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Abstract

Over the last few years, peer-to-peer (P2P) file sharing

applications have evolved to become a major traffic source

in the Internet. The ability to quantify their impact on the

network, as a consequence of both signaling and download

traffic, is fundamental to a number of network operations,

including traffic engineering, capacity planning, quality of

service, forecasting for long-term provisioning, etc.

We present here a measurement study on the characteris-

tics of the traffic associated with different P2P applications.

Our aim is to offer useful insight into the nature of P2P

traffic, which we consider a step toward building P2P traf-

fic aggregates generators in simulative environments. We

show that P2P traffic can be divided into two distinguished

behavioral profiles, which, independently of the application

protocol, present significant differences in the average and

standard deviation of four measurements: arrival times, du-

rations, volumes and average packet sizes of P2P conversa-

tions. These profiles well represent the typical behavior of

signaling and download traffic. Based on our findings, we

argue that, if such distinction is not taken into account, the

statistical measurements needed to model P2P traffic aggre-

gates would result biased, and potentially bring to mislead-

ing results.

1 Introduction

Over the last few years, peer-to-peer (P2P) file sharing

applications have evolved to become a major traffic source

in the Internet. Plus, the successful P2P paradigm is now

used by an increasing number of systems to offer efficient

and scalable services ranging from content distribution, net-

work TV, voice-over-IP to software updates. An important

consequence related to the appearance of P2P systems is

related to the high traffic volumes caused by these applica-

tions. The ability to quantify their impact on the network,

as a consequence of both signaling and download traffic, is

fundamental to a number of network operations, including

traffic engineering, capacity planning, quality of service,

forecasting for long-term provisioning, etc.

We present here a measurement study on the characteris-

tics of the traffic associated with different P2P applications.

We identify P2P traffic in our data sets by using a payload

classifier based on pattern matching. We develop a char-

acterization of this traffic that focuses towards its behav-

ior as it is experienced at the network layer. In this work,

which grounds up on our previous work in [1], we define

a measurement, Content Transfer Index, to distinguish two

classes of behavior for P2P traffic: the download and the

signaling traffic profile. Finally, we show that these two pro-

files present relevant differences in the average and standard

deviation of four measurements: arrival times, durations,

volumes and average packet sizes. Based on our findings,

we argue that the statistical measurements needed to model

P2P traffic aggregates would result biased, and potentially

bring to misleading results, if its two-faced nature is not

taken into account. We believe this work gives a sincere

contribution towards building P2P traffic aggregates gener-

ators in simulative environments.

Our work is similar to [10], but it is different in that:

(i) we don’t limit our study to the eDonkey protocol, and

(ii) we identify the P2P traffic in our data sets by using

a payload classifier, rather than the application port num-

bers. As their results are comparable with the ones re-

ported in this paper, we consider promising our approach,

which doesn’t rely on the protocol opcode information to

distinguish download from signaling traffic. In another re-

lated work [2], the authors have analyzed BitTorrent traffic

characteristics, using an instrumented version of the official

client. They suggest that conversation durations and sizes

can be reasonably well approximated by the lognormal dis-

tribution, which is also confirmed in our results. A comple-

mentary work is [3], where the authors model and charac-

terize BitTorrent-like systems by using measurements at the

application layer.

The remainder of this paper is organized as follows. In

Section 2, we describe how we identified P2P traffic in our

data sets. In Section 3, we present our characterization of



P2P traffic. The results of this characterization applied to a

number of measurements are shown in Section 4. Finally,

Section 5 concludes the paper.

2 Data collection

We analyzed traces contemporarily collected for 46 con-

secutive hours, at two different links of the university’s cam-

pus network. For both traces, we captured every packet seen

on each direction of the links along with its full payload

and we removed the link layer header (i.e., Ethernet). To

capture the first trace (DEPT), the monitor was located on

the link connecting our department to the campus network.

The second trace (GENUA) was captured by monitoring the

campus connection to the Internet. We ignore the TCP con-

nections for which we don’t observe the triple handshake.

Table 1 lists general workload dimensions of our data

sets: counts of distinct source and destination IP addresses,

the number of flows, packets, and bytes observed. In this

study we define flows as unidirectional, while we use con-

versation to denote bidirectional traffic, i.e., a conversation

is composed by two flows: traffic from A to B, and traf-

fic from B to A. Each flow is always identified by two end

points consisting of {IP, port} pairs and the transport level

protocol. In the case of the UDP, we set a timeout of 60

seconds to determine the end of a conversation.

We used an open source tool, namely ipp2p [4], to clas-

sify the P2P traffic in our traces. It identifies P2P flows via

pattern matching, i.e., searching the payload content of the

packets for known protocol signatures. This classifier acts

every time a packet is received, and marks a conversation

as identified as soon as a known pattern is found in at least

one of its directions. For scalability reasons, only up to the

first N packets of each conversation are tested. N is a user

configurable parameter, that we set to 10 as done in [9]. Be-

cause this tool is not available as an off-line, trace process-

ing tool (it is originally meant to be deployed in the Linux’s

iptables firewall for traffic shaping purposes), we ported its

source code to the Click Modular Router [7], which we used

as a viable analysis framework [6]. We validated our ver-

sion of the tool against its original version by comparing the

results obtained from the classification of our data sets. The

outputs were indeed the same. Finally, we collated the clas-

sification results obtained with our ipp2p classifier with the

output of the payload classifier used to validate BLINC [5],

obtaining very close results on our data sets.

In this paper, we present results obtained using the

GENUA data set; the results for the DEPT data set are sim-

ilar and not presented here due to lack of space.

Table 2 presents the volumes of P2P traffic in GENUA

trace, divided by P2P application. The values express the

percentage with respect to the total amount of P2P traffic.

Both the traces are 46 hours long.

Set Src. IP Dst. IP Flows Packets Bytes

DEPT 376.7 K 328.3 K 16.8 M 171.3 M 103.3 G

GENUA 4.2 M 2.5 M 102.0 M 1.4 G 883.0 G

Table 1. General workload dimensions of our

traces

Protocol Flows Packets Bytes Payload

[%] [%] [%] Bytes [%]

eDonkey 83,78 46,19 42,12 41,88

BitTorrent 13,65 37,19 45,72 46,33

DC 0,34 7,50 9,99 10,23

Gnutella 2,21 9,11 2,16 1,56

Table 2. Breakdown by protocol of P2P traffic

in the GENUA data set

In the remainder of the paper we mainly focus on the

traffic generated by eDonkey and BitTorrent, since this con-

stitutes the majority in our campus network1. However, we

also report results about the traffic associated with Gnutella

and DirectConnect.

3 P2P traffic characterization

P2P traffic can be roughly divided into download traffic

and signaling traffic: the first is caused by the transfer of

content, the latter is mainly due to the presence of an overlay

network, and possibly a search service.

A way to accurately differentiate download from sig-

naling traffic would be to implement a protocol analyzer.

Although one can leverage existing tools, e.g. binpac [8],

to build protocol analyzers, this solution has several draw-

backs: (i) it requires specific knowledge of P2P protocols;

(ii) it demands access to the payload of each packet; (iii)
building analyzers for a significant number of protocols is

definitely time consuming. Moreover, it is our desire to

offer a characterization of P2P traffic that focuses towards

its behavior as it is observable at the network level through

simple passive measurements, including volumes of trans-

ferred content, conversations’ arrival times and durations,

and average packet sizes.

In our approach we identify two behavioral classes that

we shall refer to as the download and the signaling traffic

profile. To some extents we’re abusing the terminologies,

as it is possible, though not common, that a download con-

versation can exhibit the typical characteristics of signaling

1P2P traffic is believed to be hazardous for networks, and our campus

network makes no exception. We are aware that a filtering system has been

deployed, realizing traffic shaping for the most common P2P applications.
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(a) eDonkey -TCP
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(b) BitTorrent - TCP
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(c) eDonkey - UDP
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(d) DirectConnect - TCP

Figure 1. Relationships between the conversations, payload bytes and the CTI. The histograms are

plotted with CTI bin size 0.01

traffic2 and vice versa. However, we are mostly interested

in distinguishing the conversations by considering the ac-

tual effects that they pose on the network, treating P2P with

generality, rather then by using an accurate identification of

their role.

We ground our approach on a simple intuition. The idea

is that, during a file download, a peer, on average, gets pack-

ets filled up to the maximum segment size (MSS) and sends

back fewer packets to acknowledge the received data. Even

when the peers are exchanging pieces of a single file with

one another (as realized in BitTorrent), causing balanced

conversations, still, the average payload size tends to reach

the MSS. Conversely, the signaling conversations are char-

acterized by a flatter profile, consisting of a more even count

of exchanged bytes and packets. The accurate identification

of eDonkey conversations3 in our traces supports our intu-

ition.

In order to quantify the differences between these traffic

profiles we formalize a measurement that offers a statisti-

cal characterization of P2P traffic. We define the Content

Transfer Index (CTI) of a conversation C as:

F

f + F
·

P̄

MSS(C)
+

f

f + F
·

p̄

MSS(C)
∈ [0, 1] ,

where F, f are the lengths of the two flows constituting C,

such that f ≤ F . One can use three different flow fea-

2E.g., early truncated downloads are not clearly distinguishable from

signaling conversations.
3As done in [10], we classify eDonkey conversations to be download

if one of its packets contains at least one of the eDonkey protocol opcodes

‘OP SENDINGPART’ or ‘OP COMPRESSEDPART’.

tures to represent its length: the packet count, the count of

payload bytes and the count of headers and payload bytes.

We present here the results obtained by using the count of

payload bytes as the flow length. P̄ and p̄ represent the

average number of payload bytes per packet calculated for

the flow with length F and f respectively. The MSS of the

conversation C is expressed as MSS(C). For the UDP, we

assume that the MSS corresponds to the maximum transfer

unit (MTU) minus the IP and UDP headers’ lengths.

Hence, given a pair of end points {A, B}, the CTI gives

an indication of how the content is transferred. At the op-

posite end of the spectrum there are two distinct traffic pro-

files:

• when the conversation is flatter or balanced (i.e., A and

B exchange an even quantity of content, mainly using

packets whose payload size is far from the MSS), the

CTI’s value tends to zero;

• when the conversation is rich of content which is ei-

ther transferred from a single end point that domi-

nates the conversation (unbalanced), or efficiently ex-

changed between the two end points, the CTI’s value

tends to one.

Figure 1(a), 1(b), 1(c) and 1(d) present a graphical vi-

sualization of the relationships between the conversations,

payload bytes and the CTI of eDonkey TCP, BitTorrent

TCP, eDonkey UDP and DirectConnect TCP conversations

respectively. Each figure shows three overlapping his-

tograms, symbolizing the following figures corresponding

to the same CTI range: the number of conversations, the



summation of the minimum and maximum length flows of

the conversations (denoted with F + f) and the summation

of just the minimum length flows (denoted with f). The

number of conversations is normalized to the total num-

ber of conversations, while both summations of minimum

and maximum length flows, and of just the minimum length

flows are normalized to the total count of payload bytes.

All the graphs but Figure 1(c) clearly show two distinctive

profiles: containing most of the conversations, the signal-

ing profile is having CTI values below 0.2, whereas above

0.2, the download profile is dominated by the payload bytes.

Also note in the signaling profiles that the conversations are

quite balanced.

As expected, the eDonkey UDP conversations, that are

carrying extended searches, generate a graph in which no

conversation has CTI value above 0.2. The same happens

in the graph of Gnutella TCP conversation (that we omit for

the lack of space), as the download traffic of this protocol is

efficiently filtered by the campus border router. Figure 1(d)

contains a drastic example of how the two traffic behave dif-

ferently: almost all the traffic identified as DirectConnect,

accounting for 10.23% of the total P2P traffic, is moved by

just very few conversations (0.02% of the total P2P con-

versations), while the 94% of DirectConnect conversations

transfer an extremely small amount of data.

Throughout the rest of the paper, we divide P2P traffic

into download vs. signaling by using the CTI’s value. In

particular we use a threshold to distinguish the two classes:

a conversation with a CTI’s value above the threshold is

marked as a download conversation, while a value below

the threshold determines a signaling conversation. We set

the threshold to 0.2. This value was already used in our pre-

vious work in [1] which offers a validation of the CTI, and

it is visually derivable from Figure 1.

4 Results

In this section we present the results obtained by measur-

ing arrival times, durations, volumes and average payload

sizes of the download and signaling P2P conversations. For

each measure, we report the measured data along with the

best fitting4 statistical distribution and its parameters. We

considered the following candidate distributions: exponen-

tial, Pareto, lognormal, and Weibull. Note that we present

the parameters in order to offer a numerical comparison of

the empirical data across different protocols and traffic pro-

files. Because these are preliminary results of this work, we

are not suggesting to use them directly in the modeling of

P2P traffic aggregate generators, as this still require a deeper

investigation.

Arrival times. Figure 2 shows the CCDFs of the down-

4By using the nonlinear least-squares method.

load and signaling conversation arrival times, for eDonkey

and BitTorrent TCP traffic. Table 3 lists their average and

standard deviation. In all the four graphs, the best fitting

distribution is Weibull. Its parameters are more comparable

when looking at the same traffic profile rather then the same

protocol. It is clear from Table 3 that measuring the whole

P2P traffic for a given protocol leads to inaccurate values of

the average and standard deviation of conversation arrival

times, as there is a significant difference between the values

measured for download and signaling traffic.

Conversation type Avg. [s] Std. dev. [s]

eDonkey - download 1.76 2.34

eDonkey - signaling 0.11 0.16

eDonkey - all 0.10 0.15

BitTorrent - download 3.00 4.88

BitTorrent - signaling 1.01 1.51

BitTorrent - all 0.75 1.13

Table 3. Average and standard deviation of

the conversation arrival times [s]

Durations. The CCDFs of the download and signaling con-

versation durations are shown in Figure 3, plotted for eDon-

key and BitTorrent TCP traffic. The lognormal is the best

fitting distribution in all the four graphs. Table 4 lists their

average and standard deviation. Interestingly the profiles of

the download conversation durations are quite similar and

the parameters of the fitted lognormals are numerically very

close, while the behavior of signaling traffic is not so simi-

lar. We believe this is mostly due to the absence of a search

service in the BitTorrent system, which is on the contrary

available in the eDonkey network. Once again, both the

graphs and Table 4 indicate that the behavior of download

and signaling traffic is different. Measuring the P2P traf-

fic without distinguishing download from signaling traffic

leads to inaccurate values for the average and standard de-

viation of conversation durations.

Conversation type Avg. [s] Std. dev. [s]

eDonkey - download 276.76 784.79

eDonkey - signaling 51.64 490.36

eDonkey - all 64.56 514.53

BitTorrent - download 749.43 2076.03

BitTorrent - signaling 141.10 1513.28

BitTorrent - all 293.85 1693.15

Table 4. Average and standard deviation of

conversation durations [s]

Data Volumes. Figure 4 reports the CCDFs of the conver-
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(a) eDonkey - download; λ = 1.53; κ = 0.85
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(b) BitTorrent - download ; λ = 2.38; κ = 0.79
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(c) eDonkey - signaling; λ = 0.07; κ = 0.51

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-8

10
-6

10
-4

10
-2

10
0

10
2

C
C

D
F

Arrival time [s]

Weibull
Data

(d) BitTorrent - signaling; λ = 0.82; κ = 0.77

Figure 2. CCDF of the conversation arrival times. κ and λ are the Weibull parameters

sation volumes, plotted for eDonkey and BitTorrent down-

load and signaling traffic. All the profiles are best fitted by

the lognormal distribution. The differences in the parame-

ters well reveal what is already clear in the graphs: down-

load and signaling traffic exhibit different profiles. The

download conversation volumes are very similar for eDon-

key and BitTorrent, while the signaling ones are, on av-

erage, one order of magnitude smaller than the download

conversation volumes for both protocols. Also note that we

identified some download conversations that are transfer-

ring hundreds of megabytes of data.

Average payload sizes. Table 5 presents the average and

standard deviantion of the download and signaling conver-

sation average payload sizes, plotted for eDonkey and Bit-

Torrent TCP traffic. The average payload size of a single

conversation has been calculated as the mean of the average

payload sizes of both flows for a signaling conversation, or

as the maximum length flow’s average payload size in the

case of a download conversation.

Figure 5 present the relationships between the conversa-

tions, volumes and the average payload size for the signal-

ing conversations of eDonkey and BitTorrent. The graphs,

which are realized using the same structure of Figure 1,

show that there is significant difference in terms of the av-

erage payload sizes used in these protocols. In particular,

note that the conversations are more balanced for eDonkey.

We believe this reflects the architectural differences of the

two P2P networks.

However, for both protocols, there is no signaling con-

versation having average payload size greater than 300

bytes.

Conversation type Avg. [bytes] Std. dev. [bytes]

eDonkey - download 894.611 290.37

eDonkey - signaling 30.70 12.63

eDonkey All 55.05 105.22

BitTorrent - download 792.89 257.57

BitTorrent - signaling 41.08 45.51

BitTorrent All 138.83 185.24

Table 5. Average and standard deviation of

the conversation average payload sizes

5 Conclusion

In this paper, we have presented a measurement study

of P2P traffic. We have first applied the Content Transfer

Index to distinguish the traffic into two classes of behavior:

the download and the signaling traffic profile. Based on this

distinction, we have realized a number of measurements and

shown that there are significant differences in their average

and standard deviation from the case where the distinction

is not taken into account. In particular, our measures result

unbiased.

These results indicate that the double-faced nature of

P2P traffic should be taken into account in modeling P2P

traffic aggregates.
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(b) BitTorrent - download; µ = 5.97; σ = 0.93
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(c) eDonkey - signaling; µ = 3.79; σ = 0.07
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(d) BitTorrent - signaling; µ = 1.47; σ = 2.81

Figure 3. CCDF of the conversation durations. µ and σ are the lognormal parameters

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
C

D
F

Payload volume [bytes]

Lognormal
Data

(a) eDonkey - download; µ = 10.35; σ = 1.51
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(b) BitTorrent - download; µ = 10.86; σ = 1.24
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(c) eDonkey - signaling; µ = 6.18; σ = 0.32
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(d) BitTorrent - signaling; µ = 5.73; σ = 1.54

Figure 4. CCDF of the conversation volumes. µ and σ are the lognormal parameters
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