-
tier F (c(π)), together with all links in c(π) connecting
a switch u ∈F (c(π)) with a switch in SCT(π).

Example. Let us consider the example transitional net-
work of eight switches in Figure 2a. In this example,
SCT (A) is the tree that consists of the paths 5→ 1→ 2
and 5→ 3→ 4. Instead note that SCT (B), which corre-
sponds to the path 6→ 2, includes a single SDN switch
because switch 2 is the only SDN switch adjacent to cell
block c(B). Figure 2b shows the corresponding logical
view of the transitional network enabled by having SCTs.
In this logical view, every SDNc port is connected to at
least one frontier SDN switch via a pseudo-wire (realized
by the SCT).

2.2 Packet Forwarding in Panopticon
We now illustrate Panopticon’s basic forwarding behav-
ior (Figure 3). As in any SDN, the control application is
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Figure 3: The forwarding path between A and B goes via
the frontier shared by SCT (A) and SCT (B); the path be-
tween A and C goes via an Inter-Switch Fabric path con-
necting SCT (A) and SCT (C).

responsible for installing the necessary forwarding state
at the SDN switches (e.g., in accordance with the access
policy) and for reacting to topology changes (fault toler-
ance is discussed in § 2.3).

Let us first consider traffic between a pair of SDNc
ports s and t. When a packet from s enters SCT(s), the
legacy switches forward the packet to the frontier based
on MAC-learning, which establishes a symmetric path.
Note that a packet from s may use a different path within
SCT(s) to the frontier for each distinct destination. Once
traffic toward t reaches its designated SDN switch u ∈
F (c(s)), one of two cases arises:
SDN switches act as VLAN gateways. This is the case
when the destination SDNc port t belongs to a cell block
whose frontier F (c(t)) shares at least one switch u with
F (c(s)). Switch u acts as the designated gateway be-
tween SCT(s) and SCT(t), that is, u rewrites the VLAN
tag and places the traffic within SCT(t). For instance, in
the example of Figure 2a, switch 2 acts as the gateway
between ports A, B and C.
Inter-Switch Fabric (ISF). When no SDN switch is
shared, we use an Inter-Switch Fabric (ISF) path: point-
to-point tunnels between SDN switches which can be re-
alized e.g., with VLANs or GRE. In this case, the switch
u chooses one of the available paths to forward the packet
to an SDN switch w ∈ F (c(t)), where w is the desig-
nated switch for the end-to-end path p(s, t). In our ex-
ample of Figure 2a, ISF paths are shown in gray and are
used e.g., for traffic from B or C to E or F , and vice versa.

We next turn to the forwarding behavior of legacy
ports. Again, we distinguish two cases. First, when
the path between two legacy ports only traverses the
legacy network, forwarding is performed according to
the traditional mechanisms and is unaffected by the par-
tial SDN deployment. Policy enforcement and other op-
erational objectives must be implemented through tradi-
tional means, e.g., ACLs. In the second case, anytime a
path between two legacy ports necessarily encounters an
SDN switch, the programmatic forwarding rules at the
switch can be leveraged to police the traffic. This is also
the case for all traffic between any pair of an SDNc and a
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legacy port. In other words, Panopticon always guaran-
tees safe paths for packets from or to every SDNc port,
which we formally prove in the technical report [20].

2.3 Architecture Discussion
Having described all components of the architecture, we
now discuss certain key properties.
Key SCT properties. Recall that one VLAN ID is
used per SCT and that VLAN IDs can be reused across
Cell Blocks. Limiting the size of the active frontier al-
lows further VLAN ID reuse across fully-disjoint SCTs
within the same cell block. A different path may be used
within the SCT for each distinct destination. SCTs can
be precomputed and automatically installed onto legacy
switches (e.g.via SNMP) however, re-computation is re-
quired when the physical topology changes.
ISF path diversity trade-offs. Within the ISF, there
may be multiple paths between any given pair of SDN
switches. We expect that some applications may require
a minimum number of paths. A minimum of two dis-
joint paths is necessary, to tolerate single link failures. If
the ISF is realized using a VLAN-based approach, each
path consumes a VLAN ID from every cell block it tra-
verses. Alternative mechanisms, e.g., IP encapsulation or
network address translation can be used to implement the
ISF depending on SDN and legacy hardware capabilities.
Coping with broadcast traffic. Broadcast traffic can
be a scalability concern. We take advantage of the fact
that each SCT limits the broadcast domain size, and we
rely on SDN capabilities to enable in-network ARP and
DHCP proxies as shown in [17]. We focus on these im-
portant bootstrapping protocols as it was empirically ob-
served that broadcast traffic in enterprise networks is pri-
marily contributed by ARP and DHCP [17, 26]. Last,
we note that in the general case, if broadcast traffic must
be supported, the overhead that Panopticon introduces
is proportional to the number of SCTs in a cell block,
which, at worst, grows linearly with the number of SDNc
ports of a cell block.
Tolerating failures. We decompose fault tolerance into
three orthogonal aspects. First, within an SCT, Panopti-
con relies on standard STP mechanisms to survive link
failures, although to do so, there must exist sufficient
physical link redundancy in the SCT. The greater the
physical connectivity underlying the SCT, the higher the
fault tolerance. Additionally, the coordination between
SDN controller and legacy STP mechanisms allows for
more flexible fail-over behavior than STP alone. When
an SDN switch at the frontier F of an SCT notices an
STP re-convergence, we can adapt the forwarding deci-
sions at F ’s SDN switches to restore connectivity. A
similar scheme can address link failures within the ISF.

Second, when SDN switches or their incident links
fail, the SDN controller recomputes the forwarding state

and installs the necessary flow table entries. Further-
more, precomputed fail-over behavior can be leveraged
as of OpenFlow version 1.1 [29].

Third, the SDN control platform must be robust and
available. In this respect, previous work [18] demon-
strates that well-known distributed systems techniques
can effectively achieve this goal.

2.4 Realizing SDN Benefits
By now, we have described how Panopticon shifts the ac-
tive network management burden away from the legacy
devices and onto the SDN control plane. This conceptu-
ally reduces the network to a logical SDN as presented
in Figure 2b. Consequently, we want to be able to reason
about what types of policy can be specified and which ap-
plications can be realized in such a transitional network.

Panopticon exposes an SDN abstraction of the under-
lying partial SDN deployment. In principle, any control
application that runs on a full SDN can be supported in
Panopticon since, from the perspective of the application,
the network appears as though it is a full SDN deploy-
ment consisting of just the SDN switches. In practice,
there are a small number of caveats.
SDNc ports in the logical SDN. An SDNc port in Pan-
opticon is not necessarily physically located at an SDN
switch, and it may be attached to multiple SDN switches.
Accordingly, the SDN controller must take into account
that each SDNc port may be reached from its frontier
via multiple paths. Furthermore, visibility into how re-
sources are shared on legacy links can not be guaranteed.
Logical SDN vs. full SDN. As an abstraction layer,
Panopticon is responsible for hiding the legacy devices
and acts as a “network hypervisor” that maps the logical
SDN abstraction to the underlying hardware (similar to
the concept of network objects in Pyretic [22]). How-
ever, because the global network view is reduced to the
set of SDN switches, applications are limited to control
the forwarding behavior based on the logical SDN. This
should not be viewed strictly as a limitation, as it may be
desirable to further abstract the entire network as a sin-
gle virtual switch over which to define high-level poli-
cies (e.g., access policy) and have the controller platform
manage the placement of rules on physical switches [14].
Nevertheless, the transitional network stands to benefit in
terms of management simplification and enhanced flexi-
bility as we next illustrate.
More manageable networks. Arguably, as control over
isolation and connectivity is crucial in the enterprise con-
text we consider, the primary application of SDN is pol-
icy enforcement. As in Ethane [4], Panopticon enables
operators to define a single network-wide policy, and the
controller enforces it dynamically by allowing or pre-
venting communication upon seeing the first packet of
a flow as it tries to cross an SDN switch.
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The big switch [14] abstraction enables the network
to support Ethernet’s plug-and-play semantics of flat ad-
dressing and, as such, simplifies the handling of host
mobility. This can be observed from the fact that our
architecture is an instance of the fabric abstraction [6].
The ISF represents the network core and SCTs realize
the edge. At the boundary between the SCTs and ISF,
the SDN switches enable the decoupling of the respec-
tive network layers, while ensuring scalability through
efficient routing in the ISF.
More flexible networks. The controller maintains the
global network view and performs route computation for
permitted flows. This provides the opportunity to effi-
ciently enforce middlebox-specific traffic steering within
the SDN-based policy enforcement layer, as in SIM-
PLE [28]. Integrating middleboxes in Panopticon re-
quires that middleboxes are connected to SDNc ports.

A logical SDN also enables the realization of strong
consistency semantics for policy updates [30]. Although
legacy switches do not participate in the consistent net-
work update, at the same time, they do not themselves
express network policy—as that forwarding state resides
exclusively on SDN switches.

Putting it all together, Panopticon is the first architec-
ture to realize an approach for operating a transitional
network as though it were a fully deployed SDN, yield-
ing benefits for the entire network, not just the devices
that support SDN programmability.

3 Panopticon Prototype
To cross-check certain assumptions on which Panopti-
con is built, this section describes our implementation
and experimental evaluation of a Panopticon prototype.
The primary goal of our prototype is to demonstrate fea-
sibility for legacy switch interaction–namely, the ability
to leverage path diversity within each SCT, and respond
to failure events and other behaviors within the SCT.

Our prototype is implemented upon the POX Open-
Flow controller platform [1] and comprises two modules:
path computation and legacy switch interaction.
Path computation. At the level of the logical SDN,
our path computation module is straightforward: it re-
acts to the first packet of every flow and, if the flow
is permitted, it uses the global network view to deter-
mine the shortest path to the destination. Consequently,
it installs the corresponding forwarding rules. Our im-
plementation supports two flow definitions: (1) the ag-
gregate of packets between a pair of MAC addresses,
and (2) the micro-flow, i.e., IP 5-tuple. As each SDNc
port may be reached over multiple paths from the SDN
switches on its frontier, our prototype takes into account
the behavior of STP within the SCT (monitored by the
component below) to select the least-cost path based on
source-destination MAC pair.

Legacy switch interaction. The Spanning Tree Proto-
col (STP) or a variant such as Rapid STP, is commonly
used to achieve loop freedom within L2 domains and we
interact with STP in two ways. First, within each SCT,
we configure a per-VLAN spanning tree protocol (e.g.,
Multiple STP) rooted at the switch hosting the SCT’s
SDNc port. We install forwarding rules at each SDN
switch to redirect STP traffic to the controller, which in-
terprets STP messages to learn the path cost between any
switch on the frontier and the SCT’s SDNc port, but does
not reply with any STP messages. Collectively, this be-
havior guarantees that each SCT is loop free. When this
component notices an STP re-convergence, it notifies the
path computation module, which in turn adapts the for-
warding decisions at SDN switches to restore connectiv-
ity as necessary. Second, to ensure network-wide loop
freedom for traffic from legacy ports, SDN switches be-
have as ordinary STP participants. When supported, this
is achieved by configuring STP on the switches them-
selves. Otherwise, Panopticon can run a functionally
equivalent implementation of STP.

3.1 Application: Consistent Updates
To showcase the “logical SDN” programming interface
exposed by Panopticon, we have implemented per-packet
consistency [30] for transitional networks. Our applica-
tion allows an operator to specify updates to the link state
of the network, while ensuring that the safety property of
per-packet consistency applies over the entire network,
even to legacy switches.

To implement this application, we modify the path
computation to assign a unique configuration version
number to every shortest path between SDNc ports. This
version number is used to classify packets according to
either the current or the new configuration.

When the transition from current to new configura-
tion begins, the controller starts updating all the SDN
switches along the shortest path for both the forward and
backward traffic. This update includes installing a new
forwarding rule and using the IP TOS header field (i.e., in
a monotonically increasing fashion) to encode or match
the version number. The rules for the old configuration
with the previous version number, if there are any, are
left in place and intact. This procedure guarantees that
any individual packet traversing the network sees only
the “old” or “new” policy, but never both.

Once all the rules for the new configuration are in
place at every switch, gratuitous ARP messages are sent
over to the legacy switches along the new path so that
the traffic is re-routed. After a operator-defined grace-
period, when the last in-flight packet labeled with the
“old” tag leaves the network, the controller deletes the
old configuration rules from all the SDN switches, and
the process completes.

6



3.2 Evaluation
Our prototype is deployed on a network of hard-
ware switches comprising two NEC IP8800 OpenFlow
switches and one Cisco C3550XL, three Cisco C2960G,
and two HP 5406zl MAC-learning Ethernet switches, in-
terconnected as in Figure 2a. To emulate 6 hosts (A
through F), we use an 8-core server with an 8-port 1Gbps
Ethernet interface which connects to each SDNc port on
the legacy switches depicted in the figure. Two remain-
ing server ports connect to the OpenFlow switches for an
out-of-band control channel.

We conduct a first experiment to demonstrate how
Panopticon recovers from an STP re-convergence in an
SCT, and adapts the network forwarding state accord-
ingly. We systematically emulate 4 link failure scenarios
between links (5,1) and (1,2) by disabling the respective
source ports of each directed link. Host A initiates an
iperf session over switch 2 to host D. After 10 seconds
into the experiment, a link failure is induced, triggering
an STP re-convergence. The resulting BDPU updates
are observed by the controller and connectivity to host
D is restored over switch 4. Figure 4a shows the elapsed
time between the last received segment and first retrans-
mitted packet over 10 repetitions and demonstrates how
Panopticon quickly restores reachability after the failure
event. Interestingly, we observe that Panopticon reacts
faster to link changes detected via STP reconvergence
(e.g., sw5 to sw1) than to link changes at the OpenFlow
switches themselves (sw1 to sw2), since our particular
switches appear to briefly, internally delay sending those
event notifications.

We next conduct a second experiment to explore how
the SCT impacts the performance of a BitTorrent file
transfer conducted among the hosts attached to SDNc
ports. In this experiment, we begin by seeding a 100MB
file at one host (A through F), in an iterative fashion.
All other hosts are then initialized to begin simultane-
ously downloading the file from the seeder and amongst
one another. We repeat each transfer 10 times, and mea-
sure the time for each host to complete the transfer. We
then compare each time with an identical transfer in a L2
spanning tree topology. Figure 4b, illustrates that some
of the hosts (i.e., A and D) are able to leverage the multi-
path forwarding of their SCTs to finish sooner. Others,
e.g., B and C experience longer transfer times, as their
traffic shares the same link to their frontier switch.

4 Incremental SDN Deployment
Panopticon makes no assumptions about the number of
SDN switches or their locations in a partial SDN deploy-
ment. However, under practical resource constraints, an
arbitrary deployment may make the feasibility of the log-
ical SDN abstraction untenable, as the flow table capac-
ities at the SDN switches and the availability of VLAN
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Figure 4: Testbed experiments: (a) Panopticon recovers
from link failure within seconds. (b) Panopticon enables
path diversity but also increases load on some links.

IDs on legacy switches are limited.
Beyond feasibility, the SDN deployment also influ-

ences network performance. By ensuring Waypoint En-
forcement, SDN switches may become choke points that
increase path lengths and link loads, in some cases be-
yond admissible values. Deployment planning therefore
becomes a necessity.

4.1 Deployment Planning
Deciding the number and location of SDN switches
to deploy can be viewed as an optimization problem
wherein the objective is to yield a good trade-off between
performance and costs subject to feasibility. We envision
that a tool with configurable parameters and optimization
algorithms may assist operators in planning the deploy-
ment by answering questions such as “What is the mini-
mal number of SDN switches needed to support all ports
as SDNc ports?” or “Which switches should be first up-
graded to SDN to reduce bottleneck link loads?”

In a companion technical report of this paper [20], we
present a general integer programming algorithm to com-
pute a partial SDN deployment optimized for different
objective functions and resource constraints. This al-
gorithm can assist operators in upgrading the network,
starting from a legacy network or one that is already par-
tially upgraded.

We observe however that specific objectives and con-
straints for planning an SDN deployment are likely to
depend on practical contextual factors such as hardware
life-cycle management, support contracts and SLAs,
long-term demand evolution and more. Unfortunately,
these factors are rather qualitative, vary across environ-
ments, and are hard to generalize.

Instead, we reason more generally about how deploy-
ment choices influence feasibility and performance of
our approach. To navigate the deployment problem space
without the need to account for all contextual factors, we
focus on a few general properties of desirable solutions:
(i) Waypoint Enforcement: Every path to or from an
SDNc port must traverse at least one SDN switch.
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Site Access/Dist/Core max/avg/min degree
LARGE 1296 / 412 / 3 53 / 2.58 / 1
EMULATED 489 / 77 / 1 30 / 6.3 / 1
MEDIUM – / 54 / 3 19 / 1.05 / 1
SMALL – / 14 / 2 15 / 3 / 2

Table 1: Evaluated network topology characteristics.

(ii) Feasible: SDN switches must have sufficient for-
warding state to support all traffic policies they must
enforce. VLAN requirements to realize SCTs must be
within limits.
(iii) Efficient: The resulting traffic flow allocations
should be efficient. We reason about efficiency using two
metrics: The first metric is the path stretch, which we de-
fine for a given path (s, t) as the ratio between the length
of the path under Waypoint Enforcement and the length
of the shortest path in the underlying network. The sec-
ond metric is the expected maximum load on any link.

4.2 Simulation-assisted Study
To explore feasibility and efficiency of Panopticon, we
simulate different partial SDN deployment scenarios us-
ing real network topologies under different resource con-
straints and traffic conditions. These simulations let us
(i) evaluate the feasibility space of our architecture, (ii)
explore the extent to which SDN control extends to the
entire network, and (iii) understand the impact of partial
SDN deployment on link utilization and path stretch.

4.2.1 Methodology

To simulate Panopticon deployment, we first choose net-
work topologies with associated traffic estimates and re-
source constraints.
Topologies. Detailed topological information, includ-
ing device-level configurations, link capacities, and end-
host placements is difficult to obtain for sizeable net-
works: operators are reluctant to share these details due
to privacy concerns. Hence, we leverage several pub-
licly available enterprise network topologies [34,38] and
the topology of a private, local large-scale campus net-
work. The topologies range from SMALL, comprising
just the enterprise network backbone, to a MEDIUM net-
work with 54 distribution switches, to a comprehensive
large-scale campus topology derived from anonymized
device-level configurations of 1711 L2 and L3 switches.
Summary information on the topologies is given in Ta-
ble 1. Every link in each topology is annotated with
its respective capacity. We treat port-channels (bundled
links), as a single link of its aggregate capacity.

Simulation results on the SMALL and MEDIUM net-
work gave us early confidence in our approach, however
their limited size does not clearly demonstrate the most
interesting design trade-offs. Thus, we only present sim-
ulation results for LARGE.

Focus on distribution switches. In our approach,
we distinguish between access switches, distribution
switches, and core switches. Access switches are iden-
tified both topologically, as well as from device-level
configuration metadata. Core switches are identified as
multi-chassis devices, running a L3 routing protocol.
Due to their topological location, SCT construction to
core switches becomes challenging, thus, we focus on
distribution switches (in the following referred to as the
candidate set for the upgrade). In case of the LARGE
network, this candidate set has cardinality 412 of which,
95 devices are identified as L3 switches (running OSPF
or EIGRP). Within this distribution network, we rea-
son about legacy distribution-layer switchports as can-
didates to realize SDNc ports, subject to Waypoint En-
forcement. Each distribution-layer switchport leads to
an individual access-layer switch to which end-hosts are
attached. Thus, we identify 1296 candidate SDNc ports.
Unless otherwise noted, we construct SCTs connecting
each SDNc port to its full frontier.
Traffic estimates. We use a methodology similar to
that applied in SEATTLE [17] to generate a traffic ma-
trix based on packet-level traces from an enterprise cam-
pus network, the Lawrence Berkeley National Labora-
tory (LBNL) [26]. The LBNL dataset contains more
than 100 hours of anonymized packet level traces of ac-
tivity of several thousands of internal hosts. The traces
were collected by sampling all internal switchports pe-
riodically. We aggregate the recorded traffic according
to source-destination pairs and for each sample, we esti-
mate the load imposed on the network. We note that the
data contains sources from 22 subnets.

To project the load onto our topologies, we use the
subnet information from the traces to partition each of
our topologies into subnets as well. Each of these sub-
nets contains at least one distribution switch. In addition,
we pick one node as the Internet gateway. We associate
traffic from each subnet of the LBNL network in random
round-robin fashion to candidate SDNc ports. All traffic
within the LBNL network is aggregated to produce the
intra-network traffic matrix. All destinations outside of
the LBNL network are assumed to be reachable via the
Internet gateway and thus mapped to the chosen gateway
node. By running 10 different random port assignments
for every set of parameters, we generate different traffic
matrices, which we use in our simulations. Still, before
using a traffic matrix we ensure that the topology is able
to support it. For this purpose we project the load on the
topology using shortest path routes, and scale it conser-
vatively, such that the most utilized gigabit link is at 50%
of its nominal link capacity.
Resource constraints. Although the maximum num-
ber of VLAN IDs expressible in 802.1Q is 4096, most
mid- to high-end enterprise network switches support
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Figure 5: Percentage of SDNc ports as a function of deployed SDN switches, under different VLAN availability. When more
VLANs are supported by legacy devices, more SDNc ports can be realized with fewer SDN switches.

512-1024 VLAN IDs for simultaneous use. Accordingly,
we focus on simulating scenarios where legacy switches
support at most 256, 512, and 1024 simultaneous VLAN
IDs. While first generation OpenFlow capable switches
were limited to around 1K flow table entries many cur-
rent switches readily support from 10K to 100K entries
for exact and wild-card matching. Bleeding edge devices
support up to 1M flow table entries [25]. To narrow our
parameter space, we fix the flow table capacity of our
SDN switches to 100k entries, and vary the average num-
ber of rules required to realize policy for a single SDNc
port from 10 to 20. We furthermore ensure that every
SDN switch maintains at all times both policy and ba-
sic forwarding state (one entry per SDNc port reached
through that switch) to ensure all-to-all reachability in
the absence of any policy. We note, this is a conserva-
tive setting; by comparison, if flow table entries were
kept only in the temporal presence of their respective,
active source-destination traffic in the LBNL dataset, the
maximum number of entries would never exceed 1,200
flows/s [4].

4.2.2 Switch Deployment Strategies

Given our topology and traffic estimates, we next ex-
plore how SDN switch deployment influences feasibil-
ity and performance. We study this through a simple yet
effective deployment heuristic inspired by classical tech-
niques such as Facility Location, called VOL.

VOL iteratively selects one legacy switch to be re-
placed at a time, in decreasing order of switch egress
traffic volume. SDNc candidate ports are then accom-
modated in the following greedy fashion: SDNc ports
from the previous iteration are accommodated first (we
initially iterate over a random permutation of SDNc can-
didates). An SCT is constructed to the active frontier,
whose size, chosen by the designer, defines a feasibility-
efficiency trade-off we investigate later. If an SCT can be
created, designated SDN switches from the active fron-
tier are selected for each destination port, and flow table
entries are allocated. If flow table policy is accommo-
dated, the traffic matrix is consulted and traffic is pro-
jected from the candidate port to every destination along

each waypoint-enforced path. When no link exceeds its
maximum utilization (or safety threshold value), the port
is considered SDNc. The remaining SDNc candidates
are then tried and thereafter, the next SDN switch can-
didate is deployed and the process repeats. As VOL is a
greedy algorithm and does not backtrack, it may termi-
nate prior to satisfying all SDNc candidates, despite the
existence of a feasible solution.

For comparison, we make use of RAND, which itera-
tively picks a legacy switch uniformly at random, subject
to VLAN, flow table, and link utilization constraint satis-
faction. RAND allows us to evaluate the sensitivity of the
solution to the parameters we consider and the potential
for sophisticated optimizations to outperform naı̈ve ap-
proaches. We repeat every RAND experiment with 10
different random seeds.

4.2.3 SDNc Ports vs. Deployment Strategy

As Panopticon is designed to enable a broad spectrum
of partial SDN deployments, we begin our evaluation by
asking, “As a deployment grows, what fraction of can-
didate SDNc ports can be accommodated, under varying
resource constraints?”
Scenario 1: To answer this question, we choose
three values for the number of maximum simultane-
ous VLANs supported on any legacy switch (256, 512,
1024). We choose a policy requirement of 10 flow ta-
ble entries on average for every (SDNc, destination port)
pair as defined in the traffic matrix, so as to avoid a pol-
icy state bottleneck. We reason that policy state resource
bottlenecks can be avoided by the operator by defining
worst-case policy state needs in advance and then de-
ploying SDN switches with suitable flow table capac-
ity. We then compare our two deployment strategies
VOL and RAND for different numbers of deployed SDN
switches, as depicted by Figure 5 in which repeated ex-
perimental runs are aggregated into boxplots.
Observations 1: Figure 5 illustrates that the ability to
accommodate more SDNc ports with a small number of
SDN switches depends largely on the number of VLAN
IDs supported for use by the legacy hardware. Under fa-
vorable conditions with 1024 VLANs, 100% SDNc port
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Figure 6: SDN deployment vs. max link utilization, 90th percentile path stretch and relative link util increase. Feasible
100% SDNc port coverage can be realized with 33 SDN switches, with acceptable link utilization and path stretch.

coverage can be had for as few as 33 SDN switches.
VLAN ID availability is necessary to construct SCTs and
in Figure 5a we see that when legacy switches support at
most 256 VLANs, over 140 SDN switches must be de-
ployed before achieving full SDNc port coverage. Fig-
ure 5b shows the importance of choosing where to de-
ploy SDN switches, as the earliest 100% SDNc feasible
solution requires 20 additional SDN switch over VOL.

4.2.4 How Will Panopticon Affect Traffic?

We next ask: “As more SDNc ports are accommodated,
what will Waypoint Enforcement do to the traffic?”
Scenario 2: To answer this question, we evaluate the
metrics path stretch and link utilization as we increase
the SDN deployment, subject to two different VLAN re-
source constraints. As in Scenario 1, we assume aver-
age policy requirement of 10 flow table entries for every
(SDNc, destination port) pair. Recall that our methodol-
ogy scales up the baseline traffic matrix to ensure that the
most utilized link in the original network is 50% utilized.

Figure 6 plots the relationship between the percent-
age of accommodated SDNc ports, the maximum link
utilization, and the 90th percentile link utilization path
stretch. Median values are shown for all metrics, across
the repeated experiments. The feasible regions of each
full “logical SDN” deployment with respect to all re-
source constraints are indicated by the vertical bar.
Observations 2: Figure 6a indicates that with 512
VLANs usable in the legacy network, a full logical
SDN becomes feasible with 95 switches where the most
utilized link reaches 55% of its capacity. The 90th
percentile path stretch hovers around 2.1. As further
switches are upgraded, the stretch and relative link uti-
lization continue to improve. A more optimistic case is
depicted in Figure 6c where full logical SDN is achieved
with 33 switches. However, given fewer SDN waypoints,
the maximum link utilization is higher at 60%. The key
takeaway from this plot is that given conservative base
link utilization, the additional burden imposed by SDN
Waypoint Enforcement is small in many deployments.

4.2.5 Efficient 100% SDNc Port Feasibility

As we point out in our architecture section, Panopti-
con allows the designer to make efficiency trade-offs,
where a full logical SDN can be realized with fewer SDN
switches, at the expense of higher link utilization and
path stretch. The parameter that governs this trade-off
is the active frontier size. We next look to Figures 6a
and 6b, which illustrate how this trade-off plays out.

Recall from Figure 6a that for a legacy network sup-
porting 512 VLANs, a full logical SDN becomes feasi-
ble with about 95 SDN switches when using all avail-
able frontier switches. However, each path to the frontier
switches consumes a VLAN, which blocks other SDNc
candidate ports later on. By limiting the active frontier
to at most 2 switches, Figure 6b illustrates that a feasi-
ble solution can be achieved with 56 switches. The path
stretch notably increases to a factor of 2.4, compared to
less than 2 when a larger frontier is used. This trade-off
underlines the flexibility of Panopticon: Operators can
make design choices tailored to their individual network
performance requirements.

4.3 Traffic Emulation Study
To compliment our simulation-based approach and fur-
ther investigate the consequences of Panopticon on traf-
fic, we conduct a series of emulation-based experiments
on portions of a real enterprise network topology. These
experiments (i) provide insights into the consequences
of Waypoint Enforcement on TCP flow performance, and
(ii) let us explore the extent to which the deployment size
impacts TCP flow performance when every access port is
operated as an SDNc port.
Setup. We use Mininet [10] to emulate a Panopticon
deployment. Due to the challenges of emulating a large
network [10], we scale down key aspects of the network
characteristics of the emulation environment. We (i) use
a smaller topology, EMULATED (see Table 1), which is
a 567-node sub-graph of the LARGE topology obtained
by pruning the graph along subnet boundaries, (ii) scale
down the link capacities by 2 orders of magnitude, and
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min median avg max
Flow Sizes (in MB) 0.00005 6.91 9.94 101.70
Path Stretch A 1.0 1.0 1.002 1.67
Path Stretch B 1.0 1.0 1.16 3.0
Path Stretch C 1.0 1.33 1.25 3.0

Table 2: Traffic parameter and path stretch statistics.

(iii) correspondingly reduce the TCP MSS to 536 bytes
to reduce packet sizes in concert with the reduced link
capacities. This allows us to avoid resource bottlenecks
that otherwise interfere with traffic generation and packet
forwarding, thus influencing measured TCP throughput.

We run our experiments on a 64-core at 2.6GHz AMD
Opteron 6276 system with 512GB of RAM running the
3.5.0-45-generic #68 Ubuntu Linux kernel using Open-
VSwitch version 2.1.90. Baseline throughput tests indi-
cate that our system is capable of both generating and
forwarding traffic of 489 simultaneous TCP connections
in excess of 34Gbps, sufficiently saturating the aggregate
emulated link capacity of every traffic sender in our ex-
periments. We note that traffic in the subsequent experi-
ments is generated on the system-under-test itself.

Thus, our emulation experiments involve 489 SDNc
ports located at “access switches” at which traffic is sent
into and received from the network. The distribution net-
work consists of 77 devices of which 28 devices are iden-
tified as IP router gateways that partition the network in
Ethernet broadcast domains. Within each broadcast do-
main, we introduce a single spanning tree to break for-
warding loops.
Traffic. We apply a traffic workload to our emulated
network based on (i) a traffic matrix, defined over the
489 SDNc ports, and (ii) a synthetically generated flow
size distribution where individual TCP flow sizes are ob-
tained from a Weibull distribution with shape and scaling
factor of 1, given in Table 2.

We re-use the traffic matrix used in the simulations to
define the set of communicating source-destination pairs
of SDNc ports in the network. For system scalability rea-
sons, we limit the number of source-destination pairs to
1024, selected randomly from the traffic matrix. For each
pair of SDNc ports, we define a sequence of TCP connec-
tions to be established in iterative fashion, whose transfer
sizes are determined by the aforementioned Weibull dis-
tribution. The total traffic volume exchanged between
each pair is limited to 100MB. When the experiment be-
gins, every source-destination pair, in parallel begins to
iterate through its respective connection sequence. Once
every traffic source has reached its 100MB limit, the ex-
periment stops.
Scenarios. We consider three deployment scenarios in
which we evaluate the effects of Panopticon on TCP traf-
fic: Scenario A in which 28 switches out of the 77 distri-
bution switches are operated as SDN switches, and sce-
narios B and C, which narrow down the number of SDN
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Figure 7: In both scenarios A and B (28 and 10 SDN
switches), the median throughput over all experiments re-
mains close to the performance of the legacy network.

switches in A to 10 and 5 SDN switches, respectively.
SDN switch locations are selected at random based on lo-
cation of IP routers, identified from the topology dataset.
Results. In each scenario, we compare TCP flow
throughput in the Panopticon deployment versus the
original network topology (which uses shortest-path IP
routes with minimum cost spanning trees). Table 2 lists
path stretch statistics for each scenario, namely, the ra-
tio of SDN (waypoint-enforced) to legacy path length for
every source-destination pair in the network.

Figure 7 illustrates the impact of Waypoint Enforce-
ment on TCP performance in the three scenarios. The
first observation we make is that in scenario A, when the
28 IP routers are replaced with SDN switches, the impact
on median TCP throughput is negligible. This is per-
haps expected, as all traffic across subnets must traverse
some IP router in the legacy network, regardless. Some
flows experience congestion due to Waypoint Enforce-
ment. Other flows actually experience a performance in-
crease due to the availability of multiple alternate paths
in Panopticon. As the SDN deployment shrinks to more
conservative sizes in scenarios B and C, the effects of
Waypoint Enforcement becomes more prominent, sup-
porting our observed simulation results.

4.4 Discussion
Scalability. As the number of SDNc candidates in-
creases, the resource demands grow as well. We believe
that one or two SDNc ports for every access switch how-
ever is a reasonable starting point for most partial SDN
deployments. Even at one SDNc per access switch, a
reasonable level of policy granularity, as end-hosts con-
nected to the same physical access switch are often con-
sidered to be part of the same administrative unit as
far as policy-specification is concerned. Should finer-
grained SDNc port allocation be necessary, features such
as Cisco’s protected switchports (or similar ones from
other vendors) may be leveraged to extend Waypoint En-
forcement to individual access-switch ports without the
need for additional SCTs.

11



Why fully deploy SDN in enterprise networks? Per-
haps many enterprise networks do not need to fully de-
ploy SDN. As our results indicate, it is a question of
the trade-offs between performance requirements and re-
source constraint satisfaction. Our Panopticon evaluation
suggests that partial deployment may in-fact be the right
mid-term approach for some enterprise networks.

5 Related Work
Our approach toward a scalable, incrementally deploy-
able network architecture that integrates legacy and SDN
switches to expose the abstraction of a logical SDN both
builds upon and complements previous research.
SDN. In the enterprise, SANE [5] and Ethane [4]
propose architectures to enforce centrally-defined, fine-
grained network policy. Ethane overcomes SANE [5]’s
deployment challenges by enabling legacy device com-
patibility. Ethane’s integration with the existing deploy-
ment is however, ad-hoc and the behavior of legacy de-
vices falls out of Ethane’s control. Panopticon by con-
trast, can guarantee SDN policy enforcement through
principled interaction with legacy devices to forward
traffic along safe paths. Google’s transition to a software-
defined WAN involved an overhaul of their entire switch-
ing hardware to improve network performance [11]. In
contrast to their goals, we take an explicit stance at tran-
sitioning to an SDN control plane without the need for
a complete hardware upgrade. Considering a partial
SDN deployment, Agarwal et al. [2] demonstrate effec-
tive traffic engineering of traffic that crosses at least one
SDN switch. Panopticon is an architecture that enforces
this condition for all SDNc ports. The work on software-
controlled routing protocols [36] presents mechanisms
to enable an SDN controller to indirectly program L3
routers by carefully crafting routing messages. We view
this work as complementary to ours in that it could be
useful to extend Waypoint Enforcement to IP routers.
Enterprise network design and architecture. Scal-
ability issues in large enterprise networks are typically
addressed by building a network out of several (V)LANs
interconnected via L3 routers [7, 13]. TRILL [27] is
an IETF Standard for so-called RBridges that combine
bridges and routers. Although TRILL can be deployed
incrementally, we are not aware of any work regarding
its use for policy enforcement in enterprise networks.

Sun et al. [33] and Sung et al. [34] propose a system-
atic redesign of enterprise networks using parsimonious
VLAN allocation to ensure reachability and provide iso-
lation. These works focus on legacy networks only. The
SEATTLE [17] network architecture uses a one-hop DHT
host location lookup service to scale large enterprise Eth-
ernet networks. However, such clean-slate approach is
not applicable for the transitional networks we consider.
Scalable data-center network architectures. There

is a wealth of recent work towards improving data-
center network scalability. To name a few, FatTree [3],
VL2 [9], PortLand [24], NetLord [23], PAST [32] and
Jellyfish [31], offer scalable alternatives to classic data-
center architectures at lower costs. As clean-slate archi-
tectures, these approaches are less applicable to transi-
tional enterprise networks, which exhibit less homoge-
neous structure and grow “organically” over time.
Evolvable inter-networking. The question of how
to evolve or run a transitional network, predates SDN
and has been discussed in many contexts, including Ac-
tive Networks [37]. Generally, changes in the network
layer typically pose a strain to network evolution, which
lead to overlay approaches being pursued (e.g., [12,35]).
In this sense, the concept of Waypoint Enforcement is
grounded on previous experience.

6 Conclusion
SDN promises to ease network management through
principled network orchestration. However, it is nearly
impossible to fully upgrade an existing legacy network
to an SDN in a single operation.

Accordingly, we have developed Panopticon, an en-
terprise network architecture realizing the benefits of a
logical SDN control plane from a transitional network
which combines legacy devices and SDN switches. Our
evaluation highlights that our approach can deeply ex-
tend SDN capabilities into existing legacy networks. By
upgrading between 30 to 40 of the hundreds of distribu-
tion switches in a large enterprise network, it is possible
to realize the network as an SDN, without violating rea-
sonable resource constraints. Our results motivate the
argument, that partial SDN deployment may indeed be
an appropriate mid-term operational strategy for enter-
prise networks. Our simulation source code is available
at http://panoptisim.badpacket.in.
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