
Proof-of-Concept of a Flexible and High-Fidelity Approach to
Distributed DNN Training Emulation

Banruo Liu∗
Tsinghua University

Mubarak Adetunji Ojewale
KAUST

Yuhan Ding
Tsinghua University

Marco Canini
KAUST

ABSTRACT
We propose NeuronaBox, a flexible, user-friendly, and high-fidelity
approach to emulate DNN training workloads. We argue that to
accurately observe performance, it is possible to execute the training
workload on a subset of real nodes and emulate the networked
execution environment along with the collective communication
operations. Initial results from a proof-of-concept implementation
show that NeuronaBox replicates the behavior of actual systems
with high accuracy, with an error margin of less than 1% between
the emulated measurements and the real system.

CCS CONCEPTS
•Networks→Network experimentation; •Computingmethod-
ologies →Machine learning.

KEYWORDS
Distributed Deep Learning Training, Machine Learning Systems,
DNN Training Emulation
ACM Reference Format:
Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini.
2024. Proof-of-Concept of a Flexible and High-Fidelity Approach to Dis-
tributed DNN Training Emulation. In SIGCOMM Workshop on Networks for
AI Computing (NAIC ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3672198.3673793

1 INTRODUCTION
Modern DNN training clusters are remarkable engineering feats
that more closely resemble high-performance specialized comput-
ing environments – and the large costs that these entail – than
their mainstream counterparts in commodity cloud computing dat-
acenters. Optimizing resource utilization and overall efficiency is
paramount to maximizing the performance of training workloads
and minimizing associated costs.

Conducting in-depth “what if” analyses is essential to making
informed decisions and beneficial for a variety of scenarios. For
instance, a ML engineer may want to explore for a given model the
impact of a particular parallelization strategy on training time and
∗Work done primarily while author was interning at KAUST.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0713-1/24/08.
https://doi.org/10.1145/3672198.3673793

resource utilization. But it is not practical to profile the training
workload on thousands of HW accelerators (GPUs, TPUs, etc.) for
each possible strategy and different configurations. Recent work has
shown the potential of simulation and analytical methods to gain
insights about DNN training behavior [1, 2, 11–13, 17]. However,
these approaches suffer from at least one of three limitations: 1) they
require significant effort to transform the actual workloads into
an input model for the simulator, 2) they require explicit models
of parallelization strategies and incorporating new ones entails
non-trivial development of new simulation models, and, 3) the
fidelity of their results is limited by how faithful the underlying
analytical models of computation and communication are, which
are notoriously difficult to get right at scale [9].

This work pioneers and advocates the use of emulation to aid in
the analysis and experimentation of distributed DNN training work-
loads. In a nutshell, we propose to isolate a node subset (denoted as
N ) of a distributed training job and emulate the networked execu-
tion environment (denoted as E) from the perspective of the nodes
inN . We elect to view the network as a natural boundary between
the real and emulated environments since communication between
nodes in distributed training jobs typically occurs through a collec-
tive communication library (e.g., NCCL [10]) that both isolates the
training scripts from dealing with all the unnecessary details of the
underlying network and demarcates clear points for inter-process
synchronization. We refer to our approach as NeuronaBox.

Notably, in this approach, the nodes in N run unmodified train-
ing scripts, DNN frameworks and libraries. In particular, the commu-
nication is handled by the actual collective communication library
over the network fabric. Meanwhile, the emulation environment
E executes on dedicated hardware resources. The requirements
for the emulation environment are modest: it can run on a single
CPU-based node, and it only requires network bandwidth to match
the available aggregate bandwidth of nodes in N .

The key benefit of this approach is that it allows us to faithfully
execute on real hardware a portion of the training workload, which
executes without overheads from instrumentation (since there is
none) nor profiling N in controlled conditions. Therefore, we can
observe the actual behavior of the training job, including the HW
utilization metrics and collective communication patterns that are
critical in analyzing the performance of distributed training work-
loads. We wish to stress that our objective is to enable performance
analysis and optimization of distributed training workloads. Impli-
cations on model quality are out of scope. Thus, in this work, we
initiate the study of these core research questions: 1) What aspects
of the workload must E emulate? 2) How can this approach maintain
high fidelity while retaining wide applicability?

https://orcid.org/0009-0002-9932-6096
https://orcid.org/0000-0003-3861-1782
https://orcid.org/0009-0000-2829-0319
https://orcid.org/0000-0002-5051-4283
https://doi.org/10.1145/3672198.3673793
https://doi.org/10.1145/3672198.3673793


NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia Banruo Liu, Mubarak Adetunji Ojewale, Yuhan Ding, and Marco Canini

Training 
Workload

Input

Output

Cluster
Config 

Iteration
Time

Resource
Utilization

NeuronaBox

Coll. Comm. Lib. (NCCL)

DNN Framework (PyTorch)

Network

DNN Framework (PyTorch)
Coll. Comm. Lib. (NCCL)

Network

Real Node

Delay Model
Modified

Vanilla

Add-on

What-if
Conditions System

Traces

Figure 1: Overall workflow and architecture of NeuronaBox.

2 CONTRIBUTION AND PRELIMINARY
RESULTS

Our goal is to enable any subset N of nodes in a distributed DNN
training job to execute the workload as if it were running on the
entire set of nodes and resources. We propose to achieve this goal
by emulating the interactions between N and its networked en-
vironment E, which in a sense can be viewed as a virtualization
of the remaining job’s nodes. We argue that by observing the per-
formance of N , we can analyze and extrapolate the behavior for
an entire job with high fidelity. In our design, we envision that
NeuronaBox 1) should be used without any modification to their
existing user code; and 2) should be flexible to seamlessly adapt to
changes in parallelization strategies, including new ones that may
emerge in the future.
Workflow and architecture. Fig. 1 depicts an overview of our ap-
proach. The high-level workflow of NeuronaBox is as follows: First,
the user provides the training script, the job configuration (e.g.,
world size, nodes in N , HW resources, etc.), and optionally a set of
what-if conditions for experimentation (an example is given later).
Second, NeuronaBox initializes the emulation environment by syn-
thesizing the network topology and instantiating a communication
model that calculates delay times for collective operations within
the emulated environment. Third, the training script is launched
(e.g., via torchrun). Meanwhile, desired performance metrics like
iteration time and resource utilization are gathered in N . Traces of
collective communication (e.g., NCCL traces) can also be collected.
Assumptions. We assume that nodes have uniform hardware
and network configuration. In practice, it is common to execute
distributed training jobs on homogeneous clusters [7, 8, 15, 16, 18].
We assume that the model fits entirely within N . This assumption
is not restrictive, as it is common to use model or tensor parallelism
within a node or a shard [6, 14]. These assumptions imply a sort
of symmetry in the workload distribution across the nodes, which
allows us to treat the nodes in N as a representative sample of the
entire nodes. Further, we assume that the collective communication
layer is the only point of interaction between N and E. This as-
sumption is reasonable, as the collective communication layer is the
primary interface between the computation and the network stack
in distributed training jobs. Finally, note that we are free to modify
the DNN framework and collective communication libraries within
the emulator. That is how we are able to implement NeuronaBox!
Scalability. Our key insight is that we are only interested in the
interaction between N and the outside world. And so, the actual

Model Time-E Time-B CPU-E CPU-B
BERT 629 ± 3.0 628±1.1 12.93% 14.25%
ResNet152 1061±19.8 1063±16.3 12.68% 12.95%
DeepLight 727±15.0 726± 13.8 7.52% 7.75%

Table 1: End-to-end workload comparison. ‘E’ and ‘B’ stand for
emulator-enabled (NeuronaBox) and the baseline, respectively.
‘Time’ stands for the training times inmilliseconds; and ‘CPU’ stands
for the percentage of CPU usage in a node.

communication between the emulated nodes can be skipped. In-
stead, only the delay resulting from these communication opera-
tions needs to be incorporated into the emulation. As a result, the
number of connections as well as the amount of data transfer for
NeuronaBox are the same as that of N . This observation allows
NeuronaBox to potentially scale to a large number of nodes. We
plan to further explore scalability in future work.
Proof-of-concept implementation. Our proof-of-concept imple-
mentation entails the development of an end-to-end system using
the PyTorch DNN framework and NCCL as the collective communi-
cation library, chosen because of their popularity. Our implementa-
tion is able to run two-node training using a distributed data-parallel
strategy. We plan to release NeuronaBox as open source.
Experimental setup. To evaluate NeuronaBox’s ability to accu-
rately emulate end-to-endDNN training, we conducted experiments
using three real-world DNN models; BERT [4], ResNet152 [5], and
DeepLight [3].
Preliminary results. As shown in Table 1, NeuronaBox is quite
accurate in a two-node environment training with data parallelism,
with error less than 1%. For CPU usage, it actually drops a little bit
in all scenario. We attribute that to: (1) the efficient and lightweight
implementation of NeuronaBox, which keeps the overhead gener-
ally low; (2) the removal of computation in backward pass, which
eliminates a lot of memory allocation and data movements. So the
net effect is a drop in CPU usage. This is promising in terms of the
potential scalability of NeuronaBox.

3 FUTUREWORK
The proof-of-concept implementation only features a 2-node clus-
ter emulation. We intend to extend our implementation to emulate
many nodes simultaneously. We intend to achieve this by intercept-
ing the topology detection and memory allocation interfaces of the
DNN framework and then modifying them to fit into the workflow
of NeuronaBox. Also, the current implementation only emulates the
amount of data transmitted over the network and not the actual
values of the data. This is sufficient to observe the time for each
training iteration, but not sufficient to observe the training progress
per iteration, especially for DNN training speed-up techniques such
as lossy quantization and compression. We intend to address this
problem in the future. Finally, we encourage further research in
this direction, as there are still many questions to be answered.

ACKNOWLEDGMENTS
This publication is based upon work supported by the King Ab-
dullah University of Science and Technology (KAUST) Office of
Research Administration (ORA) under Award No. ORA-CRG2020-
4382.



Proof-of-Concept of a Flexible and High-Fidelity Approach to Distributed DNN Training Emulation NAIC ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Newsha Ardalani, Saptadeep Pal, and Puneet Gupta. 2024. DeepFlow: A Cross-

Stack Pathfinding Framework for Distributed AI Systems. ACMTrans. Des. Autom.
Electron. Syst. 29, 2 (2024).

[2] Jehyeon Bang, Yujeong Choi, Myeongwoo Kim, Yongdeok Kim, and Min-
soo Rhu. 2023. vTrain: A Simulation Framework for Evaluating Cost-
effective and Compute-optimal Large Language Model Training. (2023).
arXiv:cs.LG/2312.12391

[3] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin.
2021. DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR
Predictions in Ad Serving. In WSDM.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

[6] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong
Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang,
Mao Yang, and Yongqiang Xiong. 2023. Tutel: Adaptive Mixture-of-Experts at
Scale. In MLSys.

[7] Fan Lai, Wei Zhang, Rui Liu, William Tsai, Xiaohan Wei, Yuxi Hu, Sabin Devkota,
Jianyu Huang, Jongsoo Park, Xing Liu, Zeliang Chen, Ellie Wen, Paul Rivera,
Jie You, Chun cheng Jason Chen, and Mosharaf Chowdhury. 2023. AdaEmbed:
Adaptive Embedding for Large-Scale Recommendation Models. In OSDI.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. (2019). arXiv:cs.CL/1907.11692

[9] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In SIGCOMM.

[10] NVIDIA. 2024. Collective Communication Library (NCCL). (2024). https:
//developer.nvidia.com/nccl.

[11] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna.
2020. ASTRA-SIM: Enabling SW/HW Co-Design Exploration for Distributed DL
Training Platforms. In ISPASS.

[12] Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan, and
Tushar Krishna. 2022. Themis: A Network Bandwidth-Aware Collective Schedul-
ing Policy for Distributed Training of DL Models. In ISCA.

[13] Wilfredo J. Robinson M., Flavio Esposito, and Maria A. Zuluaga. 2022. DTS: A
Simulator to Estimate the Training Time of Distributed Deep Neural Networks.
In MASCOTS.

[14] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. (2020). arXiv:cs.CL/1909.08053

[15] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. (2023).
arXiv:cs.CL/2302.13971

[16] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes,
Zhewei Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, and
Yuxiong He. 2024. ZeRO++: Extremely Efficient Collective Communication for
Large Model Training. In ICLR.

[17] William Won, Taekyung Heo, Saeed Rashidi, Srinivas Sridharan, Sudarshan
Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: Modeling Hierarchical
Networks and Disaggregated Systems for Large-model Training at Scale. In
ISPASS.

[18] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator
Parallelism for Distributed Deep Learning. In OSDI.

https://arxiv.org/abs/cs.LG/2312.12391
https://arxiv.org/abs/cs.CL/1907.11692
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://arxiv.org/abs/cs.CL/1909.08053
https://arxiv.org/abs/cs.CL/2302.13971

	Abstract
	1 Introduction
	2 Contribution and Preliminary results
	3 Future work
	Acknowledgments
	References

