
Systematic Software Testing Meets Networking

Marco Canini† and Dejan Kostić‡
† TU Berlin / T-Labs, ‡ Institute IMDEA Networks

Nowadays users expect and demand highly dependable network connectivity and services. However, several recent episodes
demonstrate that software errors and operator mistakes continue to cause undesired disruptions and outages. It is crucial to have
reliable networks, and this requirement does not change with Software Defined Networking (SDN). Unfortunately, as the network
programmability enhances and software plays a greater role in it, risks that buggy software may disrupt an entire network also
increase. The centralized programming model, where a single controller program manages the network, seems to reduce the
likelihood of bugs. However, the system is inherently distributed and asynchronous, with events happening at different switches
and end hosts, and inevitable delays affecting communication with the controller.

This extended abstract presents an overview of efficient, systematic techniques for testing the SDN software stack at both
its highest and lowest layer. That is, our testing techniques target at the top layer, the OpenFlow controller programs (Section 1)
and, at the bottom layer, the OpenFlow agents (Section 2)—the software that each switch runs to enable remote programmatic
access to its forwarding tables. The papers describing these tools have been published in [2] and [3]. Our goal here is to increase
the awareness of the ever-increasing number of SDN adopters to our tools. In doing so, we hope to: (1) enable faster adoption
of OpenFlow/SDN due to accelerated switch interoperability testing, and (2) decrease the chance of encountering bugs in the
deployment of OpenFlow controller applications. Combined, our tools should increase the confidence in SDN as a whole.

1 NICE: Testing Application-Level Controller Logic

Our NICE (No bugs In Controller Execution) [2] tool tests unmodified controller programs by subjecting them to automatically
generated carefully-crafted streams of packets under many possible event orderings. NICE usage is illustrated in Fig. 1: The
programmer supplies the controller program, and the specification of a topology with switches and hosts. The programmer
can instruct NICE to check for generic correctness properties such as no forwarding loops or no black holes, and optionally
write additional, application-specific correctness properties (i.e., Python code snippets that make assertions about the global
system state). By default, NICE systematically explores the space of possible system behaviors, and checks them against the
desired correctness properties. The programmer can also configure the desired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically reproduce them. The programmer can also use NICE as a simulator to perform
manually-driven, step-by-step system executions or random walks on system states.

OpenFlow 
controller 
program 

Network 
topology 

Correctness 
properties 

Traces of 
property 
violations 

Input Output NICE 

State-space 
search 

Model 
Checking 

Symbolic 
Execution 

Fig. 1: Given an OpenFlow program, a network topology, and
correctness properties, NICE performs a state-space search and
outputs traces of property violations.

Our design uses explicit state, software model checking
to explore the state space of the entire system—the controller
program, the OpenFlow switches, and the end hosts. However,
applying model checking “out of the box” does not scale be-
cause the need to consider the entire network state leads to
an extremely large state space, which “explodes” along three
dimensions: (1) switch state, (2) input packets, and (3) event
orderings. While simplified models of the switches and hosts
help, the main challenge is the event handlers in the con-
troller program. These handlers are data dependent, forcing
model checking to explore all possible inputs (which doesn’t
scale) or a set of “important” inputs provided by the developer
(which is undesirable). Instead, we extend model checking to
symbolically execute the handlers. By symbolically executing
the packet-arrival handler, NICE identifies equivalence classes
of packets—ranges of header fields that determine unique
paths through the code. NICE feeds the network a represen-
tative packet from each class by adding a state transition that injects the packet. To reduce the space of event orderings, we
develop several domain-specific search strategies that generate event orderings that are likely to uncover bugs in the controller
program.

Bringing these ideas together, NICE combines model checking (to explore system execution paths), symbolic execution
(to reduce the space of inputs), and search strategies (to reduce the space of event orderings). The programmer can specify
correctness properties as snippets of Python code that operate on system state, or select from a library of common properties.
Our NICE prototype tests unmodified applications written in Python for the popular NOX platform. We apply NICE to three real
OpenFlow applications and uncover 11 bugs. Most of the bugs we found are design flaws, which are inherently less numerous
than simple implementation bugs. A release of NICE is publicly available at http://code.google.com/p/nice-of/.



2 SOFT: Testing the Interoperability of OpenFlow Switches

An aspect that is mostly going unnoticed is that OpenFlow switches also run software, which must behave correctly. This software
takes the name of OpenFlow agent, and its role is to expose a standardized programmatic interface to the switch forwarding tables
and to handle the communication with the controller. However, while testing high-level network functionality, the interoperability
and correct behavior of any OpenFlow agent are taken for granted. In practice, a real OpenFlow deployment likely has switches
from multiple vendors managed by one or more controllers. To ensure correct network operation, all switches must work properly.
In other words, it may take just one buggy switch to cause problems in the form of lost connectivity, unauthorized accesses, traffic
overload, and so on. If failures start occurring in OpenFlow deployments, the hard-earned ability to innovate in the networking
space will be severely hampered by mistrust.

Several issues make it difficult to produce error-free switch software. Consider that just the rule installation command (Flow
Mod) in the OpenFlow specifications is two and a half pages long. Moreover, the specifications are in rapid flux (going through
three revisions in slightly over one year). Further, even given specifications have interpretation ambiguities or gives explicit
implementation freedom.

Despite advances in writing provably correct software, testing remains the prime technique for ensuring dependability. We
observe that local testing and debugging can get the basic functionality working. Beyond this, the only way of gaining confidence
in the behavior of multiple different switches currently is interoperability testing. One way of doing this involves placing personnel
and switches at a third-party location for several days, and running OFTest and similar test suites [1]. Besides being expensive,
this task is complex, in part because the number of new OpenFlow switch implementations is quickly growing. Of course, any
new version of the specifications require a new round of interoperability testing.

SOFT (Systematic OpenFlow Testing) 

OF Agent 1 

Test inputs 

Input-driven 
execution 

Observable 
behaviors 

OF Agent 2 

Inconsistency! 

Fig. 2: SOFT looks for interoperability problems that manifest as
input ranges that cause two OpenFlow agents to exhibit different
behaviors.

Towards achieving exhaustive testing, we recently pro-
posed SOFT (Systematic OpenFlow Testing) [3], an approach
to interoperability testing that leverages the multiple, existing
OpenFlow implementations and herein identifies potential in-
teroperability problems by crosschecking their behaviors.

Exploring code behaviors in a systematic way is key to
observe behavioral inconsistencies. Symbolic execution effec-
tively asks the code itself to provide the test inputs that are
needed to traverse all code paths at least once. While appeal-
ing, the use of symbolic execution is generally met with the
scalability challenges of exhaustive path coverage, which we
must face. In addition, it would not be practical to assume
that a tool for interoperability testing would have access to the
source code of commercial OpenFlow implementations from
all vendors. It is then our goal to make symbolic execution
scale to crosscheck different OpenFlow implementations and
find interoperability issues without having simultaneous ac-
cess to all source codes.

Operating in two phases, SOFT uses symbolic execution
and constraint solving. In the first testing phase, symbolic ex-
ecution runs locally on each vendor’s source code. Then, using
the outputs of symbolic execution (not the source codes), SOFT determines the input ranges (e.g., fields in OpenFlow messages)
that cause two OpenFlow agent implementations to exhibit different behaviors. We demonstrate the effectiveness of our approach
by applying it to the Reference Switch (55K LoC) and Open vSwitch (80K LoC), the two publicly available OpenFlow agent
implementations. SOFT quickly found seven classes of inconsistencies between the two.

Acknowledgments. NICE and SOFT stem from our collaboration with a team of very passionate contributors: Maciej Kuźniar,
Peter Perešı́ni, and Daniele Venzano. Jennifer Rexford collaborated with us on NICE. The research leading to these results has
received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement 259110.

References

1. ONF Holds Its First Test Event. https://www.opennetworking.org/?p=249&option=com_wordpress&Itemid=72.
2. M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A NICE Way to Test OpenFlow Applications. In NSDI, 2012.
3. M. Kuźniar, P. Perešı́ni, M. Canini, D. Venzano, and D. Kostić. A SOFT Way for OpenFlow Switch Interoperability Testing. In CoNEXT,

2012.


