MicroView: Cloud-Native Observability with Temporal Precision

Alessandro Cornacchia
Politecnico di Torino

Muhammad Bilal
Unbabel

ABSTRACT

We present MicroView, a system designed to improve the accuracy
and timeliness of observability in cloud-native applications, while
minimizing overhead. MicroView stands out from conventional
observability tools by incorporating metrics processing stages at
every node within a local lightweight data-plane. We preliminary
demonstrate its benefits for distributed tracing and outline a set
of architectural choices focused on offloading the MicroView data-
plane to IPU accelerators, such as a BlueField-3 SmartNIC, thus
limiting the interference with running services.

ACM Reference Format:

Alessandro Cornacchia, Theophilus A. Benson, Muhammad Bilal, and Marco
Canini. 2023. MicroView: Cloud-Native Observability with Temporal Pre-
cision. In Proceedings of the CONEXT Student Workshop 2023 (CoNEXT-SW
’23), December 8, 2023, Paris, France. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3630202.3630233

1 INTRODUCTION

Microservice observability is a key requirement for troubleshooting
cloud-native applications, as it provides visiblity about their internal
state. Observability tools collect a wealth of monitoring data — i.e.,
metrics, request traces and logs — which is then used to detect and
diagnose failures and identify performance bottlenecks.

Unfortunately, observability can create a significant overhead
on server resources thus creating resource contention and inter-
ference with user services. This overhead is mainly generated by
data copies and network stack processing [4] to communicate with
the monitor backend. Even worse, it grows with the scale of mon-
itored components and the frequency at which data is collected.
In practice, operators need to resort to relaxed sampling rates for
data collection, which sacrifices the quality of observability itself,
such as accuracy and timeliness. Although scheduling ad-hoc CPU
bonding for the observability processes or vertically scaling the in-
frastructure would mitigate the problem, these solutions are neither
energy-efficient nor cost-efficient.

This work proposes a system to guarantee accuracy and timeli-
ness of observability, while limiting the overhead and interference
with running applications. Our design hinges on the observation
that for metrics, the overhead is dominated by the ingestion costs
rather than generation costs (Table 1). This allows us to — relatively
cheaply — increase the temporal granularity at which new metrics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT-SW °23, December 8, 2023, Paris, France

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0452-9/23/12.

https://doi.org/10.1145/3630202.3630233

Theophilus A. Benson

Carniege Mellon University

Marco Canini
KAUST

samples are produced, and to decouple local generation rate from
ingestion rate. In light of these observations, we address the benefits
and challenges of (1) running a metrics processor on each node that
can handle high metrics generation rate, and (2) exploiting such
intelligence to locally extract actionable signals and assist perfor-
mance debugging tasks. We take distributed tracing as a showcase
example and demonstrate that MicroView can improve the cov-
erage of anomalous requests (i.e., whose latency violates SLO) by
approximately 5X compared to head-based sampling. Finally, we
delineate architectural choices to offload the metrics processor to
emerging Infrastructure Processing Units (IPUs) [5] accelerators,
such as BlueField-3 SmartNIC.

2 PROPOSED DESIGN

2.1 MicroView overview

The proposed system architecture is shown in Figure 1. Our sys-
tem differs from traditional observability architectures [4] in that
it adds metrics processor locally at each node. The data-plane
is where metrics processing takes place. It consists of a bank of
per-microservice classifiers. Each classifier periodically is fed with
a metric vector relative to its corresponding microservice. It applies
pre-processing transformations (e.g., accumulation, data whitening,
etc.), and decides if the vector sample is anomalous or not. We
adopted a streaming sketch-based binary classifier [2], as it oper-
ates in single-pass without requiring local storage of samples, yet
supporting continual-learning from new samples. At its heart, the
classifier learns a low-dimensional reconstruction basis for the data
(i.e., sketch), and detects anomalies if it cannot reconstruct an input
sample within a predefined error tolerance. The control-plane con-
sists of MicroView agents that orchestrate the interaction between
the metrics sources (e.g., microservices) and the data-plane. If the
data-plane sits on an IPU accelerator, MicroView agents ensure the
IPU can access the memory regions where the metrics variables
reside. Additionally, it produces actionable alerts to observability

Metrics observability configuration CPU usage

at the monitored node

Generation rate [Hz] Ingestion rate [Hz]

1 1 12-13%
1 1/30 3-4%
1/30 1/30 2%

Table 1: CPU consumption of a single monitored Kubernetes node,
running the Online-boutique workload [1]. Ingestion rate is the fre-
quency at which a Prometheus monitor — on a different node —
queries metrics from the pods. Generation rate refers to the fre-
quency at which metrics are created/updated within the pods. We
tuned the generation rate by changing the housekeeping_interval
parameter in cAdvisor.

https://doi.org/10.1145/3630202.3630233
https://doi.org/10.1145/3630202.3630233

CoNEXT-SW ’23, December 8, 2023, Paris, France

<—p data-plane <> control-plane

Microservices

Observability libs

host
z
IPU CIE 4C0F 400k IO | 8-
A 11—
LLL1] s
metrics processing

Figure 1: MicroView architecture. Unlike traditional observability
architectures, we propose to add local metrics processing stages at
each node.

libraries based on sketch classifications. The specific action depends
on the desired use-case, an example is provided in the next section.

2.2 Use-case: distributed tracing

Metrics reveal the internal state of applications and containers:
their unexpected variation potentially indicates an anomalous state,
which negatively impacts user requests. Online metrics analysis
can anticipate anomalous executions, thus enabling distributed
tracing to sample [6] informative requests. To achieve its goal, the
MicroView agent combines outputs from different classifiers. If
at least one classifier detects an anomalous state, the agent trig-
gers the distributed tracer. At this point, the tracer samples all
incoming requests until the next classification cycle. In this regard,
MicroView substantially differs from existing tools, which collect
metrics and traces independently and correlate them offline. No-
tably, MicroView is complementary to state-of-the-art Hindsights’
retroactive sampling [6].

3 PRELIMINARY EVALUATION

Experimental setup. We implemented a preliminary prototype
in Python that processes datasets of metrics and traces offline. The
datasets are collected from running a widely used benchmark appli-
cation [1] on a 4-node Kubernetes (v1.25.5) cluster, each equipped
with 8 Intel Xeon E3-1230v6 CPU cores at 3.50GHz, 32 GB of RAM,
and running Ubuntu 22.04. We deployed the Istio service mesh
on the cluster and used Locust for load generation. We instru-
mented for observability with a Jaeger tracer and a Prometheus
instance that collects service-level and container-level metrics ev-
ery second. Service-level metrics include Istio metrics — such as
istio_requests_total — and custom application metrics when-
ever available (e.g., Redis), while container-level metrics are re-
source usage counters (CPU, memory, disk I/O, etc.) exported by
cAdvisor. We fit the sketch classifiers with an initial training phase.
During this phase, we also tune hyperparameters for each sketch
(i.e., microservice) separately. First, we use a healthy metrics dataset
from which initialize the sketches to learn “normal” behavior [2].
We obtain the dataset when the application runs in underload condi-
tions and with over-provisioned vCPU and memory limits. Second,
we inject faults in the service and produce a second dataset, that
we use to pick the hyperparameters that give the best F1-score. We

Alessandro Cornacchia, Theophilus A. Benson, Muhammad Bilal, and Marco Canini

B head-1% [head-20%

= 100

3 w/ microview

Coverage [%]
-
w o
o o
Overhead [%
w
o

o

ol

memory CPU

ol ol

memory CPU

o

Figure 2: Performance-overhead trade-off of sketch-assisted dis-
tributed tracing for different anomalies.

use ChaosMesh for fault injection and simulate stress scenarios on
the containers, such as CPU and memory.

Can MicroView help tracing? We use the pre-trained sketches
to guide trace sampling (as per Sec.2.2). Every 30 seconds we inject
short failures lasting 5 seconds on a randomly selected service. We
compare against head-based sampling in terms of coverage, i.e.,
percentage of collected anomalous traces, and overhead, measured
as percentage of false positives. A trace is defined as anomalous
when exhibits high latency or contains error codes. Figure 2 shows
that tracing + MicroView achieves nearly total coverage, 5x better
than sampling 20% of the request. For more than 70% performance
boost, MicroView adds 5% overhead. This is because head sampling
relies on luck to capture faulty traces, while MicroView is guided
by metric signals.

4 RESEARCH AGENDA

We delineate challenges and research avenues left as a future work.
Host-IPU communication. The data-plane, that we plan to im-
plement on a IPU accelerator, needs to access metrics that sit on
the host OS [5]. A natural choice is to use DMA technology and
bypass the host CPU. In this space, we identified two competing
alternatives: RDMA and NVIDIA DOCA libraries, which we plan
to compare. Complementary to it, the next step on the host side is
the definition and evaluation of the interfaces between MicroView
and the microservices for metrics creation and update.
Alternative use-cases. Different metrics have different natures.
Some fluctuate on short time scales (e.g., CPU, power), while other
stays constant and change only in response to human reconfigura-
tions. MicroView can work as a filter for metric ingestion, dynami-
cally deciding which metrics are worth ingesting, which can save
storage costs for the tenant [3] and bandwidth for the provider.

REFERENCES

[1] 2023. Online-boutique. https://github.com/GoogleCloudPlatform/microservices-
demo

[2] Hao Huang and Shiva Prasad Kasiviswanathan. 2015. Streaming anomaly detection
using randomized matrix sketching. VLDB Endowment 9, 3 (2015), 192-203.

[3] Jorg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia, Ruichuan
Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve: Actionable
insights from monitored metrics in distributed systems. In ACM/IFIP/USENIX
Middleware.

[4] Zhe Wang, Teng Ma, Linghe Kong, Zhenzao Wen, Jingxuan Li, Zhuo Song, Yang
Lu, Guihai Chen, and Wei Cao. 2022. Zero Overhead Monitoring for Cloud-native
Infrastructure using RDMA. In USENIX ATC.

[5] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. 2023. Char-
acterizing Off-path SmartNIC for Accelerating Distributed Systems. In USENIX
OSDIL

[6] Lei Zhang, Zhigiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan Mace.
2023. The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems. In
USENIX NSDIL

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

	Abstract
	1 introduction
	2 Proposed design
	2.1 MicroView overview
	2.2 Use-case: distributed tracing

	3 Preliminary evaluation
	4 Research agenda
	References

