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ABSTRACT

We propose NeuronaBox, a flexible, user-friendly, and high-fidelity
approach to emulate DNN training workloads. We argue that to
accurately observe performance, it is possible to execute the training
workload on a subset of real nodes and emulate the networked
execution environment along with the collective communication
operations. Initial results from a proof-of-concept implementation
show that NeuronaBox replicates the behavior of actual systems
with high accuracy, with an error margin of less than 1% between
the emulated measurements and the real system.

CCS CONCEPTS

+ Networks — Network experimentation; - Computing method-
ologies — Machine learning.
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1 INTRODUCTION

Modern DNN training clusters are remarkable engineering feats
that more closely resemble high-performance specialized comput-
ing environments — and the large costs that these entail — than
their mainstream counterparts in commodity cloud computing dat-
acenters. Optimizing resource utilization and overall efficiency is
paramount to maximizing the performance of training workloads
and minimizing associated costs.

Conducting in-depth “what if” analyses is essential to making
informed decisions and beneficial for a variety of scenarios. For
instance, a ML engineer may want to explore for a given model the
impact of a particular parallelization strategy on training time and
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resource utilization. But it is not practical to profile the training
workload on thousands of HW accelerators (GPUs, TPUs, etc.) for
each possible strategy and different configurations. Recent work has
shown the potential of simulation and analytical methods to gain
insights about DNN training behavior [1, 2, 11-13, 17]. However,
these approaches suffer from at least one of three limitations: 1) they
require significant effort to transform the actual workloads into
an input model for the simulator, 2) they require explicit models
of parallelization strategies and incorporating new ones entails
non-trivial development of new simulation models, and, 3) the
fidelity of their results is limited by how faithful the underlying
analytical models of computation and communication are, which
are notoriously difficult to get right at scale [9].

This work pioneers and advocates the use of emulation to aid in
the analysis and experimentation of distributed DNN training work-
loads. In a nutshell, we propose to isolate a node subset (denoted as
N) of a distributed training job and emulate the networked execu-
tion environment (denoted as &) from the perspective of the nodes
in N. We elect to view the network as a natural boundary between
the real and emulated environments since communication between
nodes in distributed training jobs typically occurs through a collec-
tive communication library (e.g., NCCL [10]) that both isolates the
training scripts from dealing with all the unnecessary details of the
underlying network and demarcates clear points for inter-process
synchronization. We refer to our approach as NeuronaBox.

Notably, in this approach, the nodes in N run unmodified train-
ing scripts, DNN frameworks and libraries. In particular, the commu-
nication is handled by the actual collective communication library
over the network fabric. Meanwhile, the emulation environment
& executes on dedicated hardware resources. The requirements
for the emulation environment are modest: it can run on a single
CPU-based node, and it only requires network bandwidth to match
the available aggregate bandwidth of nodes in NV.

The key benefit of this approach is that it allows us to faithfully
execute on real hardware a portion of the training workload, which
executes without overheads from instrumentation (since there is
none) nor profiling N in controlled conditions. Therefore, we can
observe the actual behavior of the training job, including the HW
utilization metrics and collective communication patterns that are
critical in analyzing the performance of distributed training work-
loads. We wish to stress that our objective is to enable performance
analysis and optimization of distributed training workloads. Impli-
cations on model quality are out of scope. Thus, in this work, we
initiate the study of these core research questions: 1) What aspects
of the workload must & emulate? 2) How can this approach maintain
high fidelity while retaining wide applicability?
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Figure 1: Overall workflow and architecture of NeuronaBox.

2 CONTRIBUTION AND PRELIMINARY
RESULTS

Our goal is to enable any subset N of nodes in a distributed DNN
training job to execute the workload as if it were running on the
entire set of nodes and resources. We propose to achieve this goal
by emulating the interactions between N and its networked en-
vironment &, which in a sense can be viewed as a virtualization
of the remaining job’s nodes. We argue that by observing the per-
formance of N, we can analyze and extrapolate the behavior for
an entire job with high fidelity. In our design, we envision that
NeuronaBox 1) should be used without any modification to their
existing user code; and 2) should be flexible to seamlessly adapt to
changes in parallelization strategies, including new ones that may
emerge in the future.

Workflow and architecture. Fig. 1 depicts an overview of our ap-
proach. The high-level workflow of NeuronaBox is as follows: First,
the user provides the training script, the job configuration (e.g.,
world size, nodes in N, HW resources, etc.), and optionally a set of
what-if conditions for experimentation (an example is given later).
Second, NeuronaBox initializes the emulation environment by syn-
thesizing the network topology and instantiating a communication
model that calculates delay times for collective operations within
the emulated environment. Third, the training script is launched
(e.g., via torchrun). Meanwhile, desired performance metrics like
iteration time and resource utilization are gathered in N. Traces of
collective communication (e.g., NCCL traces) can also be collected.
Assumptions. We assume that nodes have uniform hardware
and network configuration. In practice, it is common to execute
distributed training jobs on homogeneous clusters [7, 8, 15, 16, 18].
We assume that the model fits entirely within N. This assumption
is not restrictive, as it is common to use model or tensor parallelism
within a node or a shard [6, 14]. These assumptions imply a sort
of symmetry in the workload distribution across the nodes, which
allows us to treat the nodes in N as a representative sample of the
entire nodes. Further, we assume that the collective communication
layer is the only point of interaction between N and &. This as-
sumption is reasonable, as the collective communication layer is the
primary interface between the computation and the network stack
in distributed training jobs. Finally, note that we are free to modify
the DNN framework and collective communication libraries within
the emulator. That is how we are able to implement NeuronaBox!
Scalability. Our key insight is that we are only interested in the
interaction between A and the outside world. And so, the actual

Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini

Model Time-E Time-B CPU-E CPU-B
BERT 629 + 3.0 628+1.1 1293% 14.25%
ResNet152 1061+19.8 1063+16.3 12.68% 12.95%
DeepLight 727+15.0 726+ 13.8 7.52% 7.75%

Table 1: End-to-end workload comparison. ‘E’ and ‘B’ stand for
emulator-enabled (NeuronaBox) and the baseline, respectively.
‘Time’ stands for the training times in milliseconds; and ‘CPU’ stands
for the percentage of CPU usage in a node.

communication between the emulated nodes can be skipped. In-
stead, only the delay resulting from these communication opera-
tions needs to be incorporated into the emulation. As a result, the
number of connections as well as the amount of data transfer for
NeuronaBox are the same as that of V. This observation allows
NeuronaBox to potentially scale to a large number of nodes. We
plan to further explore scalability in future work.
Proof-of-concept implementation. Our proof-of-concept imple-
mentation entails the development of an end-to-end system using
the PyTorch DNN framework and NCCL as the collective communi-
cation library, chosen because of their popularity. Our implementa-
tion is able to run two-node training using a distributed data-parallel
strategy. We plan to release NeuronaBox as open source.
Experimental setup. To evaluate NeuronaBox’s ability to accu-
rately emulate end-to-end DNN training, we conducted experiments
using three real-world DNN models; BERT [4], ResNet152 [5], and
DeepLight [3].

Preliminary results. As shown in Table 1, NeuronaBox is quite
accurate in a two-node environment training with data parallelism,
with error less than 1%. For CPU usage, it actually drops a little bit
in all scenario. We attribute that to: (1) the efficient and lightweight
implementation of NeuronaBox, which keeps the overhead gener-
ally low; (2) the removal of computation in backward pass, which
eliminates a lot of memory allocation and data movements. So the
net effect is a drop in CPU usage. This is promising in terms of the
potential scalability of NeuronaBox.

3 FUTURE WORK

The proof-of-concept implementation only features a 2-node clus-
ter emulation. We intend to extend our implementation to emulate
many nodes simultaneously. We intend to achieve this by intercept-
ing the topology detection and memory allocation interfaces of the
DNN framework and then modifying them to fit into the workflow
of NeuronaBox. Also, the current implementation only emulates the
amount of data transmitted over the network and not the actual
values of the data. This is sufficient to observe the time for each
training iteration, but not sufficient to observe the training progress
per iteration, especially for DNN training speed-up techniques such
as lossy quantization and compression. We intend to address this
problem in the future. Finally, we encourage further research in
this direction, as there are still many questions to be answered.
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