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Abstract—Resource-constrained organizations with vast
datasets often face significant challenges in training and
fine-tuning large language models (LLMs) due to privacy and
compliance requirements. These organizations cannot share
their sensitive data but still require external computational
resources for model creation. In this paper, we investigate the
effectiveness of split learning (SL) techniques for fine-tuning
LLMs while maintaining data privacy. We compare three
strategies: a centralized approach, where all fine-tuning occurs
on a centralized server, and two split learning strategies (plain
and U-shaped), where fine-tuning is distributed between a
client and a cloud server, ensuring the client retains control
over sensitive data. The U-shaped strategy enhances the plain
split learning approach by ensuring labels are not shared
with the server, offering stronger privacy protection. Our
experiments empirically evaluate these methods, comparing
model quality and training efficiency. The results show that
all three strategies achieve comparable model performance,
evaluated using the loss metric. Although the U-shaped SL
strategy incurs higher network transmission costs, it provides
enhanced privacy guarantees. This presents a trade-off between
privacy and communication efficiency, making U-shaped SL
a strong candidate for privacy-preserving LLM fine-tuning in
resource-constrained environments.

Index Terms—LLMs, Split Learning, Fine-tuning, Privacy.

I. INTRODUCTION

Large Language Models (LLMs) are increasingly gaining
traction, finding applications across diverse domains, including
programming, biomedicine [1], and question answering [2].
With model sizes often surpassing several billion parameters,
successful LLMs are typically trained in data centers equipped
with specialized hardware, requiring significant investments in
terms of finances, energy consumption, and time [3]. Given
their scale, these models necessitate vast datasets for training;
thus, most LLMs leverage extensive publicly available data
sourced from heterogeneous domains, such as web-scraped
content. This diversity enables them to function as versatile
problem solvers across various tasks, including powering AI-
driven interactions in digital ecosystems such as the Metaverse.
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Fig. 1. High level architecture of (a) centralized training vs (b) SL training.

Tailoring an LLM using domain-specific private data—the
focus of our work—promises to enhance performance for
specialized applications. Many organizations, for instance,
depend on models trained on proprietary customer data as a
cornerstone of their business, requiring a model specifically
adapted to their private datasets. This is particularly relevant
in customer experience management and personalized virtual
experiences, where organizations seek to fine-tune LLMs on
sensitive user interactions to improve engagement, recommen-
dation accuracy, and real-time responsiveness. In Metaverse
environments, where AI plays a critical role in generating
dynamic content, moderating interactions, and personalizing
user experiences, the need for adaptive and privacy-preserving
fine-tuning is even more pronounced. However, training such
models in-house is often infeasible for Small and Medium-
sized Enterprises (SMEs) due to prohibitively high compu-
tational costs. A company managing terabytes of data, for
instance, would need significant on-premise resources to train
a model on its dataset, but setting up such an infrastructure
requires substantial upfront investment and may sometimes
be infeasible. Fine-tuning pre-trained models, particularly
with parameter-efficient strategies [4]–[6], reduces the train-
ing investment compared to training from scratch. However,
the computational cost remains substantial, especially when
models require frequent updates to adapt to shifting data
distributions.



On the other hand, companies may decide to rent cloud
computing resources to train on their data. However, transfer-
ring private data to third-party cloud providers in order to use
traditional centralized learning approaches raises concerns,
as private datasets such as customer experience data often
contains personally identifiable information (PII) and, in some
cases, cannot be outsourced to external entities due to privacy,
legal, and compliance restrictions [7]. This challenge is partic-
ularly evident under regulations like the Saudi Personal Data
Protection Law (PDPL), which imposes strict data localization
and processing limitations, often exceeding the restrictions
found in GDPR, thereby placing additional constraints on AI
companies operating in the region.

To sump up, training1 very large models remains impractical
for SMEs due to the high memory and compute requirements.
Consequently, there is a pressing need for methods that
can leverage both local infrastructure and cloud computing
resources without exposing raw data to the cloud. In this paper,
we address this gap by empirically analyzing split learning
(SL) – a state-of-the-art approach that enables model training
on private data while leveraging the high compute resources
of a centralized server – as a privacy-preserving alternative to
traditional centralized learning, specifically for training LLMs.
Fig. 1 contrasts these approaches.

SL divides the burden of model training between a data-
owning and resource-constrained client – in our case, the
company possessing vast datasets – and a compute-powerful
server. Thus, SL is expected to accelerate model training
by leveraging cloud resources while preserving data pri-
vacy, effectively addressing both restrictions mentioned earlier.
However, its practical performance for training LLMs remains
unclear, especially given the lack of comprehensive studies on
LLM training with SL in the current literature, motivating our
work. In our analysis, we consider both plain SL, where the
client must disclose target labels to the server, and U-shaped
SL, which eliminates this requirement, thus further enhancing
client data privacy.

Our main contributions therefore are:
• We conduct comprehensive experiments using central-

ized, plain SL, and U-shaped SL approaches, offering
valuable insights and analysis to guide practitioners in
applying these methods to real-world scenarios.

• We explore optimizations to enhance the performance of
training LLM with SL, in terms of resource efficiency
and privacy enhancement.

II. RELATED WORK

SL was initially proposed to address the growing compu-
tational demands of deep neural networks by enabling data-
owning clients to offload computation to a powerful server,
with the topmost layers placed on the server [8]. However,
this formulation required clients to send target labels to the
server. The introduction of the U-shaped architecture resolved

1We broadly refer to LLM training as the process of updating model
parameters using an organization’s private data, whether this involves fine-
tuning a pre-trained LLM or (pre-)training an LLM from scratch.

this issue by placing both the lowermost and topmost layers
on the client [9]–[12]. In this approach, the client computes
the loss locally, eliminating the need to share target labels with
the server. Regardless of the specific architecture – U-shaped
or Plain SL – training proceeds via standard backpropagation,
with devices exchanging activation maps during the forward
pass and gradients during the backward pass. Early SL for-
mulations involved only one client training the model at a
time. However, this approach proved inefficient because the
server remains idle during the client’s local computation and
data communication. This limitation led to the development of
parallel SL (PSL) approaches, where multiple clients train a
model simultaneously using the same server [13]–[16]. While
PSL mitigates server idle time, it is beneficial only when
multiple clients collaborate in training.

Other work in the PSL domain has tackled other challenges,
such as high network overhead [17]–[19], server-client update
imbalance [20], [21], heterogeneous model partitioning [22],
[23], and security aspects of the training process [24].

In the domain of LLMs, SplitLoRA [25] introduces the first
SL LLM fine-tuning framework, combining the advantages of
Federated Learning’s (FL) parallel training with SL’s model
partitioning, addressing the computational and communication
challenges of fine-tuning LLMs on distributed private data.
However, authors in [25] do not provide an analysis of
how varying layer placements affect validation loss, training
behavior, and GPU utilization.

From an application perspective, SL has been successfully
applied across various domains, including healthcare [10] and
assisting IoT devices during training [18].

III. METHODOLOGY

We start by contrasting the centralized approach with two
SL variants, namely Plain SL and U-shaped SL.

A. Centralized Approach

As shown in Figure 1, in centralized training, all participat-
ing nodes – e.g., compute nodes in a data center – have full
access to the entire training dataset [26]. Training can occur on
a single machine or make use of nodes using techniques such
as data parallelism (where different nodes process separate
batches of the same dataset), tensor parallelism (where model
parameters are split across nodes), or pipeline parallelism
(where different model layers are assigned to different nodes
and micro-batches of training data are pipelined to parallelize
resource utilization). As shown in Figure 1, in centralized
training, all participating nodes – e.g., compute nodes in a
data center – have full access to the entire training dataset [26].
Training can occur on a single machine or make use of nodes
using techniques such as data parallelism (where different
nodes process separate batches of the same dataset), tensor
parallelism (where model parameters are split across nodes), or
pipeline parallelism (where different model layers are assigned
to different nodes and micro-batches of training data are
pipelined to parallelize computation).



Regardless of the number of nodes involved, the key char-
acteristic of centralized fine-tuning is that all computations
happen within a controlled environment where data remains
fully accessible to all training nodes. This approach simplifies
debugging and management but completely exposes training
data, thus potentially introducing privacy and data governance
issues.
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Fig. 2. Comparison of Plain SL and U-Shaped SL. LN represents the last
layer processed on the client side, while LN+1 to LN+M indicate the layers
handled by the server.

B. Plain SL Approach

SL is a decentralized training method in which a model is
partitioned into separate parts between a resource-constrained
client and a compute-powerful server [9]. In the plain con-
figuration, the model is divided so that the initial layers –
e.g., in the case of LLMs, the embedding table and the
initial transformer layers – are trained on the client, while the
rest on the server. Training then proceeds by partitioning the
computational graph between the two entities. More in detail,
in the case of LLMs, the workflow of the Plain SL approach
is the following:

1) The client samples a batch of data and performs a
forward pass through its assigned model segment.

2) The client sends the necessary data to the server to
execute its portion of the computational graph. Typically,
this includes the activation maps from the forward pass
and the target labels, which the server uses to compute
the loss. In the case of LLM training, where fixed-
sized token sequences are used but some tokens serve

as padding, the client must also send an attention mask
to indicate which tokens should be attended.

3) The server receives the data from the client and com-
pletes the forward pass on its model segment. It then
computes the loss and backpropagates it until obtaining
the partial derivatives with respect to the embeddings
received from the client. Finally, the server sends these
gradient updates back to the client.

4) The client receives the server’s gradients and backprop-
agates them through its model, updating its weights
accordingly.

Thus, in Plain SL, as illustrated in Figure 2, the server assists
the client during training by handling a compute-intensive
segment of the computational graph. This approach offers
several benefits, namely that shifting computation does not
alter the computation itself, and it significantly reduces the
client’s computational burden. Importantly, in SL, the server
receives only intermediate activations rather than raw data,
enabling privacy-preserving collaboration across distributed
data sources while ensuring that raw data remains on the client.

In this work, we extend SL to a real-world fine-tuning
scenario by integrating Low-Rank Adaptation (LoRA) [5] for
efficient adaptation of LLMs. We implement LoRA within SL
by applying rank decomposition to reduce the number of train-
able parameters, thereby further reducing memory require-
ments on the client side. This integration allows fine-tuning
LLMs under practical hardware constraints while maintaining
computational feasibility. Furthermore, we evaluate different
SL configurations, varying the number of layers placed on the
client side, to analyze their impact on memory efficiency and
performance.

C. U-Shaped SL Approach

One limitation of Plain SL as discussed above is that it
requires the client to share the target labels with the server,
possibly exposing sensitive information. This approach is thus
appropriate only when labels are not highly sensitive. In
contrast, U-Shaped SL offers a more secure approach by
wrapping the network around at the server’s end layers. In this
configuration, the client handles the final output and generates
gradients from the server’s end layers. Crucially, no label
sharing is required between the server and clients, and raw data
is never exchanged [27]. This structure significantly reduces
the exposure of sensitive information during both forward and
backward propagation, making U-Shaped SL a more privacy-
preserving alternative.

To enhance adaptability and safeguard sensitive data, we
introduce client-side hidden layers both after the embedding
layer and before the LLM head. The embedding layer itself, re-
siding on the client side, generates the first textual representa-
tions (embeddings), while adding more hidden layers after the
embeddings increases the complexity of exchanged features,
thus enhancing training security. This structured placement
ensures that raw data processing remains confined to the client,
minimizing exposure to the server and reducing the risk of
data leakage. During training, both activations and gradients



are exchanged between the client and server in a two-way
process. The U-shaped SL architecture leverages this design
by mirroring the number of client-side layers on both ends of
the model. For instance, when the client retains two layers,
one set is positioned after the embedding layer, and another
set is placed before the LLM head, while the server handles
the remaining layers. This approach maintains the integrity of
contextual transformations while protecting sensitive input and
output representations. By keeping terminal attention layers at
the client side, we ensure controlled and secure processing
without compromising the model’s generative capabilities. In
our configuration, the LLM head lacks trainable parameters
as a result of the LoRA setup, which eliminates the risk of
gradient leakage at the output stage.

IV. EXPERIMENTAL DESIGN

To conduct our experiments, we utilize a leading cloud
hosting provider to run the central node in the centralized
setup, while in the SL setup, the server node is also hosted in
the cloud, and the client nodes operate on local infrastructure.
The network latency between client and server nodes in SL
is approximately 0.394 ms, with a bandwidth of 4.97 Gbps,
ensuring stable communication for model training.

A. Model

Throughout our experiments we use the 13B version of
AceGPT [28], a state-of-the-art language model specifically
designed to handle Arabic text, focusing on understanding and
generating language that aligns with the cultural and linguistic
nuances of the Arabic-speaking world.

AceGPT is configured using Parameter-Efficient Fine-
Tuning (PEFT) techniques, specifically through the LoRA
method [5]. This approach involves adding lightweight
adapters to the original model layers, thereby reducing compu-
tational load and training time. The final trainable parameters
constitute approximately 0.397% of the total model parame-
ters.

The fine-tuning process is conducted with a batch size of
8, a sequence length of 200, and a hidden size of 5,210,
optimizing the model’s performance while balancing computa-
tional efficiency. The experimental setup utilizes the PyTorch
framework with the AdamW optimizer, a learning rate of
5×10−4, a weight decay of 0.01, and computations performed
in half precision.

B. Data

The dataset used in this study consists of Arabic tweet-
reply pairs from X (formerly, Twitter) for fine-tuning an LLM
focused on customer care interactions. This real-world con-
versational data helps the model learn interaction nuances but
presents challenges such as diverse dialects, code-switching,
informal language, spelling variations, emojis, abbreviations,
short-text limitations, and limited labeled data. We extracted
10 million Arabic tweet-reply pairs and applied extensive
cleaning by removing non-Arabic content, English characters,

irrelevant symbols (except question marks), short numeric val-
ues (2 to 7 digits), excessive character repetitions, duplicates,
and records under 17 characters, reducing the dataset to 3.8
million pairs. A logistic regression classifier, trained on 1,000
labeled customer care examples and 1,000 noisy tweets with
an 86% accuracy, was applied to this dataset, identifying 2.5
million tweet-reply pairs relevant to customer care.

C. Implementation

We implement all SL algorithms using the SplitBud frame-
work [29]. The server machine is equipped with 4 NVIDIA
A10G GPUs (24 GB RAM each), a 48 vCPU AMD EPYC
processor, and 192 GB DDR4 RAM, while the client ma-
chine features an NVIDIA Tesla T4 GPU (16 GB RAM),
4 vCPUs Intel Xeon processor, and 16 GB GDDR6 RAM
and they communicate via bidirectional gRPC streams. The
client establishes a gRPC connection with the server and uses
it throughout training to exchange – depending on the SL
configuration – activation maps, gradients, or target labels.

In our implementation, the process starts by initializing
the server, which holds the majority of the pre-trained LLM
model. The client is then initialized with only a few layers
of the model (specified below). The training process involves
splitting the dataset into batches, with the client sending
activation maps after computing the forward pass. The server
computes gradients and sends them back to the client, which
updates its model using the received gradients.

V. RESULTS AND DISCUSSION

The evaluation focuses on training loss behavior, validation
loss, training time, GPU utilization, FLOPs, and computing
and communication costs.

In the following graphs, each SL strategy is labeled with a
number to indicate the number of transformer layers processed
on the client before offloading to the server. In “Plain - 0”
or “U-shaped - 0”, the client handles only the embedding
layer, while in “Plain - 1” or “U-shaped - 1”, it processes
one transformer layer before offloading, and in “Plain - 2”
or “U-shaped - 2”, it processes two transformer layers before
offloading computation to the server. The centralized strategy
serves as a baseline, where all computations occur on the
server without any client-side processing.

A. Training Loss Behavior

Fig. 3 shows the training behavior of the central, plain,
and U-shaped SL strategies, demonstrating that all three ap-
proaches exhibit nearly identical training dynamics. Despite
differences in model partitioning, the validation loss curves
follow the same trend, converging at similar rates and reaching
comparable final values. This empirically demonstrates that
SL – whether in a plain or U-shaped configuration – does not
introduce significant divergence from centralized fine-tuning
in terms of training behavior, reaffirming that model updates
remain consistent across all strategies. The minor differences
between strategies stem from the lack of synchronization
between the client and server’s random number generators,
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as well as the limited precision of the floating-point represen-
tation.

B. Validation Loss

Fig. 4 shows the final validation loss after the fine-tuning
process completes across all training configurations. We ob-
serve that the obtained models are similar, as indicated by the
overlapping error bars in the plot. While the mean validation
losses of these strategies vary slightly, the standard deviations
(error bars) show considerable overlap, suggesting that the
performance differences are within a margin of statistical
uncertainty.

To further study whether there are significant differences
in validation loss across the different training configurations,
we conduct a one-way Analysis of Variance (ANOVA) test.
The results yielded an F-statistic of 2.087 with a p-value of
0.12045. Since the p-value is greater than the conventional
significance threshold of 0.05, we do not reject the null
hypothesis, indicating that there is no statistically significant
difference in validation loss among the evaluated training
strategies. This suggests that all configurations – whether
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Fig. 5. Training time for different strategies, showing the effect of SL.

centralized or SL – achieve comparable performance in terms
of validation loss.

C. Training Time

Fig. 5 shows the training time for each strategy for 50
iterations. We report the training times for SL as well as
centralized training. Note that centralized training values refer
to training entirely on the cloud and thus serve as a lower
bound for the training time. In our setting, the client cannot
train the model purely locally as it does not have enough
memory.

Centralized fine-tuning, utilizing 4 × A10G (24GB each),
completes all computations locally on high-performance hard-
ware without client-server communication overhead; thus, it
is expected to be faster than SL approaches.

In SL, runtime behavior depends on the client-side work-
load and communication overhead. Fewer client layers reduce
computation on the client, which leads to faster runtime as the
client has more modest resources (Tesla T4, 16GB) than the
server.

Between the two SL variants, the U-shaped approach gen-
erally incurs higher training time than plain SL due to the
additional forward and backward pass computations at the
client and the additional traverse of the network.

D. GPU Utilization

The GPU utilization shown in Fig. 6 illustrates the distri-
bution of memory usage between the server and the client
across different training strategies. In the Centralized setup,
there is only a single server GPU, which utilizes around 55
GB of memory, as no client is involved in training. In SL
configurations, a portion of the model is offloaded to the
client, leading to a decrease in server memory usage and a
corresponding increase in client memory usage.

However, the total GPU memory consumption (server +
client) is not constant across configurations. This variation is
primarily due to the difference in computation between plain
and U-shaped SL. In U-shaped SL, the client must perform
both the initial forward pass and the final backward pass,
leading to higher activation storage and gradient computations,
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TABLE I
FLOPS DISTRIBUTION FOR DIFFERENT CLIENT LAYERS AND

CENTRALIZED TRAINING

Approach Client FLOPs Server FLOPs Total FLOPs
Centralized 0.00e+00 4.32e+13 4.32e+13

0 layer 0.00e+00 4.32e+13 4.32e+13
1 layer 1.08e+12 4.21e+13 4.32e+13
2 layers 2.16e+12 4.11e+13 4.32e+13

which increase its memory usage. In contrast, Plain SL of-
floads all backward computations to the server, reducing the
client’s memory footprint. For example, in U-shaped - 2, the
client memory usage is significantly higher compared to Plain
- 2, reflecting the additional processing burden.

Table I shows the distribution of the Floating Point Opera-
tions per Second (FLOPs) across different training strategies.
Note that the total FLOPs remains constant, as expected.

E. Computational and Communication Cost Analysis

We now present the computational and communication cost
analysis for fine-tuning the full dataset, which consists of
2.5 million data points. The results offer insights into the
total training cost, factoring in both the computing server
expenses and data transfer costs within a high-performance
cloud infrastructure. Computing costs $5.672 per hour and
egress data transfer costs 0.01$ per GB. The U-shaped SL
approach requires 62.5 MB of data transfer per training iter-
ation, whereas the Plain SL approach requires 31.25 MB per
iteration. By comparing different training configurations, we
evaluate the efficiency and financial implications of centralized
and SL approaches. Table II summarizes the cost analysis for
the full dataset.

F. Key Findings

The primary finding from these experiments is the validation
loss and training loss behavior are nearly identical across all
methods, suggesting that SL can achieve the same model per-
formance as centralized learning, with no significant accuracy
degradation.

Increasing the number of client-side layers in SL leads to
longer training times, as more computations are performed on

TABLE II
COST ANALYSIS ACROSS TRAINING STRATEGIES IN A LEADER CLOUD

HOSTING FOR FULL DATASET

Strategy Time (h) Data Transfer (GB) Total Cost (USD)
Centralized 224.51 N/A 1273.41

Plain-0 270.73 4882.8125 1584.43
Plain-1 272.44 4882.8125 1594.11
Plain-2 278.66 4882.8125 1629.37

U-Shaped-0 294.22 9765.625 1766.48
U-Shaped-1 303.42 9765.625 1818.66
U-Shaped-2 316.91 9765.625 1895.19

the client instead of the high-performance server. While plain
SL initially shows a slight advantage in speed, U-shaped SL
incurs additional overhead due to handling both the lowest
and highest layers on the client. This trade-off highlights the
impact of model partitioning choices on training efficiency. In
contrast, centralized fine-tuning is faster than all SL configu-
rations since it runs entirely on the high-performance server
without relying on a weaker client device.

G. Implications of Findings

The results indicate that SL strategies – especially U-
shaped – offer several key advantages without compromising
performance:

Privacy Preservation: One of the most significant advan-
tages of SL, particularly the U-shaped strategy, is its ability
to limit direct access to raw data. Since only intermediate
representations are shared with the server, SL reduces direct
exposure of sensitive inputs. However, it is important to
acknowledge that SL is not entirely immune to privacy attacks,
such as reconstruction attacks where adversaries attempt to re-
cover input data from embeddings. Further research is needed
to assess the extent to which raw data can be reconstructed in
SL and mitigate such risks effectively.

Scalability: SL methods provide a scalable approach to
training large models. By distributing the model across multi-
ple servers that are able to handle large models that may not
fit on a single machine.

Resource Efficiency: Fine-tuning the model requires approx-
imately 55 GB of GPU memory, which far exceeds the client’s
16 GB capacity, making centralized training on the client
impossible due to out of memory issue. SL resolves this limita-
tion by offloading the largest portion of the model to the server
and retaining only a smaller subset of layers on the client,
SL drastically reduces the client’s memory load. This division
enables the client to train effectively within its memory limit,
demonstrating that SL is a powerful solution for low-memory
environments, especially when resource-constrained devices
are involved.

VI. CONCLUSION AND FUTURE WORK

Our study explores SL for fine-tuning LLMs while preserv-
ing privacy. We evaluated centralized, plain SL, and U-shaped
SL, showing that SL achieves validation loss comparable to
centralized training. The U-shaped strategy further enhances
privacy by keeping both data and labels on the client side.



While our experiments used AceGPT, the proposed SL
techniques can generalize to other LLMs. Future work should
optimize training efficiency, particularly in distributed settings,
and explore scalability for larger models and multi-client
environments. Adaptive SL architectures that dynamically
distribute computation could further improve efficiency and
privacy.

Additionally, SL should be compared to anonymization-
based approaches, which lack formal privacy guarantees and
degrade text quality [30]. A systematic comparison could
clarify trade-offs and inform better privacy-preserving fine-
tuning strategies. Finally, real-world evaluations in privacy-
sensitive domains like healthcare and finance would provide
valuable insights into SL’s practical viability.
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