
Between Promise and Pain: The Reality of Automating
Failure Analysis in Microservices with LLMs

Alessandro Cornacchia
KAUST

Iliyas Alabdulaal
KAUST

Ibraheem Saghier
KAUST

Albaraa Mirdad
KAUST

Omar Fayoumi
KAUST

Marco Canini
KAUST

Abstract
Large Language Models (LLMs) are increasingly explored
as general-purpose assistants for infrastructure operations,
helping automate tasks like querying data, analyzing logs,
and suggesting fixes. In this paper, we consider the more gen-
eral and ambitious problem of fully automating root cause
analysis (RCA) in microservice systems, where LLMs must
collect information, reason about it, and interact with the
environment to detect, localize and resolve issues. Anecdotal
evidence offers useful insights and partial solutions, but the
broader challenge remains unresolved. We systematically
evaluate multiple LLM agent architectures across a range of
incident scenarios. We study how different tool-augmented
agents perform, and shed light on common failure modes,
including hallucinated reasoning paths and inefficient use of
context. Our findings reveal both the promise and the limita-
tions of current approaches, and point to concrete directions
for more robust and effective use of LLMs in this domain.

CCS Concepts
• Computer systems organization → Cloud computing;
• Computing methodologies → Intelligent agents; •
Applied computing → Service-oriented architectures.

Keywords
Cloud-native applications, observability, Large Language
Models, AI agents, root cause analysis

ACM Reference Format:
Alessandro Cornacchia, Iliyas Alabdulaal, Ibraheem Saghier, Al-
baraa Mirdad, Omar Fayoumi, and Marco Canini. 2025. Between
Promise and Pain: The Reality of Automating Failure Analysis in
Microservices with LLMs. In 16th ACM SIGOPS Asia-Pacific Work-
shop on Systems (APSys ’25), October 12–13, 2025, Seoul, Republic of

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
APSys ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1572-3/25/10
https://doi.org/10.1145/3725783.3764388

Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3725783.3764388

1 Introduction
It is notoriously difficult to diagnose issues in microservice
systems, as Root Cause Analysis (RCA) [18, 20, 29, 33, 53,
57, 60] requires correlating and finding causality relations
across diverse observability data and components [16, 17,
47, 59, 62]—a process that overwhelms rule-based tools, im-
posing significant manual burden on already strained Site
Reliability Engineers (SREs). Paradoxically, despite the wide
range of observability tools available today, organizations
face crippling complexity to resolve incidents and minimize
downtimes [30]. This complexity increases costs and can
outpace the capacity of available human expertise.

Large Language Models (LLMs)–e.g., OpenAI’s GPT [37],
Anthropic’s Claude [8],Meta’s Llama [36] and several others—
have demonstrated the ability to processmultimodal data and
engage in natural-language-driven reasoning [56]. Among
the diverse application areas, LLMs can excel in several te-
dious subtasks that SREs routinely perform, such as crafting
API invocations [2], querying metrics [61], reasoning about
time-series [34, 55], logs [44] and distributed traces [7]. As
a consequence, the community is naturally gravitating to-
ward exploring their use to automate SREs’ operations at
large [24, 26, 42, 51, 58], with commercial cloud vendors
already integrating LLM-driven tools [40, 48].
However, while anecdotal evidence has so far demon-

strated some benefits of LLMs in supporting SRE subtasks,
how to fully automate the end-to-end workflow of RCA
and incident mitigation in microservice applications remains
an open problem. For example, RCAgent [51] tackles RCA
automation in the cloud, but—beyond the lack of publicly
available implementations and associated private datasets—it
doesn’t directly target microservice applications. Similarly,
AIOpsLab[45] is the first unified platform to evaluate AI
agents for microservice diagnosis. However, it remains cen-
tered on experiment orchestration and benchmarking, and
only surfaces the performance of LLM-based agents for end-
to-end incident resolution. Therefore, it is still hard to draw
general conclusions about the effectiveness of LLMs in mi-
croservice’s RCA workflows.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725783.3764388
https://doi.org/10.1145/3725783.3764388
https://doi.org/10.1145/3725783.3764388

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

In this paper, we share our initial experience with ap-
plying LLMs to fully automate RCA tasks in microservice
applications. We implement multiple tool-augmented agent
architectures and characterize their behavior in across di-
verse failure scenarios. More specifically, we examine and
systematically catalog the good – e.g., successful incident
localizations and effective tool usage – the bad – e.g., hallu-
cinated API calls and parameter errors – and the ugly – e.g.,
largely missed objectives or undesired system actions, dis-
ruptive for the application. These findings reveal that while
LLMs show promise for certain diagnostic subtasks, their
decision-making processes remain prone to failure modes
even when triaging apparently simple failure cases. At their
core, we find that these issues can manifest even with recent
reasoning models [27] and regardless of the use of advanced
prompting strategy [28, 52, 56], and multi-agent architec-
tures [32, 54]. Based on these observations, we explore po-
tential opportunities, such as offloading telemetry processing
to specialized expert agents – which can help improve diag-
nostic accuracy and tooling flexibility. Lastly, we preliminary
curate a benchmark of Q&A to assess the ability of LLMs to
retrieve and reason on artifacts of microservices applications,
like code and documentation. Our work aims to share the
current reality of automated LLM-based RCA, highlighting
both capabilities and fundamental limitations and inform
future research directions.

2 Related work
The application of LLM to cloud incidents is an active and
rapidly evolving research area in the software engineering
communities. Benchmarks and platforms to standardize the
evaluation of LLM agents for DevOps are gaining popular-
ity [10, 23, 35, 41, 45, 46]. In parallel, several works propose
LLM-based approaches to anomaly detection in the cloud [5,
14, 15, 22, 34]. These are mostly coupled to subtasks like
logs and time-series analysis, or assistants to navigate static
troubleshooting-guides [31], but do not address automation
of the entire RCA worflow. The works [4, 11, 12, 25, 26, 58]
apply LLM-basedmethods to RCA tasks. Some assume expen-
sive fine-tuning [4, 26], others, such as MonitorAssistant [58]
only apply to private corporate settings and do not consider
environment interactions. RCAgent [51] is the closest to the
vision of a fully autonomous RCA agent. However, it does not
directly target microservices applications. To the best of our
knowledge, how to automate reasoning, decision-making,
information collection and environment interactions alto-
gether for RCA of microservices applications still remain a
largely open problem.

3 Methodology
In this section, we overview the experimental setup and the
LLM-based agents we implement.

Environment. We experimentwith AIOpsLab [45], an open-
source benchmarking platform designed to evaluate LLM
agents in automated incident response scenarios. AIOpsLab
provides a suite of Kubernetes-based [3] microservices appli-
cations and an extensible benchmark containing ∼40 failure
cases. For each failure case, agents are prompted to deter-
mine whether an issue exists and, if so, to identify its root
cause. LLM agents can interact with the microservice appli-
cation and with the environment by accessing external tools.
For example, AIOpsLab includes basic tools to run shell com-
mands – e.g., access kubectl CLI – or retrieve telemetry from
common observability monitors – e.g., distributed traces and
metrics backends[1, 9]. We cover more details in § 4.1.2.
We make the following refinements. AIOpsLab does not

natively support sequential or asynchronous fault injections
in the same run, limiting the evaluation of agents in scenar-
ios involving fault escalation, such as temporally correlated
or compounding failures, or transient faults that disappear
while diagnosis is still ongoing. Therefore, we incorporate
an open-loop scheduling mechanism in the fault injector to
control synthetic failures with more flexibility. In addition,
we add new performance contentions scenarios to the failure
benchmark – e.g., CPU throttling and memory leaks – to
target also non-crash failure modes. We deploy the Social-
Network and HotelReservation applications.1

LLM agents. We implement and evaluate multiple LLM-
based agent configurations, each with a different architecture
and prompting strategy (cf. Tab. 1). They vary in terms of
structure (single vs multi-agent), prompting strategy (Re-
Act vs static prompts) and language model. First, we im-
plement two single-agent architectures based on the ReAct
framework [56], labeled RE1 and RE2. ReAct is a prompting

Type Models Multi-agent Ref.

AutoGen 3x GPT-4o ✓ AG1
1x GPT-o1 +
2x GPT-4o

✓ AG2

ReAct GPT-4o × RE1
GPT-o1 × RE2

Table 1: Agents in this paper.

method that extends
Chain-of-Thought
(CoT) [52] and guides
a model to alter-
nate between the
CoT’s reasoning steps
and external actions
(e.g., interactionwith
environment described in § 3). We evaluate RE1 and RE2 using
GPT-o1 and GPT-4o, a reasoning and a non-reasoning model,
respectively [27, 38]. Second, we explore configurations AG1
and AG2, both following a collaborative multi-agent para-
digm implemented using AutoGen GroupChat [54]. In this
case, multiple agents communicate through message pass-
ing within a group chat-like structure, where a coordinator
agent built into AutoGen manages message routing and de-
cides who speaks next based on the conversation context.

1we deploy the implementations provided with AIOpsLab codebase [13];
the applications were first introduced in DeathStarBench [19].

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

We assign distinct roles to three agents: a reasoner, an ex-
ecutor, and a critic. The reasoner formulates hypothesis and
instructs the executor. The executor manages interactions
with the environment. The critic monitors the reasoning and
execution, raising objections when inconsistencies or errors
are detected. All agents have access to the complete chat
history whenever invoked. For AG1, we use the GPT-4omodel
for all agents, while AG2 uses GPT-o1 for the reasoner and
GPT-4o for the executor and critic. In all configurations, we
instruct agents with an intentionally uninformative prompt
with semantics: “Check if this microservice application has
any issues. If so, list three suspected root-cause services ranked
by confidence in decreasing order. Then produce a summary to
explain your choice.”

4 LLM agents in action: lessons learned
We describe what we learned from applying LLM agents to
real diagnostic workflows. We organize our findings into
successes (§ 4.1), limitations (§ 4.2), and failure modes (§ 4.3).

4.1 The Good

4.1.1 Can LLMs reason about microservices? Retrieving and
reasoning on artifacts, in addition to telemetry data, is crucial
for diagnostics in microservice applications. For example,
identifying root causes often requires deeper code analysis,
such as understanding invocation patterns or asynchronous
call orders [63], which distributed traces alone cannot reveal.

Step zero is to determine whether LLMs can reason about
microservice applications at all. To this end, we curate MSA-
CausalBench, a set of 112 open-ended questions on the DSB
Hotel application. We compare three retrieval configurations:
(1) Docs – using natural language descriptions of the code
files as context (crawling online code repositories [6, 19,
45]), (2) Code – using raw source code files as context, and
(3) Docs & Code – combining natural language descriptions
and source code. The questions range from assessing basic
aspects of distributed applications to evaluating the model’s
ability to reason about service and operational dependencies.
Additional details are provided in Appendix B.2.

Category Docs Code Both

System Infrastructure 0.88 0.94 0.94
Service Dependencies 1.00 1.00 0.94
Latency Propagation 0.63 0.88 0.63
Operational Dependencies 0.61 0.94 0.97
Request Flow 0.19 0.88 0.81

Overall 0.59 0.93 0.89

Table 3: Accuracy of ColBERTv2-RAG on
MSACausalBench across three retrieval
configurationswithClaude 3.5 Sonnet.

We imple-
ment a RAG
pipeline us-
ing ColBERTv2
[43], a retrieval
model that en-
ables fine-grain-
ed, matching
between queries
and documents
at token level.
We use Claude 3.5 Sonnet, which excels in code generation.

As shown in Tab. 3, the Code configuration achieved the
highest overall accuracy of 0.93, outperforming both Docs
(0.59) and Docs & Code (0.89). This counter-intuitive result
suggests that natural language descriptions might not help
the agent and introduce ambiguity. The combined approach
requires the LLM to reconcile redundant representations,
which, for the HotelReservation codebase, reflects into lower
accuracy.

Therefore, selecting what information to retrieve in a RAG
setting is not as trivial and largely task-dependent.

4.1.2 Tooling integration and its benefits. Next, we turn to
actual RCA and unleash the agents on the AIOpsLab bench-
mark to observe their behavior in realistic diagnostic prob-
lems. We compare two scenarios. In the first scenario, called
baseline, agents only have access to the standard AIOpsLab
tools, which include basic shell commands and telemetry re-
trieval functions like get_logs, get_metrics, and get_traces.
In the second scenario, we augment AIOpsLab with a suite
of custom tools that allow agents to query summarized ob-
servability data rather than raw telemetry.
We develop the tools listed in Tab. 2, covering a com-

mon set of observability data types, including metrics, traces,
and logs. The tools can be broadly categorized into con-
ventional non-LLM tools, such as statistical and machine
learning methods, and LLM-based “expert" agents, denoted
as Agent-as-a-Tool (AaaT). While the former are designed to
provide aggregate insights (e.g., statistical summaries, clus-
tering) to be used for rule-based detection and analysis, the
latter enable more flexible conversational interactions be-
tween the diagnostic agent and expert agents to explore
telemetry data.

We posit this structure offers two key advantages. First, it
is neither realistic nor practical to assume that SREs would
provision agents with the perfect tool for every diagnostic
task. In extreme cases, this would undermine the purpose
of using LLMs for automation. Modern language models
can interface with execution environments, execute code
dynamically, maintain variables, and revise prior actions on-
the-fly [49, 50]. AaaT naturally aligns with these capabilities,
enabling expert agents to compose and execute the appropri-
ate tool for the task at hand, rather than being constrained
by a predefined toolset. Second, AaaT facilitates model spe-
cialization, allowing fine-tuned models, such as ChatTS [55]
for time-series data or Parallax [7] for distributed traces, to
focus on analyzing specific types of telemetry data.
RCA experiments. We run the agents on the AIOpsLab
benchmark, repeating each agent configuration 5 times. We
evaluate the following dimensions. (1)Accuracy, where Acc@3
measures whether the correct root-cause microservice ap-
pears in the top-3 candidates, while Acc@1 whether the root-
cause coincides with the agent’s first choice. (2) Reasoning

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

Tool Data Description Type

time_series_expert M Analyzes Prometheus data and returns structured textual insights (e.g., trends, anomalies). Agent-as-a-Tool
traces_expert T Analyzes distributed traces to identify bottlenecks and critical service delays. Agent-as-a-Tool
time_series_summary M Summarizes a target metric over a time window: count, mean, std, min/max, quartiles. Statistical
traces_summary T Computes aggregate statistics across all traces: volume, top operations (APIs), error rates, etc. Statistical
api_latency_distribution T Computes the probability distribution of the execution latency for different APIs. Statistical
cluster_time_series M Groups metrics with similar behaviors using a K-Shape clustering on time series [39]. ML
get_cluster_representatives M Selects representative metrics within each cluster by using correlation and Granger causality [21, 47]. Statistical
analyze_trace_spans T Extrapolates a span-level summary given an individual trace, e.g., delay attribution. Utility
logs_to_error_summary L Extracts timestamps of error occurrences (pattern matching) and generates reports. Utility

Table 2: Our domain-specific tools to aid LLM agents with processing multi-modal observability data. Legend: [M]:
metrics [T]: traces [L]: logs. We integrate them in AIOpsLab [45] platform.

Ref. Acc@1 Acc@3 Time (s) Tokens In Tokens Out Steps Cost ($)

AG1 20.0 30.0 62.1 16814 1381 14.4 0.12610
41.7 ↑ 70.0 ↑ 158.3 2197 3610 16.2 0.02248 ↓

AG2 70.0 70.0 236.5 39233 188 17.1 0.78465
100.0 ↑ 100.0 ↑ 136.6 4867 228 9.7 0.10334 ↓

RE1 50.0 50.0 51.8 41231 1170 11.7 0.10308
65.0 ↑ 90.0 ↑ 60.0 3647 601 6.9 0.01512 ↓

RE2 30.0 30.0 192.2 52466 734 12.1 0.78700
85.0 ↑ 90.0 ↑ 244.0 10013 738 12.9 0.15619 ↓

(a) Performance-related problems.

Ref. Acc@1 Acc@3 Time (s) Tokens In Tokens Out Steps Cost ($)

AG1 0.0 0.0 74.3 6112 1568 30.0 0.04584
80.0 ↑ 80.0 ↑ 74.1 14223 1862 16.8 0.11267 ↓

AG2 60.0 60.0 261.0 15355 277 24.6 0.30710
80.0 ↑ 80.0 ↑ 311.0 51852 399 20.6 1.04304 ↑

RE1 100.0 100.0 59.0 8790 1318 15.8 0.02198
80.0 ↓ 80.0 ↓ 54.6 4172 1092 13.8 0.01643 ↓

RE2 100.0 100.0 172.5 41973 644 12.0 0.62959
100.0 100.0 210.0 28050 846 15.6 0.42675 ↓

(b) Configuration-related problems

Table 4: Average performance across agents. White rows denote baseline performance with AIOpsLab native tools.
Gray rows refer to agents augmented with our custom tools. Tokens In are tokens produced by the environment
interaction and processed by the LLM, Tokens Out are tokens resulting from agent’s reasoning.

efficiency, evaluated through the number of reasoning steps,
wall-clock time, and output tokens. Higher values in these
metrics may correlate with inefficient reasoning, such as
redundant or hallucinated trajectories. (3) Costs, which de-
pends on the number of input/output tokens consumed by
the model.
Tab. 4 shows the results across two performance-related

problems and two configuration-related problems. These
results highlight that our tools lead to improved accuracy,
higher efficiency and reduced costs in most but not all the
cases. For example, for performance-related problems RE2
achieves a 55% increase in Acc@1 and reduces costs by 5×
compared to the baseline. The benefits are mainly due to the
fact that RE2 can access summarized telemetry data, which re-
duces the number of input tokens consumed by the model (1k
vs. 5k), mitigating hallucinations and context-window over-
flows. In our experience, these were persistent issues with
the baseline configuration. We corroborate this explanation
with Fig. 1, showing the distribution of tool usage across
successful (Fig. 1a) and failed (Fig. 1b) runs, respectively.
Success refers to a correct identification of the root-cause
service. We observe that (i) get_logs and exec_shell are
always privileged by the agents, however (ii) in terms of ef-
fectiveness our tools have stronger correlation with success,
being invoked more frequently in successful RCA compared

to failed RCA – i.e., relative increase in usage pattern across
Fig. 1a and Fig. 1b. Among the AaaT tools, the impact of
time_series_expert is less pronounced than traces_expert.
We attribute this to the use of a vanilla GPT-4o-mini model,
which we found to be easily overwhelmed by time-series
data. We plan to adopt ChatTS [55] in our future work.
Takeaway. Augmenting LLM agents with domain-specific
tools—especially those that summarize or analyze teleme-
try—significantly improves diagnostic accuracy, efficiency,
and reduces cost. Effective tool design and integration are
critical for enabling LLM agents to focus on relevant signals
and avoid context overload.

4.2 The Bad
4.2.1 Overconfidence on shallow initial fixes. In other cases,
agents quickly apply shallow remedies yet fail to identify
the root cause, resulting in failed RCA. Fig. 3 illustrates an
execution involving a misconfiguration in the Kubernetes
deployment for the user-service microservice, where the
replica count was set to zero. The agent first examines the
compose-post-service and detects connection errors to the
user-service in the logs. Then, it correctly inspects the Ku-
bernetes deployment and discovers that user-service has
zero active pod replicas. The agent scales the service back up
to one replica, temporarily restoring functionality. However,

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

0 20
Invocations [%]

analyze_trace_spans
exec_shell

get_logs
invalid

read_metrics
read_traces

time_series_expert
time_series_summary

traces_expert
traces_summary

1.7%
29.0%

27.8%
4.6%

1.8%
0.8%

4.2%
3.1%
3.3%

2.3%

(a) Successful Cases

0 20
Invocations [%]

0.2%
23.2%

29.3%
23.2%

2.6%
1.0%

4.6%
0.8%
1.0%
0.4%

(b) Failed Cases

Figure 1: Distribution of tool invocations. Our tools
are shown in orange, and used more frequently by the
agents during successful executions.

despite this fix, the agent decides not to further investigate
the underlying cause (misconfigured Kubernetes manifest)
and reports no issues to the user. As a consequence, the user
will face the same problem again when the service deploy-
ment is restarted.

4.2.2 Erroneous and inconsistent use of APIs. Despite the set
of available tools is explicitly listed into the initial system
prompt, we observe malformed or hallucinated tool invoca-
tions, incorrect parameter handling, and even subsequent
repeated occurrences of the same erroneous invocations. Hal-
lucinated tool invocations include fetch_data, k8s_get_pods,
plot_metric, and similar. We observe they occur more fre-
quently with the AG1 and AG2 architectures. We quantified
the impact of these issues in Fig. 1. Erroneous invocations
can occur even in successful runs, accounting for ∼5% of
the total tool invocations (Fig. 1a), and are quite common in
failed runs (Fig. 1b). However, comparing the two, we observe
more than a 4× increase in the number of erroneous invoca-
tions in failed runs compared to successful runs, providing
strong evidence that incorrect and inconsistent API usage
significantly degrades diagnostic performance. In practice,
we found that agents lack error awareness. In many cases,
agents persist with the erroneous action, despite having al-
ready observed the action leading to execution errors, with-
out adapting or invoking alternative strategies (e.g., repeated
calls to plot_metric).

Takeaway. LLM agents are prone to overconfidence, shal-
low fixes, and repeated tool misuse, especially when lacking
error awareness or self-correction mechanisms. Ensuring
robust error handling and strategy adaptation is essential to
prevent diagnostic failures and improve reliability.

4.3 The Ugly
Finally, we highlight a subset of the most severe issues we ob-
served in our experiments, where agents take actions that are

102 103 104
0.0

0.5

1.0

CC
DF

faults false positives (MongoDB)

Figure 2: Tokens/steps ratio. Agents may process more
context for fault-free executions than for incidents.

(i) unnecessary, (ii) ineffective and (iii) potentially harmful
to the system.

4.3.1 The chaotic consequences of false positives. Here we
look at executions where no failure is injected. In these cases,
we expect the agent to report that the system is healthy with
relatively low effort. To quantify this, we compute the ra-
tio between the input tokens and the number of reasoning
steps for each agent execution. We expect the ratio to be
generally lower for healthy executions than for faulty exe-
cutions. Interestingly, by filtering cases for which this is not
true, we encounter ugly behaviors, such as the one shown
in Fig. 2. The figure compares the complementary cumu-
lative distribution function (CCDF) of the token-per-steps
ratio for two scenarios. The yellow curve refers to all exe-
cutions where we inject a failure in the system (faulty). The
blue curve refers to healthy executions where, however, the
user-mongodb container starts after its client container, i.e.,
user-timeline-service, leading to repeated connection er-
rors and retries until the database container is ready. Fig. 4
reports the logs of the user-timeline-service, from which
a SRE would easily recognize all services started correctly
(last line). Fig. 2 shows that this scenario consumes around
5× more tokens-per-step on average compared to faulty exe-
cutions. We inspected these executions and found that the
agent spends a significant amount of steps for connectiv-
ity checks with utilities like ping, curl, nc, telnet, nslookup,
or checking Kubernetes network policies, or a combination
of these. In the most absurd cases, the agent tries to patch
the coredns service, which is not related to the problem, or
to create an index in the MongoDB database. A sample of
these executions is included in Appendix A. Only once the
agent correctly concluded that the system is healthy and sug-
gested to add a readiness probe to the Kubernetes manifest
file (Fig. 7), but even in this case it . In all other cases, Overall,
the agents tend to excessively focus on telemetry signals
(e.g, user-mongodb logs), often getting overwhelmed by noisy
symptoms and failing to reason about basic relationships.

4.3.2 Illogical sequence for straightforward tool chains. We
observe that agents can waste tokens by issuing actions in
illogical sequence, even when the correct invocation order is

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

straightforward. For example, the agents begins its investiga-
tion by calling get_logs("test-hotel-res", "service-name"),
treating the literal string "service-name" as if it were a valid
identifier. Surprisingly, we observed this behavior occurs in
as many as 28 executions, despite the agents could retrieve
available services and have access to a well-defined tool de-
scription – e.g., via kubectl get pods and tool’s docstring
documentation (Listing 1), respectively.
Takeaway. Without proper planning, LLM agents can waste
resources, take unnecessary or even harmful actions, and fail
to recognize obvious solutions. Addressing hallucinations,
improving planning, and enforcing guardrails are necessary
for safe and effective autonomous RCA.

5 Conclusion
Large Language Models offer a compelling vision for fully
automating RCA in complex microservice environments. We
examined the extent to which this vision holds up in prac-
tice, documenting what works, what breaks, and what needs
fixing. Our study shows that LLM agents can assist in useful
ways and surfaces a range of limitations, such as redundant
and logically inconsistent tool use, or persistent misunder-
standings of simple system state, all leading to chaotic system
troubleshooting. We view this work as a first step toward
making LLM-driven RCA more principled and less brittle.

References
[1] Prometheus Authors 2014-2025. 2023. Prometheus: Monitoring system

& time series database. https://prometheus.io/.
[2] Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumar-

avel, Matthew Stallone, Rameswar Panda, Yara Rizk, GP Bhargav,
Maxwell Crouse, Chulaka Gunasekara, Shajith Ikbal, Sachin Joshi,
Hima Karanam, Vineet Kumar, Asim Munawar, Sumit Neelam, Dinesh
Raghu, Udit Sharma, Adriana Meza Soria, Dheeraj Sreedhar, Praveen
Venkateswaran, Merve Unuvar, David Cox, Salim Roukos, Luis Lastras,
and Pavan Kapanipathi. 2024. Granite-Function Calling Model: Intro-
ducing Function Calling Abilities via Multi-task Learning of Granular
Tasks. arXiv:2407.00121 [cs.LG] https://arxiv.org/abs/2407.00121

[3] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and
Ferhat Khendek. 2018. Deploying Microservice Based Applications
with Kubernetes: Experiments and Lessons Learned. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD ’18).

[4] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmer-
mann, Xuchao Zhang, and Saravan Rajmohan. 2023. Recommending
Root-Cause and Mitigation Steps for Cloud Incidents Using Large
Language Models. In International Conference on Software Engineering.
1737–1749.

[5] Sarah Alnegheimish, Linh Nguyen, Laure Berti-Equille, and Kalyan
Veeramachaneni. 2024. Large language models can be zero-shot
anomaly detectors for time series? arXiv:2405.14755 [cs.LG] https:
//arxiv.org/abs/2405.14755

[6] Vaastav Anand, Deepak Garg, Antoine Kaufmann, and Jonathan Mace.
2023. Blueprint: A Toolchain for Highly-Reconfigurable Microservice
Applications. In SOSP. Association for Computing Machinery.

[7] Vaastav Anand, Pedro Las-Casas, Rodrigo Fonseca, and Antoine Kauf-
mann. 2025. Towards Using Llms for Distributed Trace Comparison

(Abstract) . In 2025 IEEE/ACM International Workshop on Cloud Intelli-
gence & AIOps (AIOps). IEEE Computer Society.

[8] Anthropic. 2025. Claude: An AI Assistant for Collaborative Reasoning.
urlhttps://www.anthropic.com/claude.

[9] The Jaeger Authors. 2023. Jaeger. https://www.jaegertracing.io/.
[10] Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank Agarwal, Maxwell

Crouse, Yara Rizk, Kelsey Bradford, Asim Munawar, Sadhana Kumar-
avel, Saurabh Goyal, Xin Wang, Luis A. Lastras, and Pavan Kapa-
nipathi. 2025. NESTFUL: A Benchmark for Evaluating LLMs on
Nested Sequences of API Calls. arXiv:2409.03797 [cs.AI] https:
//arxiv.org/abs/2409.03797

[11] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi,
Yunjie Cao, XuedongGao, Hao Fan,MingWen, et al. 2023. Empowering
Practical Root Cause Analysis by Large Language Models for Cloud
Incidents. arXiv preprint arXiv:2305.15778 (2023).

[12] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi,
Yunjie Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo
Ghosh, Xuchao Zhang, Chaoyun Zhang, Qingwei Lin, Saravan Ra-
jmohan, Dongmei Zhang, and Tianyin Xu. 2024. Automatic Root
Cause Analysis via Large Language Models for Cloud Incidents. In Pro-
ceedings of the Nineteenth European Conference on Computer Systems
(EuroSys’24).

[13] Microsoft Corporation. 2025. AIOpsLab: GitHub Repository. https:
//github.com/microsoft/AIOpsLab.

[14] Manqing Dong, Hao Huang, and Longbing Cao. 2024. Can LLMs
Serve As Time Series Anomaly Detectors? arXiv:2408.03475 [cs.LG]
https://arxiv.org/abs/2408.03475

[15] Chris Egersdoerfer, Di Zhang, and Dong Dai. 2023. Early Exploration
of Using ChatGPT for Log-based Anomaly Detection on Parallel File
Systems Logs. In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing (Orlando, FL,
USA) (HPDC ’23). Association for Computing Machinery, New York,
NY, USA, 315–316. doi:10.1145/3588195.3595943

[16] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. 2011.
Fay: Extensible Distributed Tracing from Kernels to Clusters. In SOSP
(Cascais, Portugal) (SOSP ’11). Association for Computing Machinery,
New York, NY, USA, 311–326. doi:10.1145/2043556.2043585

[17] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker.
2007. X-Trace: A Pervasive Network Tracing Framework. In USENIX
NSDI. USENIX Association.

[18] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. 2021. Sage: practical and scalable ML-driven performance de-
bugging in microservices (ASPLOS ’21). Association for Computing
Machinery, 135–151.

[19] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microser-
vices and Their Hardware-Software Implications for Cloud & Edge
Systems. In ACM Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’19). Association for
Computing Machinery.

[20] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud
Microservices. In ASPLOS (Providence, RI, USA) (ASPLOS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 19–33.
doi:10.1145/3297858.3304004

https://prometheus.io/
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2407.00121
https://arxiv.org/abs/2405.14755
https://arxiv.org/abs/2405.14755
https://arxiv.org/abs/2405.14755
https://www.jaegertracing.io/
https://arxiv.org/abs/2409.03797
https://arxiv.org/abs/2409.03797
https://arxiv.org/abs/2409.03797
https://github.com/microsoft/AIOpsLab
https://github.com/microsoft/AIOpsLab
https://arxiv.org/abs/2408.03475
https://arxiv.org/abs/2408.03475
https://doi.org/10.1145/3588195.3595943
https://doi.org/10.1145/2043556.2043585
https://doi.org/10.1145/3297858.3304004

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

[21] C. W. J. Granger. 1969. Investigating Causal Relations by Econometric
Models and Cross-spectral Methods. Econometrica 37, 3 (1969), 424–
438.

[22] Wei Guan, Jian Cao, Shiyou Qian, Jianqi Gao, and Chun Ouyang. 2025.
LogLLM: Log-based Anomaly Detection Using Large LanguageModels.
arXiv:2411.08561 [cs.SE] https://arxiv.org/abs/2411.08561

[23] Saurabh Jha, Rohan Arora, Yuji Watanabe, Takumi Yanagawa, Yinfang
Chen, Jackson Clark, Bhavya Bhavya, Mudit Verma, Harshit Kumar,
Hirokuni Kitahara, Noah Zheutlin, Saki Takano, Divya Pathak, Fe-
lix George, Xinbo Wu, Bekir O. Turkkan, Gerard Vanloo, Michael
Nidd, Ting Dai, Oishik Chatterjee, Pranjal Gupta, Suranjana Samanta,
Pooja Aggarwal, Rong Lee, Pavankumar Murali, Jae wook Ahn, De-
banjana Kar, Ameet Rahane, Carlos Fonseca, Amit Paradkar, Yu
Deng, Pratibha Moogi, Prateeti Mohapatra, Naoki Abe, Chandrasekhar
Narayanaswami, Tianyin Xu, Lav R. Varshney, Ruchi Mahindru, Anca
Sailer, Laura Shwartz, Daby Sow, Nicholas C. M. Fuller, and Ruchir
Puri. 2025. ITBench: Evaluating AI Agents across Diverse Real-World
IT Automation Tasks. arXiv:2502.05352 [cs.AI] https://arxiv.org/abs/
2502.05352

[24] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua
Ma, Si Qin, Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei
Lin, and Dongmei Zhang. 2023. Xpert: Empowering Incident Man-
agement with Query Recommendations via Large Language Models.
arXiv:2312.11988 [cs.SE] https://arxiv.org/abs/2312.11988

[25] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma,
Si Qin, Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, and
Dongmei Zhang. 2024. Xpert: Empowering Incident Management with
Query Recommendations via Large Language Models. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering
(ICSE’24).

[26] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang,
Liqun Li, Yudong Liu, Bo Qiao, Chaoyun Zhang, Pu Zhao, Shilin He,
Federica Sarro, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, and
Dongmei Zhang. 2023. Assess and Summarize: Improve Outage Un-
derstanding with Large Language Models. In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (San Francisco, CA, USA)
(ESEC/FSE 2023). Association for Computing Machinery, New York,
NY, USA, 1657–1668. doi:10.1145/3611643.3613891

[27] Alex Karpenko, Alexander Wei, Allison Tam, Ananya Kumar, An-
dre Saraiva, Andrew Kondrich, Andrey Mishchenko, Ashvin Nair,
Behrooz Ghorbani, Bohan Zhang, Brandon McKinzie, Brydon East-
man, Chak Ming Li, Chris Koch, Dan Roberts, David Dohan, David
Mely, Dimitris Tsipras, Enoch Cheung, Eric Wallace, Hadi Salman,
Haiming Bao, Hessam Bagherinezhad, Ilya Kostrikov, Jiacheng Feng,
John Rizzo, Karina Nguyen, Kevin Lu, Kevin Stone, Lorenz Kuhn, Ma-
son Meyer, Mikhail Pavlov, Nat McAleese, Oleg Boiko, Oleg Murk,
Peter Zhokhov, Randall Lin, Raz Gaon, Rhythm Garg, Roshan James,
Rui Shu, Scott McKinney, Shibani Santurkar, Suchir Balaji, Taylor Gor-
don, Thomas Dimson, andWeiyi Zheng. 2025. Learning to reason with
LLMs. https://openai.com/index/learning-to-reason-with-llms/.

[28] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang,
Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma,
Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and
Christopher Potts. 2024. DSPy: Compiling Declarative LanguageModel
Calls into State-of-the-Art Pipelines. In International Conference on
Learning Representations (ICLR ’24). OpenReview.net.

[29] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. 2013. Root Cause
Detection in a Service-Oriented Architecture. SIGMETRICS Perform.
Eval. Rev. (2013).

[30] Grafana Labs. 2023. Grafana Labs Observability Survey
2023. https://grafana.com/about/press/2023/03/08/grafana-labs-
observability-survey-2023-finds-centralization-saves-time-and-
money-for-an-industry-plagued-by-tool-and-data-source-overload/.

[31] Pedro Las-Casas, Alok Gautum Kumbhare, Rodrigo Fonseca, and
Sharad Agarwal. 2024. LLexus: an AI agent system for incident man-
agement. SIGOPS Oper. Syst. Rev. 58, 1 (Aug. 2024).

[32] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. CAMEL: Communicative
Agents for “Mind” Exploration of Large Language Model Society. In
NeurIPS 2023. Curran Associates Inc.

[33] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei
Zhang, YanjunWu, Long Jiang, Leiqin Yan, ZikaiWang, Zhekang Chen,
Wenchi Zhang, Xiaohui Nie, Kaixin Sui, and Dan Pei. 2021. Practical
Root Cause Localization for Microservice Systems via Trace Analysis.
In 2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS). 1–10. doi:10.1109/IWQOS52092.2021.9521340

[34] Jun Liu, Chaoyun Zhang, Jiaxu Qian, Minghua Ma, Si Qin, Chetan
Bansal, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. 2024.
Large Language Models can Deliver Accurate and Interpretable Time
Series Anomaly Detection. arXiv:2405.15370 [cs.CL] https://arxiv.org/
abs/2405.15370

[35] Yuhe Liu, Changhua Pei, Longlong Xu, Bohan Chen, Mingze Sun,
Zhirui Zhang, Yongqian Sun, Shenglin Zhang, Kun Wang, Haiming
Zhang, Jianhui Li, Gaogang Xie, Xidao Wen, Xiaohui Nie, Minghua
Ma, and Dan Pei. 2024. OpsEval: A Comprehensive IT Operations
Benchmark Suite for Large Language Models. arXiv:2310.07637 [cs.AI]
https://arxiv.org/abs/2310.07637

[36] Meta. 2025. The Llama 4 herd: The beginning of a new era of natively
multimodal AI innovation.
urlhttps://ai.meta.com/blog/llama-4-multimodal-intelligence/.

[37] OpenAI. 2023. GPT-4 Technical Report.
urlhttps://cdn.openai.com/papers/gpt-4.pdf.

[38] OpenAI. 2025. OpenAI Models.
https://platform.openai.com/docs/models.

[39] John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accu-
rate Clustering of Time Series. SIGMOD Rec. 45, 1 (June 2016).

[40] Austin Parker. 2025. MCP Easy as 1-2-3?
urlhttps://www.honeycomb.io/blog/mcp-easy-as-1-2-
3?utm_source=chatgpt.com.

[41] Luan Pham, Hongyu Zhang, Huong Ha, Flora Salim, and Xiuzhen
Zhang. 2025. RCAEval: A Benchmark for Root Cause Analysis of
Microservice Systems with Telemetry Data. In The 2025 ACM Web
Conference (WWW).

[42] Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-
Casas, Rodrigo Fonseca, and Saravan Rajmohan. 2024. Exploring
LLM-Based Agents for Root Cause Analysis. In ACM FSE. Association
for Computing Machinery.

[43] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts,
and Matei Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval
via Lightweight Late Interaction. arXiv:2112.01488 [cs.IR] https://
arxiv.org/abs/2112.01488

[44] Vishwanath Seshagiri, Siddharth Balyan, Vaastav Anand, Kaustubh
Dhole, Ishan Sharma, Avani Wildani, José Cambronero, and Andreas
Züfle. 2024. Chatting with Logs: An exploratory study on Finetuning
LLMs for LogQL. arXiv:2412.03612 [cs.DB] https://arxiv.org/abs/2412.
03612

[45] Manish Shetty, Yinfang Chen, Gagan Somashekar, Minghua Ma, Yo-
gesh Simmhan, Xuchao Zhang, Jonathan Mace, Dax Vandevoorde,
Pedro Las-Casas, Shachee Mishra Gupta, Suman Nath, Chetan Bansal,
and Saravan Rajmohan. 2024. Building AI Agents for Autonomous
Clouds: Challenges and Design Principles. In ACM Symposium on

https://arxiv.org/abs/2411.08561
https://arxiv.org/abs/2411.08561
https://arxiv.org/abs/2502.05352
https://arxiv.org/abs/2502.05352
https://arxiv.org/abs/2502.05352
https://arxiv.org/abs/2312.11988
https://arxiv.org/abs/2312.11988
https://doi.org/10.1145/3611643.3613891
https://doi.org/10.1109/IWQOS52092.2021.9521340
https://arxiv.org/abs/2405.15370
https://arxiv.org/abs/2405.15370
https://arxiv.org/abs/2405.15370
https://arxiv.org/abs/2310.07637
https://arxiv.org/abs/2310.07637
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2412.03612
https://arxiv.org/abs/2412.03612
https://arxiv.org/abs/2412.03612

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

Cloud Computing (SoCC ’24). Association for Computing Machinery.
[46] Yongqian Sun, Jiaju Wang, Zhengdan Li, Xiaohui Nie, Minghua Ma,

Shenglin Zhang, Yuhe Ji, Lu Zhang, Wen Long, Hengmao Chen, Yong-
nan Luo, and Dan Pei. 2025. AIOpsArena: Scenario-Oriented Eval-
uation and Leaderboard for AIOps Algorithms in Microservices. In
2025 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 809–813. doi:10.1109/SANER64311.2025.00082

[47] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer.
2017. Sieve: Actionable insights from monitored metrics in distributed
systems. In ACM/IFIP/USENIX Middleware Conference. 14–27.

[48] Santiago Valdarrama. 2024. X Post. https://x.com/svpino/status/
1841461406081626296?s=46&t=1-9-9RQXPlSV9HwI8l0BGg.

[49] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li,
Hao Peng, and Ji Heng. 2024. CodeAct: Your LLM Agent Acts Better
when Generating Code. In ICML. https://arxiv.org/abs/2402.01030

[50] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li,
Hao Peng, and Heng Ji. 2024. Executable code actions elicit better LLM
agents. In ICML. JMLR.org, Article 2054.

[51] Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, Jihong
Wang, Fengbin Yin, Lunting Fan, Lingfei Wu, and Qingsong Wen.
2024. RCAgent: Cloud Root Cause Analysis by Autonomous Agents
with Tool-Augmented Large Language Models. In ACM Conference on
Information and Knowledge Management (CIKM ’24). ACM.

[52] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-
of-thought prompting elicits reasoning in large language models. In
NeurIPS. Curran Associates Inc.

[53] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA:
Root cause localization of performance issues in microservices. In IEEE
NOMS.

[54] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang
Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Has-
san Awadallah, Ryen W White, Doug Burger, and Chi Wang. 2023.
AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Con-
versation. arXiv:2308.08155 [cs.AI] https://arxiv.org/abs/2308.08155

[55] Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang,
Jianjun Chen, Rui Shi, and Dan Pei. 2025. ChatTS: Aligning Time
Series with LLMs via Synthetic Data for Enhanced Understanding and
Reasoning. arXiv:2412.03104 [cs.AI] https://arxiv.org/abs/2412.03104

[56] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. arXiv:2210.03629

[57] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng
Huang, Linxiao Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li.
2021. Microrank: End-to-end latency issue localization with extended
spectrum analysis in microservice environments. In ACM Web Confer-
ence 2021. 3087–3098.

[58] Zhaoyang Yu, Minghua Ma, Chaoyun Zhang, Si Qin, Yu Kang, Chetan
Bansal, Saravan Rajmohan, Yingnong Dang, Changhua Pei, Dan Pei,
Qingwei Lin, and Dongmei Zhang. 2024. MonitorAssistant: Simplifying
Cloud Service Monitoring via Large Language Models. In Companion
Proceedings of the 32nd ACM International Conference on the Founda-
tions of Software Engineering (FSE’24).

[59] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. 2010. SherLog: Error Diagnosis by Connecting
Clues from Run-Time Logs. In ACM ASPLOS. Association for Comput-
ing Machinery.

[60] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya
Wu, Qingwei Lin, and Dongmei Zhang. 2022. DeepTraLog: Trace-
Log Combined Microservice Anomaly Detection through Graph-based
Deep Learning. In 2022 IEEE/ACM 44th International Conference on

Software Engineering (ICSE). 623–634. doi:10.1145/3510003.3510180
[61] Chenxi Zhang, Bicheng Zhang, Dingyu Yang, Xin Peng, Miao

Chen, Senyu Xie, Gang Chen, Wei Bi, and Wei Li. 2025. PromAs-
sistant: Leveraging Large Language Models for Text-to-PromQL.
arXiv:2503.03114 [cs.SE] https://arxiv.org/abs/2503.03114

[62] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan
Mace. 2023. The Benefit of Hindsight: Tracing Edge-Cases in Dis-
tributed Systems. In USENIX NSDI. USENIX Association.

[63] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin
Xiang, and Chuan He. 2019. Latent error prediction and fault localiza-
tion for microservice applications by learning from system trace logs.
In ACM ESEC/FSE. Association for Computing Machinery.

https://doi.org/10.1109/SANER64311.2025.00082
https://x.com/svpino/status/1841461406081626296?s=46&t=1-9-9RQXPlSV9HwI8l0BGg
https://x.com/svpino/status/1841461406081626296?s=46&t=1-9-9RQXPlSV9HwI8l0BGg
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2412.03104
https://arxiv.org/abs/2412.03104
https://arxiv.org/abs/2210.03629
https://doi.org/10.1145/3510003.3510180
https://arxiv.org/abs/2503.03114
https://arxiv.org/abs/2503.03114

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

A Execution examples
The following figures illustrate a range of LLM agent behaviors observed during root cause analysis tasks on the AIOpsLab
platform. These include both successful diagnoses and common failure patterns. In some cases, agents correctly identify
actionable issues – such as a missing readiness probe (Fig. 7). Other examples highlight more problematic behaviors: repeatedly
misinterpreting stale logs as ongoing failures (Fig. 4), issuing unnecessary or ineffective actions like creating MongoDB indexes
without justification (Fig. 5), or attempting to patch CoreDNS based on incorrect assumptions about DNS failures (Fig. 6). These
traces expose a mix of capabilities and limitations, underscoring the need for stronger temporal reasoning, action planning,
and state grounding in LLM-based diagnostic agents.

Agent: Starting investigation at compose-post-service.

Actions: get_logs("test-social-network", "compose-post-service")

Agent: Logs show connection refusals to user-service.

Actions:
• kubectl get pods -n test-social-network
• kubectl get all -n test-social-network | grep user
• kubectl describe deployment user-service -n test-social-network

Agent: Kubernetes inspection reveals user-service is deployed but scaled to zero replicas. I will scale it back to one replica.

Actions: kubectl scale deployment user-service –replicas=1 -n test-social-network

Framework: Pod user-service is active.

Agent: Pod for user-service is now running. Seems like the issue is fixed.

Actions: kubectl get pods -n test-social-network

Agent: All pods are running with no issues. Submitting: [None].

Figure 3: In this execution, the agent correctly identifies a deployment issue in the Kubernetes deployment: the
user-service microservice was scaled to zero replicas. However, the agent misses the root-cause: a misconfiguration
in the Kubernetes manifest file to deploy user-service. Thus, it failed the RCA localization task.

[14:08:26.077189] <error>: (utils_mongodb.h:76:CreateIndex) Error in createIndexes: No suitable servers found: ‘serverSelectionTimeoutMS‘ expired: [unknown
connection error calling ismaster on ’user-timeline-mongodb:27017’]
[14:08:26.079309] <error>: (UserTimelineService.cpp:103:main) Failed to create mongodb index, try again
[14:08:27.378146] <error>: (utils_mongodb.h:76:CreateIndex) Error in createIndexes: No suitable servers found: ‘serverSelectionTimeoutMS‘ expired: [unknown
connection error calling ismaster on ’user-timeline-mongodb:27017’]
[14:08:27.378263] <error>: (UserTimelineService.cpp:103:main) Failed to create mongodb index, try again
[14:08:28.677149] <error>: (utils_mongodb.h:76:CreateIndex) Error in createIndexes: No suitable servers found: ‘serverSelectionTimeoutMS‘ expired: [unknown
connection error calling ismaster on ’user-timeline-mongodb:27017’]

Repeating until user-timeline-mongodb kubernetes pod is up

[14:08:47.943816] <info>: (UserTimelineService.cpp:148:main) Starting the user-timeline-service server...

Figure 4: Error logs in user-timeline-service, caused by a late start of the MongoDB database pod. The errors are
non-critical, and could be prevented by proper handling of startup dependencies in the Kubernetes deployment.

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

Environment: . . . user-timeline-service pod experiencing restarts . . .

Actions: get_logs("test-social-network", "user-timeline-service")

Agent: Logs (reported in Fig. 4) show repeated MongoDB connection failures. Checking MongoDB pod status.

Actions: kubectl get pods -n test-social-network -l app=user-timeline-mongodb

Agent: The ‘user-timeline-mongodb‘ pod is running and has not restarted, which suggests that the pod itself is not crashing. However, the
connection issues reported in the logs of the ‘user-timeline-service‘ could be due to network issues or misconfigurations in the service or
MongoDB setup. I should check the network policies or service configurations to ensure that the ‘user-timeline-service‘ can properly connect to
the ‘user-timeline-mongodb‘

Actions: kubectl describe service user-timeline-mongodb -n test-social-network

Agent: The user-timeline-mongodb service is configured correctly with a ClusterIP and the correct port. The endpoint is also correctly set.
Since there are no events indicating issues, the problem might be related to network policies or firewall rules that are preventing the
‘user-timeline-service‘ from connecting to the MongoDB service. I should check if there are any network policies in place that might be blocking
the connection.

Actions: kubectl get networkpolicies -n test-social-network"

Environment: empty policies

Agent: The output for the network policies command is missing, which suggests that there might be no network policies defined in the
‘test-social-network‘ namespace. I should check the MongoDB logs for any errors or warnings that might provide more insight into the connection
issues.

Actions: mongo –eval "db.user_timeline.getIndexes()"

Agent: The MongoDB logs indicate that there are no critical errors in the MongoDB startup process, but there is a slow query log entry, which
suggests that the ‘user-timeline-service‘ is experiencing performance issues when querying the database. This could be contributing to the high
CPU usage observed earlier. The slow query might be due to inefficient indexing or a large dataset being processed. To address this, I should
investigate the indexing strategy for the ‘user-timeline‘ collection and consider optimizing the query or adding appropriate indexes to improve
performance.

Actions: kubectl exec -n test-social-network user-timeline-mongodb-6758898d48-s78vn – bash -c ’mongo –eval "db.user_timeline.createIndex(user_id:
1)"

Environment: Index creation succeeds.

Figure 5: The agent tries to create a new index on the MongoDB service for no reason.

Environment: . . . user-timeline-service pod experiencing restarts . . .

Actions: get_logs("test-social-network", "user-timeline-service")

Agent: Logs (reported in Fig. 4) show repeated MongoDB connection failures. Suspecting DNS issues.

Actions: kubectl logs -n kube-system -l k8s-app=kube-dns

Agent: CoreDNS logs show multiple DNS timeouts. Attempting to patch CoreDNS to fix resolution.

Actions: kubectl patch configmap coredns -n kube-system –type merge -p ...

Agent: Patch failed repeatedly with API errors and malformed payloads. Trying to create coredns-patch.yaml as fallback.

Actions: kubectl apply -f coredns-patch.yaml && kubectl rollout restart deployment coredns -n kube-system

Agent: YAML file not found, patch attempt unsuccessful. DNS issue remains unresolved.

Actions: continues connectivity checks · · ·
Agent ran out of steps

Figure 6: In this execution, the agent attempts to mitigate MongoDB connection errors by patching CoreDNS
configuration. The action is unnecessary and repeatedly fails due to malformed patch commands and incorrect
assumptions about the DNS infrastructure.

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

user-service is unable to connect to user-mongodb (Fig. 4).

Agent. Since there was no output provided for the network policies, it may indicate there are no network policies defined or there was an error
in retrieving them. I will check the connectivity between the user-service and user-mongodb

Actions. kubectl exec -n test-social-network $(kubectl get pods -n test-social-network -l app=user-service -o jsonpath=’.items[0].metadata.name’)
-- ping -c 4 user-mongodb

Environment: command terminated with exit code 127

Agent. The exit code 127 indicates that the ‘ping‘ command is not available in the user-service pod’s environment. I will use a different
approach

Actions. kubectl exec -n test-social-network $(kubectl get pods -n test-social-network -l app=user-service -o jsonpath=’.items[0].metadata.name’)
-- nc -zv user-mongodb 27017

Environment: command terminated with exit code 127

Agent. The exit code 127 indicates that the ‘nc‘ command is not available in the user-service pod’s environment. I will use a different approach

Actions. kubectl run debug –rm -i –tty –image=busybox –restart=Never –namespace=test-social-network – wget -qO- user-mongodb:27017

Environment:It looks like you are trying to access MongoDB over HTTP on the native driver port.

Agent. The response indicates that the connection to user-mongodb was successful, but the attempt to access it via HTTP on the MongoDB native
driver port was incorrect. This confirms that the network connectivity is not the issue. Since user-service is unable to connect to user-mongodb,
it might be a configuration issue within the user-service itself. I will check the configuration of the user-service to ensure it is correctly
set up to connect to the MongoDB service. The issue might be related to the configuration files mounted from the ConfigMap. I inspect the
contents of the service-config.json to verify the MongoDB connection settings.

Actions. kubectl get pods -n test-social-network -l app=user-service -o jsonpath=’.items[0].metadata.name’) -- cat
/social-network-microservices/config/service-config.json

Environment: . . .

"user-mongodb": {
"addr": "user-mongodb",
"port": 27017,
"connections": 512,
"timeout_ms": 10000,
"keepalive_ms": 10000

},
\(\ldots \)

Agent. Config uses user-mongodb:27017, The configuration file specifies the MongoDB service address as üser-mongodbänd port as 27017, I will
check if environment variables align.

Agent continues basic checks (e.g., DNS resolution, environment, config files) for several steps . . .

Actions. get_logs("test-social-network", "user-service")

Agent. Logs still show CreateIndex failed: connection refused. Checking MongoDB readiness configuration.

Actions. kubectl get deployment user-mongodb -o yaml

Agent. The deployment configuration for user-mongodb does not include any readiness or liveness probes, which could lead to the service being
marked as available before it is fully ready to handle requests. Adding a readiness probe could help ensure that the user-service only attempts
to connect to MongoDB once it is ready.

Figure 7: In this execution (with agent RE1), the agent exhaustively checks environment variables, pod states, service
configs, DNS, and deployment specs—all of which are correct. Finally, it correctly concludes a readiness probe is
missing.

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Cornacchia et al.

B Implementation
B.1 Tools

def get_logs(namespace: str, service: str) -> str:
"""
Collects relevant log data from a pod using Kubectl. Use the service name without the pod suffix.

Args:
namespace (str): The namespace in which the service is running.
service (str): The name of the service.

Returns:
str | dict | list[dicts]: Log data as a structured object or a string.

"""

Listing 1: Docstrings for the get_logs tool.

B.2 MSACausalBench Question Examples
Each question includes its reference answer and is categorized into one of five categories: (1) System Deployment - infrastructure
components and configurations such as databases, caches, and retry policies; (2) Service Dependencies - direct service-to-service
invocation relationships at the code level; (3) Operational Dependencies - runtime failure analysis examining how service
failures impact other services’ operations; (4) Latency Propagation - causal analysis of performance degradation across services;
and (5) Request Flow - end-to-end request tracing through the architecture.

Category Question Answer

System Deployment If GeoService uses a database, which one does it use? MongoDB

Service Dependencies Which services does FrontEndService call? SearchService,
ProfileService,
Recommendation-
Service, UserService

Operational Dependencies Will SearchHandler Start be successful if there is a failure in RateService? No

Latency Propagation If there is a severe hotspot in GeoService (i.e., increasing latency of its
operations), which other services will likely experience increased latency
as a result?

FrontEndService and
SearchService

Table 5: Sample Questions from MSACausalBench

Request Flow Analysis.
Question: Please create a Mermaid sequence diagram showing the flow of method calls from the SearchHandler function,
assuming all services are functioning normally starting from the client.
Answer:
sequenceDiagram

participant Client
participant FrontEndService
participant SearchService
participant GeoService
participant RateService
participant ReservationService
participant ProfileService

APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

Client->>FrontEndService:
FrontEndService->>SearchService:
SearchService->>GeoService:
GeoService-->>SearchService:
SearchService->>RateService:
RateService-->>SearchService:
SearchService-->>FrontEndService:
FrontEndService->>ReservationService:
ReservationService-->>FrontEndService:
FrontEndService->>ProfileService:
ProfileService-->>FrontEndService:
FrontEndService-->>Client:

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 LLM agents in action: lessons learned
	4.1 The Good
	4.2 The Bad
	4.3 The Ugly

	5 Conclusion
	References
	A Execution examples
	B Implementation
	B.1 Tools
	B.2 MSACausalBench Question Examples

