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Nowadays users expect and demand highly dependable network connectivity and services. However, several recent episodes
demonstrate that software errors and operator mistakes continue to cause undesired disruptions and outages. It is crucial to have
reliable networks, and this requirement does not change with Software Defined Networking (SDN). Unfortunately, as the network
programmability enhances and software plays a greater role in it, risks that buggy software may disrupt an entire network also
increase. The centralized programming model, where a single controller program manages the network, seems to reduce the
likelihood of bugs. However, the system is inherently distributed and asynchronous, with events happening at different switches
and end hosts, and inevitable delays affecting communication with the controller.

This extended abstract presents an overview of efficient, systematic techniques for testing the SDN software stack at both
its highest and lowest layer. That is, our testing techniques target at the top layer, the OpenFlow controller programs (Section 1)
and, at the bottom layer, the OpenFlow agents (Section 2)—the software that each switch runs to enable remote programmatic
access to its forwarding tables. The papers describing these tools have been published in [2] and [3]. Our goal here is to increase
the awareness of the ever-increasing number of SDN adopters to our tools. In doing so, we hope to: (1) enable faster adoption
of OpenFlow/SDN due to accelerated switch interoperability testing, and (2) decrease the chance of encountering bugs in the
deployment of OpenFlow controller applications. Combined, our tools should increase the confidence in SDN as a whole.

1 NICE: Testing Application-Level Controller Logic

Our NICE (No bugs In Controller Execution) [2] tool tests unmodified controller programs by subjecting them to automatically
generated carefully-crafted streams of packets under many possible event orderings. NICE usage is illustrated in Fig. 1: The
programmer supplies the controller program, and the specification of a topology with switches and hosts. The programmer
can instruct NICE to check for generic correctness properties such as no forwarding loops or no black holes, and optionally
write additional, application-specific correctness properties (i.e., Python code snippets that make assertions about the global
system state). By default, NICE systematically explores the space of possible system behaviors, and checks them against the
desired correctness properties. The programmer can also configure the desired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically reproduce them. The programmer can also use NICE as a simulator to perform
manually-driven, step-by-step system executions or random walks on system states.
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tative packet from each class by adding a state transition that injects the packet. To reduce the space of event orderings, we
develop several domain-specific search strategies that generate event orderings that are likely to uncover bugs in the controller
program.

Bringing these ideas together, NICE combines model checking (to explore system execution paths), symbolic execution
(to reduce the space of inputs), and search strategies (to reduce the space of event orderings). The programmer can specify
correctness properties as snippets of Python code that operate on system state, or select from a library of common properties.
Our NICE prototype tests unmodified applications written in Python for the popular NOX platform. We apply NICE to three real
OpenFlow applications and uncover /7 bugs. Most of the bugs we found are design flaws, which are inherently less numerous
than simple implementation bugs. A release of NICE is publicly available at http://code.google.com/p/nice-of/.



2 SOFT: Testing the Interoperability of OpenFlow Switches

An aspect that is mostly going unnoticed is that OpenFlow switches also run software, which must behave correctly. This software
takes the name of OpenFlow agent, and its role is to expose a standardized programmatic interface to the switch forwarding tables
and to handle the communication with the controller. However, while testing high-level network functionality, the interoperability
and correct behavior of any OpenFlow agent are taken for granted. In practice, a real OpenFlow deployment likely has switches
from multiple vendors managed by one or more controllers. To ensure correct network operation, all switches must work properly.
In other words, it may take just one buggy switch to cause problems in the form of lost connectivity, unauthorized accesses, traffic
overload, and so on. If failures start occurring in OpenFlow deployments, the hard-earned ability to innovate in the networking
space will be severely hampered by mistrust.

Several issues make it difficult to produce error-free switch software. Consider that just the rule installation command (F 1ow
Mod) in the OpenFlow specifications is two and a half pages long. Moreover, the specifications are in rapid flux (going through
three revisions in slightly over one year). Further, even given specifications have interpretation ambiguities or gives explicit
implementation freedom.

Despite advances in writing provably correct software, testing remains the prime technique for ensuring dependability. We
observe that local testing and debugging can get the basic functionality working. Beyond this, the only way of gaining confidence
in the behavior of multiple different switches currently is interoperability testing. One way of doing this involves placing personnel
and switches at a third-party location for several days, and running OFTest and similar test suites [1]. Besides being expensive,
this task is complex, in part because the number of new OpenFlow switch implementations is quickly growing. Of course, any
new version of the specifications require a new round of interoperability testing.
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Fig. 2: SOFT looks for interoperability problems that manifest as

Operating in two phases, SOFT uses symbolic execution jpp¢ ranges that cause two OpenFlow agents to exhibit different
and constraint solving. In the first testing phase, symbolic ex-  pahaviors.

ecution runs locally on each vendor’s source code. Then, using

the outputs of symbolic execution (not the source codes), SOFT determines the input ranges (e.g., fields in OpenFlow messages)
that cause two OpenFlow agent implementations to exhibit different behaviors. We demonstrate the effectiveness of our approach
by applying it to the Reference Switch (55K LoC) and Open vSwitch (80K LoC), the two publicly available OpenFlow agent
implementations. SOFT quickly found seven classes of inconsistencies between the two.
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