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Abstract
AllReduce is a collective communication pattern commonly used in
Distributed Deep Learning (DDL) and High Performance Comput-
ing (HPC). Sparse AllReduce, which compresses the data transmit-
ted, achieves significant acceleration on specific workloads. How-
ever, compression introduces a non-negligible performance over-
head. Therefore, we propose the OmNICreduce algorithm, an effi-
cient inter-node sparse AllReduce method, as well as its implemen-
tation, OmNICCL. It utilizes Direct Cache Access (DCA) to achieve
zero-overhead lossless compression and employs SmartNICs for
aggregation on the data plane. We demonstrate that our method
can provide up to a 7.24× speedup over conventional dense AllRe-
duce methods under a 100Gbps RoCEv2 network and 1.76-17.37×
performance improvement over state-of-the-art implementations
when performing sparse AllReduce.

CCS Concepts
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1 Introduction
In the HPC area, OpenMP and MPI [1, 11, 35] are the most popular
libraries for intra-node multithreading and inter-node multiprocess-
ing, respectively. A survey [18] shows that almost all MPI programs
rely on collective operations, among which AllReduce is the most
commonly used. In the Machine Learning (ML) area, Parameter
Servers [17, 27] and AllReduce [20] are two common methods to
scale ML workloads across multiple nodes. With the rise of Large
Language Models (LLM) in recent years, many LLM systems are
dedicated to supporting model training at extreme scales [43, 46],
with ReduceScatter or AllReduce being the underlying inter-node
communication primitives. Therefore, it can be said that AllReduce
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is an essential building block for both HPC and ML workloads,
affecting the entire system’s performance.

Over the past three decades, many efforts have been put into
accelerating AllReduce. The current de-facto standard implemen-
tations of AllReduce are MPI [1, 11, 35] and NCCL [31], which
are mainly used for distributed CPU and GPU applications, re-
spectively. They have implemented a series of dense AllReduce
algorithms, including Tree [37] and Ring AllReduce [36], and adap-
tively choose more efficient algorithms based on the topology of
intra- and inter-node connections and input size. They also support
various transport methods, including shared memory, PCIe P2P,
NVLink, TCP, and RDMA.

Hardware acceleration of AllReduce is also a viable approach.
In-Network Aggregation (INA) is a method of AllReduce that uses
additional hardware, typically switches, as aggregators. All workers
usually stream data blocks to aggregators for aggregation, and then
the aggregators broadcast the aggregated blocks to the workers. In
large-scale networks, especially fat-trees, hierarchical AllReduce
can also be performed between switches at different tiers. This
method requires fewer communication hops than Ring AllReduce,
reduces the computation of workers, and may provide greater over-
all bandwidth. Therefore, this method has lower latency, higher
throughput, and better scalability. Previously, this method was
implemented on commodity switches [14, 16, 21], programmable
switches [19, 22, 40], and FPGAs [9, 12, 25, 28].

SmartNICs are a type of programmable network device that has
emerged in recent years. They are equipped with additional proces-
sors, or expose the programming interface of existing NIC cores,
allowing users to execute additional processing logic on the NIC or
support more features. Accelerating collective communication with
SmartNICs is also an active topic. Previous work [35] mainly uti-
lized the feature of SmartNICs to initiate communication on behalf
of hosts, offloading some work on the control plane to SmartNICs,
freeing the CPU from these tasks, thereby reducing the latency of
collectives and improving the overlap ratio of communication and
computation of nonblocking collectives. Unlike INA, these works
did not let SmartNICs handle data on the data plane, mainly con-
sidering the limited performance of SmartNICs, especially memory
bandwidth and CPU performance.

Sparse AllReduce [9, 10, 38, 42] is another potential optimization
opportunity. It reduces the amount of inter-node communication
by compressing the transmitted data, either lossy or lossless. How-
ever, compression itself may also produce a noticeable performance
overhead, especially when adopting the scheme of compressing
first and then transmitting, that is, the network is idle during com-
pression. This often makes sparse AllReduce not only fail to reduce
communication when aggregating dense arrays, but also consume
the same time as dense AllReduce on communication, and consume
more time on compression.
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Therefore, we propose OmNICreduce, an efficient inter-node
sparse INA algorithm, as well as its implementation OmNICCL. It
uses NVIDIA BlueField-2 SmartNICs or CPU servers as aggregators
to perform aggregation on the data plane of a 100Gbps RDMA net-
work, and uses DCA and Kernel Fusion to eliminate memory access
of inlined decompression and aggregation, solving the problem of
insufficient memory bandwidth of SmartNICs. For CPU workers,
it also uses DCA and Kernel Fusion to eliminate memory access
of inlined compression and batching; it uses pipelining to overlap
compression and communication to mask the compression latency;
and it achieves zero-cost lossless compression. For GPU workers, it
uses GPUDirect RDMA (GDR) and Scatter Gather DMA to batch
data blocks, while avoiding frequent GPU-CPU communication.

OmNICreduce and its realization in OmNICCL achieve all of the
following goals:

• For dense input arrays, it provides performance similar to
or better than dense AllReduce libraries. For sparse input
arrays, it provides performance superior to the state-of-the-
art sparse INA.

• It enables SmartNIC-based aggregators to provide perfor-
mance similar to server-based aggregators.

• It supports efficient aggregation of arrays on both CPUs and
GPUs.

We demonstrate that our method, when using BlueField-2 aggre-
gators for AllReduce, achieves up to a 7.24× performance improve-
ment over various MPI implementations for dense CPU arrays. For
dense GPU arrays, it provides performance similar to NCCL. For
sparse arrays, our method outperforms OmniReduce [10], a state-
of-the-art sparse INA implementation, achieving up to 2.96× and
17.37× performance improvements on CPU and GPU, respectively.
We also verify that BlueField-2 aggregators can deliver performance
similar to server-based aggregators.

2 Design
This section presents the design of OmNICreduce, which adopts the
core idea of OmniReduce, as well as its implementation OmNICCL.
The input array is divided, or rather viewed, as a series of blocks
of size 𝑏 that are continuously arranged in memory. These blocks
are categorized into zero blocks and non-zero blocks, where zero
blocks contain only zeros and non-zero blocks contain at least one
non-zero value. Workers only send non-zero blocks to aggrega-
tors, skipping the transmission of zero blocks. This simple lossless
compression method has been proven to accelerate various deep
learning models significantly [10, 42]. We adopt this method mainly
because it is simple enough to be combined with DCA and Kernel
Fusion to achieve zero-cost lossless compression.

2.1 OmNICreduce Algorithm
Figure 1a illustrates the first step of the algorithm, voting, where
workers vote to select the blocks to be aggregated in the next
iteration. Workers first send the indices of the next 𝑑 non-zero
blocks of local input arrays to aggregators. Then, aggregators find
the smallest top-𝑑 indices and return them to workers as global
indices. These global indices of the blocks will be aggregated and
updated in the next iteration.

(1). vote={#0, #2, #4}
(2). next={#0, #2, #3}

Worker 0

[0] [2] …[4]

Worker 1

[2] [3] …[4]
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∑

(1). vote={#2, #3, #4}
(2). next={#0, #2, #3}

(a). Vote for non-zero blocks to aggregate in the next iteration.
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(b). Send non-zero blocks with displacement bitmaps to the aggregator.
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(c). Update workers’ tensors with aggregated blocks.

Tim
e

Figure 1: Overview of the OmNICreduce algorithm. The grey
blocks represent zero blocks, while the non-grey blocks are
non-zero blocks. The text next to the arrows indicates the
messages between the worker and the aggregator. The se-
quence number of the message is indicated by the number
in the text, and the direction of transmission corresponds to
the direction of the arrow with the same color.

Figure 1b shows the second step of the algorithm, batch sending
with compression. Workers receive global indices in the previous
voting step and need to send the non-zero blocks pointed to by
these indices to aggregators. However, the indices may point to zero
blocks on some workers, such as Block #3 on Worker 0, which is a
zero block. Therefore, workers also generate displacement bitmaps,
where each bit of the bitmap represents whether the corresponding
global index points to a zero block that is skipped for transmission.
In the actual implementation, workers reorganize non-zero blocks
as the payload of a single RDMA message for transmission. Ag-
gregators do not record each worker’s vote to save memory, but
rely on the bitmap to decompress the message. Saving memory
consumption is the core of this work, and the reason for doing so
will be explained in Section 2.2.

Figure 1c depicts the third step of the algorithm, updating. In
each iteration, as soon as a worker’s message is received, aggre-
gators immediately add the payload of the message to the partial-
aggregated blocks in memory. When aggregators receive messages
from all workers, the aggregator sends the fully-aggregated blocks
to workers, which then update the corresponding blocks according
to the global indices.

In the actual implementation, the above three steps are carried
out simultaneously. That is, the message sent by the worker to
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Figure 2: Parallelism method of OmNICCL. Coro stands for
coroutine. Each coroutine is an instance of the algorithm,
and coroutines with the same number perform aggregation
among themselves. The diagram below shows the way the
array is partitioned, where coroutines are responsible for
aggregating blocks of the same color.

the aggregator contains the local indices of the next iteration, the
displacement bitmap of the current iteration, and the non-zero
blocks. The message sent by the aggregator to the worker contains
the global indices of the next iteration and the aggregated blocks.
Among them, the bitmap is embedded in the RDMA immediate,
and the blocks and indices are combined as the payload.

2.1.1 Parallelism. To maximize the throughput of the system, we
extend it to multiple aggregators and hardware threads. We assume
that in the real world, each worker is equipped with a SmartNIC as
an aggregator. As shown in Figure 2, OmNICCL splits the array into
multiple sub-arrays and performs AllReduce on the sub-arrays in
parallel, i.e., it splits an AllReduce task into multiple sub-tasks. The
sub-tasks are dispatched to different software coroutines. Each soft-
ware coroutine runs an instance of the algorithm, and the coroutine
of the worker talks to the corresponding coroutine of the aggregator.
Multiple coroutines run on each hardware thread. This paralleliza-
tion method can increase the total achievable network bandwidth
of the aggregators and overlap computation and communication.

2.1.2 Block Merge. OmNICreduce is designed so as to aggregate
multiple blocks at once, a feature we call Block Merge. It can be
noted that a single RDMA message from the workers of OmNI-
Creduce contains 𝑑 non-zero blocks (at most). This is because we
want to reduce the block size 𝑏 to better exploit data sparsity, while
increasing the message size𝑑𝑏 to improve the utilization of network
bandwidth. This idea is similar to Block Fusion of OmniReduce.
However, the difference is that Block Fusion reassembles the mes-
sages sent by multiple algorithm instances, while a single algorithm
instance of Block Merge can produce a merged message.

Assume that there are 𝑛 workers in the system. For a single
instance of the OmniReduce aggregator algorithm, it records the
local indices of each worker, resulting in a space complexity of𝑂 (𝑛).
Each time the algorithm instance receives a message from a worker,
it needs to perform𝑂 (log𝑛) computations to find the smallest local
index, thereby determining whether the iteration has ended. When
Block Fusion is enabled, it creates multiple algorithm instances and

Aggregator
Rx Spots Tx Spots

bitmap=0b1010

bitmap=0b0111

Worker 0 Worker 1 Worker 2

Figure 3: Memory layout of the aggregator and the datamove-
ment path of the entire system. Worker 0 and Worker 1 are
in the Send phase of the current iteration, while Worker 2 is
in the Update phase of the previous iteration.

fuses the messages of these instances, thus generating a space and
time complexity of 𝑂 (𝑑𝑛) and 𝑂 (𝑑 log𝑛), respectively. In contrast,
BlockMerge does not need to create multiple algorithm instances or
record local indices. Its algorithm instance only requires𝑂 (𝑑) space
to store the top-𝑑 smallest global indices. Each time it receives a
message from a worker, it only needs to perform a merge operation
with a time complexity of𝑂 (𝑑) to calculate the top-𝑑 smallest global
indices. It uses only one counter to determine whether the iteration
has ended. Therefore, we conclude that Block Merge has superior
algorithmic time and space complexity compared to Block Fusion.

2.2 OmNICCL Aggregator
In OmNICreduce algorithm, the aggregator is responsible for ag-
gregating non-zero blocks in a streaming manner, while calculating
the global indices. There are several challenges to implement Om-
NICreduce aggregator onto the SmartNIC.

2.2.1 Challenge 1: Limited memory bandwidth of SmartNICs. We
aim to use SmartNICs as aggregators, but due to considerations of
cost, energy efficiency, and design objectives, the performance of
SmartNICs is often limited. Taking BlueField-2, which is mainly
used in this work, as an example, we tested it with STREAM Bench-
mark [29] and found that BlueField-2 can only provide 83.6Gbps
memory bandwidth, which is far from enough to support bidirec-
tional 200Gbps network transmission.

2.2.2 Solution 1: Remove memory accesses with DCA. Interestingly,
we found that BlueField-2 seems to support some form of DCA,
which is also the reason why it can achieve bidirectional 200Gbps
throughput in the OFED Perftest [4] ib_write_bw test. Therefore,
we hope to use DCA to bypass the problem of insufficient memory
bandwidth and thus accelerate the algorithm of the aggregator.

Ideally, DCA allows the NIC to read and write directly to the
Last Level Cache (LLC) without generating any memory transac-
tions. This requires the LLC to have enough space to store the data
received by the NIC, and the data to be sent resides in the LLC with-
out being evicted. The most direct way to achieve this is to save as
much program memory as possible so that the program memory
is fully present in the cache. The Appendix provides additional
background on DCA.

2.2.3 Challenge 2: Limited LLC capacity on SmartNICs. In order to
make full use of DCA, the cache usage on the SmartNIC requires
special attention. However, The LLC capacity on SmartNICs tends
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Figure 4: Memory layout of the worker and lifecycle of the
blocks in the ring buffer. Yellow represents non-zero blocks,
grey represents zero blocks, and green represents aggregated
blocks. Blocks #0, #3, and #4 were loaded in the previous
iteration. Among them, #0 and #3will be sent and overwritten
by aggregated blocks, while #6 and #7 are loaded into the
buffer for the next iteration.

to be extremely limited. In our case, there is only 6MB LLC on
BlueField-2.

2.2.4 Solution 2: Efficient memory scheduling. Figure 3 shows the
memory layout of OmNICCL aggregator. A Spot is a part of an
RDMAMemory Region (MR), each Spot is enough to store 𝑑 blocks
and indices. Each worker has its dedicated Rx Spot on the aggre-
gator for receiving non-zero blocks and local indices. Meanwhile,
the aggregator needs two Tx Spots, one for storing the partial ag-
gregated blocks of the current iteration, and one for storing the
fully aggregated blocks of the previous iteration, forming a double
buffering.

Whenever the aggregator receives a message from the worker, it
immediately adds the non-zero blocks in the Rx Spot to the partial
aggregated blocks in the Tx Spot according to the displacement
bitmap, without the need for extra memory to store the decom-
pressed data. The reason for using double buffering is that there
may be workers that have not completed the transmission of the
previous iteration, such as Worker 2 in Figure 3, so the Tx Spot in
transmission cannot be directly overwritten. Therefore, each algo-
rithm instance of the aggregator only consumes about (𝑛 + 2)𝑏𝑑
memory, where 𝑛 is the number of workers; to get reasonable per-
formance, usually block size 𝑏 is taken as 1KB, merge depth 𝑑 is
taken as 16. Theoretically, BlueField-2’s 6MB LLC can support the
aggregation of more than 300 workers.

2.3 OmNICCL CPUWorker
There are also challenges to the implementation of OmNICreduce’s
worker component.

2.3.1 Challenge 3: Overheads of non-zero block scanning and batch-
ing are non-negligible. CPU workers need to first scan the entire
array to find all non-zero blocks before they can start sending them
to aggregators. Scanning the array is a memory-bound operation.
Constrained by the CPUmemory bandwidth or PCIe, this operation
is time-consuming, regardless of whether it is performed directly
by the CPU or by the GPU.

OmNICreduce, as an efficient block-based Sparse INA algorithm,
is designed to assemble multiple blocks into a single message for
transmission. This approach not only fully exploits sparsity but also
enhances network bandwidth utilization. However, the reassembly
of blocks may potentially introduce performance overhead.

2.3.2 Solution 3: Zero-cost compression and batching. Therefore,
we consider sending non-zero blocks while scanning. Intuitively,
this scanning operation seems to inevitably bring some overhead.
Here, we propose a zero-cost lossless compression method that
eliminates memory access caused by scanning with the help of DCA.
As shown in Figure 4a, each worker algorithm instance creates a
ring buffer that can hold 2𝑑 blocks and is registered as an RDMA
MR, serving as a Tx/Rx Spot. This ring buffer is small in size and
frequently accessed, so it can reside in the LLC. When the worker
enters the next iteration (Figure 4b), the worker needs to send the
non-zero blocks of the current iteration and the voting indices of
the next iteration. In Figure 4b, Blocks #0 and #3 will be sent, and
the worker needs to know the indices of the two non-zero blocks
after #4. Therefore, in Figure 4c, the worker tries to check whether
#5 is a non-zero block.

After the CPU reads the chunk of #5 fromDRAM into the register,
it uses the Arithmetic Logic Unit (ALU) to judge whether the chunk
contains non-zero values while writing the chunk into the Spot.
This is because RDMA cannot directly read and write the non-MR
input array, so it needs to copy data into the Spot. However, since
the Spot is in the LLC, it does not generate actual memory access,
and the modern CPU microarchitecture can simultaneously read
and write data and perform calculations. Note that until all values
have been checked, we cannot determine whether a block is a non-
zero block. If we check first and then copy the block, it may not
only generate additional memory access but also waste CPU cycles.

However, #5 is a zero block, so in Figure 4d, the worker turns
to check #6 and overwrites the previously read #5. In the process
of scanning and reading multiple blocks (Figure 4e), the blocks
incidentally complete reassembly, that is, zero-cost batching. The
NIC then directly reads data from the LLC and sends it (Figure 4f);
it then uses the free position of the Spot to receive data from the
aggregator (Figure 4g), and finally uses the CPU to copy back to
the destination address.

In this process, the worker only reads and writes the array once
to complete the scanning, sending, and updating of blocks, and
it does not block network transmission; and so, we refer to this
method as zero-cost compression. In addition, this method does not
require registering user arrays as MRs, thereby freeing OmNICCL
from managing MRs.



OmNICCL: Zero-cost Sparse AllReduce with Direct Cache Access and SmartNICs NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia

2.4 OmNICCL GPUWorker
Unlike CPU workers, the GPU, with its much larger memory band-
width than the CPU, makes the scanning time extremely short.
Therefore, it is acceptable to scan first and then transmit, which is
exactly what OmniReduce did. OmNICCL also follows this practice.
Specifically, the GPU first scans and copies the input array into
a large MR. The scanning procedure generates a bitmap, where
each bit indicates whether the corresponding block is a non-zero
block. This bitmap is sent back to the CPU, and then the CPU
uses the bitmap to calculate the voting indices before initiating the
transmission.

Different from OmniReduce, the scanning and copying in Om-
NICCL are fused into one kernel. In addition, OmNICCL uses RDMA
Scatter/Gather List (SGL) to combine multiple blocks and indices
located in the CPU into a single RDMA message. RDMA reads and
writes the MR on the GPU directly through GDR, and finally, the
GPU copies the aggregated array in the MR back to the destination
address.

3 Evaluation
In this section, we present the preliminary evaluation of OmNICCL.
We aim to answer the following questions:
• How much performance improvement does OmNICCL provide
over industry standard dense AllReduce libraries and OmniReduce
in terms of latency and throughput under different configurations
(i.e., block size, sparsity, number of nodes)?
• Does the use of BlueField-2 aggregators introduce any perfor-
mance degradation to OmNICCL?
Experimental setup.The specifications of our testbed and BlueField-
2 are shown in the Appendix in Table 1 and Table 2, respectively.

For network configuration, we set up a 100Gbps RoCEv2 net-
work. We used an Edgecore DCS810 switch, which is equipped with
an Intel Tofino 2 programmable switch chip and supports up to
400Gbps speed. On the switch, we installed the EdgeCore SONiC
OS and enabled L3 PFC and ECN mechanisms. On the NIC, we
enabled L3 PFC and the DCQCN congestion control algorithm.

For network topology, all NICs are connected to the switch via
3 to 10-meter 100Gbps fibers or DAC cables, and nodes of the
same type use the same fibers or cables. The port on BlueField-2
is dedicated to the BlueField SoC, allowing the BlueField SoC to
operate in a manner similar to an independent server.

For machines with multiple NUMA nodes, we bind applications
to the cores and NUMA nodes closest to the ConnectX NICs. For
GPU machines, we ensure that the GPUs used support GDR. All
machines run Ubuntu 22.04 (Linux 5.15), OFED 23.07, CUDA 12.2,
while BlueField-2 runs Ubuntu 20.04 (Linux 5.4.0), OFED 5.7.
Results. We have implemented our own microbenchmark, similar
to the OSU MPI Microbenchmark. It supports AllReduce bench-
marking for OmNICCL, MPI, and NCCL with varying sparsity and
array sizes. Currently, it generates identical arrays for different
machines as input for AllReduce. For dense AllReduce, we have
chosen NVIDIA HPC-X MPI, Intel MPI, and NCCL for comparison.
Due to device resource limitations, our current testbed only has
one BlueField-2 available. To evaluate the scalability of OmNICCL,
we have constructed a multi-machine experimental environment
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Figure 5: Latency of dense AllReduce. The asterisk represents
the use of a BlueField-2 aggregator, while the rest are CPU
aggregators. OmNICCL can achieve up to 7.24× and 1.52×
speedup on AllReduce CPU and GPU arrays, respectively.

with a mix of CPU servers and SmartNICs as aggregators in the
absence of BlueField-2 SmartNICs.

In this environment, we use 𝑛 − 1 Skylake CPU servers and a
single BlueField-2 as aggregators, and 𝑛 Haswell CPU / V100 GPU
servers as workers for testing. From a performance evaluation per-
spective, this environment is equivalent to a multi-BlueField-2 NIC
environment because OmNICCL evenly distributes sub-tasks to
aggregators, and the system throughput is limited by the slowest
aggregator. We also use 𝑛 CPU servers as aggregators to evaluate
whether BlueField-2 aggregators would negatively impact perfor-
mance.

Figure 5 shows the performance comparison of OmNICCL, NCCL,
and MPI performing AllReduce on CPU and GPU arrays under
different numbers of workers. The microbenchmark generates a
completely dense array of 8 to 128MB as input. We bind the pro-
gram to the NUMA node with optimal NIC affinity, and run one
MPI or OmNICCL process on each machine. For CPU arrays, Om-
NICCL achieves a speedup of 1.67-2.59×, 1.52-3.84×, and 2.31-7.24×
compared to the optimal MPI implementation under 2, 4, and 6
workers, respectively. We believe this is because MPI always uses a
single CPU core for aggregation, and for a single core, it is difficult
to handle a large data stream. For GPU arrays, OmNICCL achieves
95% to 102% performance with 2 workers, and 1.23-1.39× and 1.24-
1.52× speedup with 4 and 6 workers, respectively. We speculate that
this is because when there are more than 2 workers, OmNICCL’s
larger overall bandwidth is helpful. In summary, OmNICCL can
provide comparable or even superior performance to NCCL and
MPI in completely dense situations. This is mainly because zero-
cost compression with DCA and near-zero cost compression with
GDR make the processing overhead of sparse data close to zero.

Figure 6 shows the Allreduce latency of OmNICCL under differ-
ent sparsity and different numbers of workers. When the sparsity
is small, OmNICCL can fully utilize the network bandwidth. As the
sparsity increases, the Allreduce latency of OmNICCL continues to
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Figure 6: Latency of sparse AllReduce on 128MB array. The
asterisk represents the use of a BlueField-2 aggregator. ‘Mem
Bw’ and ‘Net Bw’ represent the latency of array size divided
by memory and network bandwidth, respectively, which are
the lower bounds of dense and sparse AllReduce latencies.
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Figure 7: Latency of sparse AllReduce on 256MB array. The
asterisk represents the use of a BlueField-2 aggregator. Em-
ploy a CPU / BlueField-2 aggregator and a CPU / GPUworker.

decrease, and is eventually constrained by memory bandwidth. On
the current hardware platform, a sparsity of 75% brings a speedup
of 3.11× and 3.30× to CPU workers and GPU workers compared to
dense OmNICCL, respectively.

Figure 7 shows the latency comparison of OmNICCL and Om-
niReduce performing CPU and GPU AllReduce operations when
a single BlueField / Skylake CPU server is used as an aggregator
and a single A100 GPU / Skylake CPU server is used as a worker.
The results show that whether for CPU arrays or GPU arrays, the
performance of OmNICCL is superior to OmniReduce. We also
find that the performance of OmniReduce’s algorithm is greatly

reduced when deployed to SmartNICs. OmNICCL is 1.76-2.96×
and 2.83-17.37× faster than OmniReduce on CPU and GPU arrays,
respectively, while the performance of OmNICCL deployed on
SmartNICs and servers is basically the same. This is mainly due to
the efficient algorithm and implementation of OmNICCL, which
makes its hardware requirements much lower than OmniReduce,
making it more suitable for SmartNICs with insufficient computing
power and tight resources.

4 Related Work
Switch-based INA solutions including DAIET [39], SwitchML [40],
ATP [19], P4COM [2], NetSHa [45], ESA [41] and NetEC [3] offload
aggregation onto the dataplane of programmable switches. To over-
come the limited switch resources and improve processing of large
packet payloads, NetReduce [25], PANAMA [12], SwitchAgg [44],
iSwitch [21] and AR-Switch [26] propose FPGA-based INA solu-
tions. Even though FPGAs can support richer logic as compared
to programmable switches, it remains unclear whether the above
solutions can be deployed in practice since non-trivial cost con-
siderations apply and the ease of programming FPGA remains a
challenge. SHARP [14, 30] is the first commercial INA solution,
which is based on the InfiniBand protocol and specialized network
hardware.

Focusing on the optimization of sparse collective communi-
cation, Libra [34] designs a specialized INA solution for sparse
models, which only aggregates gradients of hot parameters in pro-
grammable switch. FLARE [9] designs a new type of programmable
switch prototype, which provides hardware-level support for sparse
INA. OmniReduce [10] proposes an efficient sparse aggregation
algorithm. However in order to deploy on programmable switches,
the algorithm requires to be simplified.

SmartNICs provide an alternate avenue for implementation.
Some works [7, 13] accelerate MPI collective operations by of-
floading operations onto a BlueField SmartNIC. However, unlike
INA, these works do not take full advantage of the dataplane of
SmartNICs. To the best of our knowledge, OmNICreduce is the
first SmartNIC-based sparse INA solution which is compatible with
RDMA and GDR.

5 Conclusion
Sparse AllReduce is an optimization opportunity for accelerating
collective operations in the context of HPC and ML workloads. We
presented the preliminary design of OmNICreduce, an efficient
streaming algorithm for block-based inter-node sparse AllReduce,
and the evaluation of its realization in OmNICCL, which leverages
DCA to achieve zero-overhead lossless compression and uses a
BlueField-2 for aggregation. We demonstrated that this approach is
effective in leveraging scarce hardware resources, and accelerates
previous implementations in both dense and sparse input scenarios.
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Table 1: Specifications of testbed.

Nodes Item Specification

8×
Haswell

CPU Intel Xeon E5-2630v4 10C @2.2G
MEM 256b DDR4-2400 128GB
NIC NVIDIA ConnectX-5 100GbE

8×
Skylake

CPU Intel Xeon Silver 4108 8C @1.8G
MEM 192b DDR4-2666 128GB
NIC NVIDIA ConnectX-5 100GbE

8×
V100

CPU Intel Xeon Silver 4112 4C @2.6G
MEM 128b DDR4-2666 512GB
NIC NVIDIA ConnectX-5 100GbE
GPU NVIDIA V100 16GB PCIe

2×
A100

CPU AMD EPYC 7763 64C @2.5G
MEM 512b DDR4-3200 512GB
NIC NVIDIA ConnectX-7 200GbE
S-NIC NVIDIA BlueField-2 100GbE
GPU NVIDIA A100 40GB PCIe

Table 2: Specifications of SmartNICs.

Model Item Specification

NVIDIA
BlueField-2

CPU Arm Cortex A72 8C @2.8G
MEM 32b DDR4-3200 16GB
NIC NVIDIA ConnectX-6 100GbE

A Experimental Testbed
The specifications of our evaluation testbed and SmartNICs are
reported in Table 1 and Table 2, respectively.

B Background
B.1 SmartNICs
In recent years, many vendors, including NVIDIA, have been ac-
tively manufacturing and promoting SmartNICs. Compared to con-
ventional NICs, SmartNICs often provide hardware offloading or
allow users to execute code on NIC cores. Based on previous re-
search [24] and our experience, we categorize SmartNICs into the
following types:

B.1.1 Fixed Function SmartNICs. They provide some hardware
acceleration features, such as hardware offloading for TLS and
IPSec encryption and decryption. However, these features exist in
the form of ASICs within the NIC chip.

B.1.2 Programmable SmartNICs. They allow users to execute code
on NIC cores. They can be further divided into on-path SmartNICs
and off-path SmartNICs. (a) On-path SmartNICs. The NIC cores
are located on the data path, and all packets are processed by these
cores. These cores may already exist on conventional NICs and run
RTOS, but they expose a private programming interface to users.
(b) Off-path SmartNICs. These add additional cores to execute
user code. Unlike on-path SmartNICs, these cores do not process all
packets. Sometimes, these cores can be configured as a separate host,

running a full-fledged Linux and programs written with DPDK [23]
and RDMA Verbs [5].

Interestingly, some commodity SmartNICs may not be classified
into a single category. For instance, NVIDIA’s BlueField-3 [33]
belongs to all three categories mentioned above. The hardware TLS
and IPSec offloading part classifies it as a fixed-function SmartNIC.
Its Arm Cortex A78 SoC, running Ubuntu, categorizes it as an
off-path SmartNIC. Furthermore, its Data-Path Accelerator (DPA)
qualifies it as an on-path SmartNIC.

In this work, we primarily discuss and optimize for on-path
SmartNICs. Specifically, we utilize the Arm SoC of BlueField-2 [32]
for data processing at line rate.

B.2 Advanced RDMA Features
Remote Direct Memory Access (RDMA) is a high-performance net-
work commonly used within supercomputers and data centers. It
leverages kernel bypassing, hardware offloading, zero-copy, and
DMA to significantly reduce the CPU cycles consumed during
high-speed transmission, thereby enhancing communication per-
formance. We have utilized several advanced RDMA features to
optimize OmNICCL.

B.2.1 Direct Cache Access (DCA). It is a non-standard feature that
can be considered a hack of the PCIe controller. Standard RDMA
Read/Write operations directly manipulate the memory of remote
machines and generate memory transactions. However, with the
rapid evolution of RDMA networks, RDMA read/write operations
consume a significant amount of memory bandwidth. The latency
of memory read/write operations is non-negligible for RDMA net-
works at the microsecond or sub-microsecond level. Therefore,
some vendors have proposed and implemented DCA, such as Intel
Data Direct I/O (DDIO) [15], IBM Cache Injection [8], and Arm
Cache Stashing [6], which allow RDMA to directly read/write the
CPU’s LLC. We speculate that these implementations redirect mem-
ory access to the LLC by snooping the memory address of PCIe
transactions.

B.2.2 GPUDirect RDMA (GDR). It allows direct data transfer be-
tween the NIC and GPU under the same PCIe Root Complex (RC),
without the need for data to pass through the CPU and host memory,
although the CPU still needs to initiate data transfers.

B.2.3 Scatter Gather List (SGL). It allows a single RDMASend/Write
Request to gather multiple data chunks located at different memory
addresses into one RDMA message for transmission, or allows a
single RDMAReceive Request to scatter the payload from an RDMA
message to multiple different memory addresses. We found that
SGL can be used in conjunction with GDR, allowing the mixing of
CPU and GPU data chunks into one RDMA message.
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