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ABSTRACT
To provide high availability and fault-tolerance, SDN control
planes should be distributed. However, distributed control
planes are challenging to design and bootstrap, especially if
this is done in-band, without a dedicated control network,
and without relying on legacy protocols. We present Me-
dieval, a plug & play, distributed control plane that supports
automatic topology discovery and management, as well as
flexible control plane membership: controllers can be added
and removed dynamically. Medieval comes with interesting
robustness guarantees and is provably self-stabilizing: from
any initial topology, the controllers quickly self-organize
and establish a communication channel among themselves.
Given the resulting managed control plane, arbitrary net-
work control services can be implemented on top. Inter-
estingly, Medieval is also self-reliant, in the sense that it is
based on OpenFlow only, and does not require any legacy
protocol to bootstrap.

1. INTRODUCTION & CONTRIBUTION
Software-Defined Networking (SDN) outsources control

of data plane switches to a collection of network-attached
servers. This paper explores the fundamental problem of
how to provide connectivity between the control plane and
the data plane. In particular, we advocate for a software-
driven, in-band control mechanism to bootstrap and main-
tain connectivity, and more generally, to support a dis-
tributed SDN control plane. To make this case, let us con-
sider what services are required by such a control plane:
Connectivity: to allow communication between con-
trollers and switches, and between controllers.
Controller discovery: to allow individual controllers dis-
cover the existence of other controllers and to detect when
some are no longer reachable.
Switch discovery: to detect switches that are not yet
associated with a controller and establish a control chan-
nel with them. Also, to reestablish communication with
switches in case of link failure, network partitions, or con-
troller failures.

Self-stabilization is a natural approach to meet these goals
while coping with dynamic conditions, such as arrival and
departure of controllers, arbitrary topology changes (e.g.,
switch or link failures), and communication errors (e.g., tem-
porary packet losses or delays). Recall that a distributed
system that is self-stabilizing will end up in a correct state
independently of its initial state [3].

We present Medieval, a plug & play, in-band SDN control
network thats supports the desired control plane services in
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(a) Controllers “conquer” switches adjacent to their regions of control and build a 
spanning tree for controller-to-switch connectivity.
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(b) Per-controller global spanning trees provide controller-to-controller connectivity.
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Figure 1: Medieval controllers iteratively explore the
network, take control over unmanaged switches (a) and
build per-controller spanning trees (b).

a robust and self-stabilizing manner. Formally, we can prove
the following theorem.

Theorem 1.1. Medieval is self-stabilizing: Given any
initial configuration and set of controllers, Medieval will es-
tablish a communication network between controllers in any
physically connected component.

Medieval nicely complements ongoing related research,
and can be used together with and support systems such as
ONIX [6], ElastiCon [4], Beehive [7], Kandoo [5], STN [2],
to just name a few. Our work also provides missing links for
the interesting work by Akella and Krishnamurthy [1], whose
switch-to-controller and controller-to-controller communica-
tion mechanisms rely on strong primitives such as consensus
protocols, consistent snapshot and reliable flooding, which
are not currently available in OpenFlow switches.

2. MEDIEVAL
The goal of Medieval is to place each switch in the net-

work under the control of a single controller and to establish
routes that support connectivity to the switches and connec-
tivity between controllers. To do so, each controller runs the
same algorithm continuously, reacting to any change in the



Figure 2: A screenshot from our graphical demonstration
of Medieval.

# controllers 1 2 3 4 5 6 7 8

Time (ms) 9382 6983 6150 4224 6035 5104 3704 3680

Table 1: Time to conquer all switches in a Fat-Tree k = 4.

network (e.g., due to failures or additions of switches, links,
or controllers) in a self-stabilizing manner.

Medieval establishes connectivity in the control network
by creating and maintaining two distinct spanning trees for
each controller :
(1) A per-region spanning tree (Figure 1a) — a bi-directional
spanning tree that spans over the region owned by the con-
troller. The region owned by a controller is a connected
graph containing the controller and switches it controls.
(2) A network-wide spanning tree (Figure 1b) — a span-
ning tree directed and rooted at the controller that spans
over the whole network; i.e., it supplies each switch and all
other controllers with a path to reach the controller. The
aim of this second spanning tree is precisely to enable each
controller to reach any other controller.

Figure 1 illustrates at a high level an example instance
of Medieval. Figure 1a shows the region’s spanning trees
of two controllers A and B. A’s region comprises switches
S1−S4, and B’s region all other switches except S6. S6 has
yet to connect to a controller, as denoted by the fact that
this switch is broadcasting an ARP packet to its neighbors
in order to resolve the controller’s IP address. Figure 1b
shows the two fully established network-wide spanning trees
as colored arrows that indicate the path towards the two
color-coded controllers.

Initially, the region of each controller only includes the
controller itself. At this point, the switches that are directly
connected to the controller can be added to that controller’s
region. When this is done, switches that are 1-hop away can
be added to the controller’s region, etc.

In Medieval, we pre-configure each switch with a virtual
controller IP and a set of a priori OpenFlow rules, which
apply to control packets. A switch initiates the connection
with the controller by resolving this IP address via an ARP
request that is broadcasted to all ports. In the absence of

failures, the switch connects to the first controller whose
ARP reply it receives. Once the controller establishes an
OpenFlow session with the switch, the controller proceeds
as a first step to install into the connected switch certain
ownership rules. These rules override the a priori ones and
are associated with an activity timeout.

This mechanism maps to region growth as follows. Ini-
tially, controllers can only answer the ARP request of
switches directly connected to them. After taking owner-
ship of a switch S, a controller installs rules on the switch.
In particular, these rules enable ARP requests of switches
connected to S to reach the controller.

3. PRELIMINARY EVALUATION
To validate our approach, we also implemented a Medieval

prototype as an emulator in Java. Our unoptimized proto-
type emulates OpenFlow switches and controllers using sep-
arate lightweight threads, while links are modeled by mes-
sage queues. We made a preliminary experiment in which
we used a Fat-Tree topology with k = 4. We used between
1 to 8 controllers, each attached to a single edge switch and
measured the time it took for all switches to become man-
aged. Table 1 illustrates the results. We observed a roughly
linear trend for this metric, which is what was expected.

4. DEMO
Figure 2 illustrates our graphical demonstration of Me-

dieval in an example scenario. In this figure, switches S1
and S7 are establishing a TCP connection with the con-
troller closest to them. In our demo, we present the complete
execution of Medieval until its convergence.
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