
Towards LLM-Assisted System Testing for
Microservices

Mustafa Almutawa∗
KAUST

Qusai Ghabrah∗
KAUST

Marco Canini
KAUST

Abstract—As modern applications are being designed in a
distributed, Microservices Architecture (MSA), it becomes in-
creasingly difficult to debug and test those systems. Typically, it
is the role of software testing engineers or Quality Assurance
(QA) engineers to write software tests to ensure the reliability of
applications, but such a task can be labor-intensive and time-
consuming. In this paper, we explore the potential of Large
Language Models (LLMs) in assisting software engineers in gen-
erating test cases for software systems, with a particular focus on
performing end-to-end (black-box) system testing on web-based
MSA applications. We present our experience building Kashef,
a software testing tool that utilizes the advanced capabilities of
current LLMs in code generation and reasoning, and builds on
top of the concept of communicative agents.

Index Terms—Software Testing, Testing Automation, Large
Language Models (LLMs), Communicative Agents.

I. INTRODUCTION

Today, there is an increasing adoption for the Microser-
vices Architecture (MSA), especially in large-scale, distributed
applications. Notable large corporations adopting this archi-
tectural pattern include Netflix, Amazon, and X (formerly,
Twitter), among many others [1]. MSA is characterized by
its decoupling of system functionalities into fine-grained,
independent services that communicate through messaging and
remote procedure calls (RPCs) [2]. Applications designed in
MSA offer a range of benefits for developers and organiza-
tions, including flexibility, scalability, and increased resiliency
to failures [3]. In addition, by decomposing large systems into
smaller, standalone components, MSA allows for improved
collaboration between different teams, resulting in a faster and
more efficient software development process [4].

The benefits of MSA, however, often come at the cost of
increased system complexity [1]. This is particularly due to
the potentially large number of services involved, the varying
technology stacks employed across different services, and
the complex dependencies between services. For example, in
2015, Netflix was reported to have over 700 microservices,
running in a distributed cloud infrastructure [5]. As a result
of this increased complexity, testing MSA-based applications
can be a serious challenge to developers [6].

Nevertheless, software testing is important to ensuring the
quality of software and its fulfillment of technical and business
requirements [7]. To guarantee the correctness and quality of
software, engineers perform varying types of testing during
the software development life cycle (SDLC). This includes

∗Equal contribution.

unit testing, integration testing, system testing, and acceptance
testing, to name a few [8]. Done fully manually, the software
testing task can be labor-intensive and time-consuming.

In order to improve and accelerate the process of soft-
ware testing, researchers and practitioners have looked into
automation. Automated testing refers to the use of tools and
frameworks to automate the generation and execution of test
cases. Over the past several years, there has been an increase
in adoption of automated testing [8], with various tools being
developed along the way [9], [10].

Our work comes as a continuation of the efforts applied in
developing automated testing tools. We take a different ap-
proach from previous work in that we explore the capabilities
of advanced large language models (LLMs) and investigate
how they can improve software testing.

LLMs have been gaining huge popularity, especially after
the release of the now-popular GPT models from OpenAI
[11]. In the years that followed, LLMs specifically trained to
generate code have emerged. Examples of such LLMs include
Facebook’s CodeLlama [12], Anthropic’s Claude [13], and
OpenAI’s Codex (which powers Github’s Copilot) [14]. Given
the impressive abilities of modern LLMs in code generation,
we presume that they can assist engineers in software testing
tasks. Several research endeavors [15]–[17] have already ex-
plored the potential of LLMs in software testing. [18] offers
a literature review of this relatively nascent field of software
testing using LLMs.

In our inspection of the existing literature on LLM-based
software testing, we have found that the majority of work is
focused on unit testing and fuzzing [18], with limited work
focusing on using LLMs for end-to-end system testing. Recog-
nizing this gap in the literature, we are interested in examining
the utility of LLMs in the broader objective of system-level
testing. To this end, we set out to to build an LLM-powered
tool—named Kashef —that can assist developers in generating
system tests. Our work is primarily concerned with testing
web microservices applications, since they are common and
typically difficult to test.

To build Kashef, we utilized existing LLMs, machine
learning frameworks, and testing libraries. We also adopt the
concept of multi-agent collaborative workflow [19]–[21] in our
design for Kashef. The ultimate goal for Kashef is to be a one-
stop solution for:

1) determining the functionalities of the system and the test
cases needed,

https://orcid.org/0009-0000-9929-0279
https://orcid.org/0009-0003-2880-8060
https://orcid.org/0000-0002-5051-4283

2) generating correct code for testing the system, and
3) executing the tests and providing feedback.

Currently, our implementation of Kashef only achieves the
latter two objectives (i.e., generating and executing test cases).
However, while the full implementation of Kashef is still a
work in progress, we believe our experience and findings
in building Kashef can inspire and help future work by the
research community. As such, we highlight in this short paper
the effort required to build an LLM-assisted testing tool,
the challenges and limitations encountered along the way,
and the preliminary results we obtained by using Kashef.
The source code for Kashef is publicly available at https:
//github.com/Kashef-KAUST/Kashef.

II. BACKGROUND AND RELATED WORK

A. LLM-Assisted Software Engineering

The process of Software Engineering (SWE) involves many
tasks, ranging from requirements collection to implementation
and testing. With the emergence of LLMs, these processes
have changed dramatically. We can witness this firsthand with
tools such as ChatGPT, GitHub’s Copilot, and CodiumAI, as
well as the various efforts spanning across different SWE
tasks. As an example, in requirements collection, Ronanki
et al. [22] found that ChatGPT was able to generate con-
sistent and understandable requirements compared to those
formulated by experts. When it comes to software design,
Stojanovic et al. [23] demonstrated how ChatGPT was able
to use three system descriptions to identify microservices and
their dependencies for each system. Lastly, Denny et al. [24]
evaluated the performance of Copilot and found that it was
able to solve 60% programming problems in addition to being
a promising way of learning programming. However, there
are some challenges associated with using LLMs in SWE,
including LLM integration into current SWE tools, using
LLMs to automate SWE processes, and integrating LLMs into
the various stages of SWE. There is also the challenge of
evaluating and testing the outputs of LLMs in SWE context
without the need of human judgment [25].

B. LLM-Assisted Testing

There has been work that specifically targets the usage of
LLMs in software testing. Engineers at Meta created TestGen-
LLM [15], which is an LLM tool that improves existing tests
and verifies the generated tests against multiple criteria, in-
cluding its measured improvement to the existing tests. It was
evaluated on several Instagram features with a 25% increase
in coverage and 73% of its testing code applied in production
deployment at Meta. According to the paper, at the time of its
writing, it is the only “industrial scale deployment of LLM-
generated code” with assured test improvements. Another
example includes the work of Jensen et al. [26] that explored
the usage of LLMs in identifying software vulnerabilities and
assessing the functionality of code. Their work evaluated 9
LLMs, including text-davinci-003 as well as models from the
GPT and Llama families. Their results show that LLMs can

achieve up to 95.6% and 88.2% accuracy for flagging security
vulnerabilities and functionality validation, respectively.

One notable effort that is slightly similar to our work is
presented by Daniel et al. [16]. They developed a GUI-based
software testing tool that utilizes GPT-4. In contrast to monkey
testing, which is a software testing technique that tests an
application randomly through random actions, their approach
leverages LLMs to understand current HTML snapshots and
identify potential elements to interact with, keeping history
of the changes these interactions cause to the state of the
Document Object Model (DOM). Their evaluation of the
branch coverage shows that they are able to achieve notably
higher branch coverage compared to monkey testing.

However, Kashef differs from this work on a couple of
points. First, while their work tests the application in-place
(i.e., just simulating human interactions), ours aims to generate
testing modules that will be a part of the testing suite of the
application. Second, their approach is essentially randomized
testing supported by LLM reasoning. That is, the LLM is
used to reason about the next random element to interact
with. Our focus instead is on verifying the functionality
of the software requirements (system testing as opposed to
fuzzing/monkey testing). Lastly, our end goal is for the LLM
to identify the functional requirements of the system and
generate relevant test cases, while their work is essentially
an extension of monkey testing that utilizes LLMs to improve
branch coverage.

Additionally, upon inspecting the code for their tool, we
found a couple of obstacles that could obstruct its usage in
a more general context. In particular, there is an assumption
that interactable elements consist only of buttons and must
have IDs to be referenced, which is not necessarily the case
in real-world examples.

C. Communicative Agents

One big component of our work is the use of commu-
nicative agents to drive the testing process. The concept of
communicative agents refers to chat-based language models
that converse and collaborate with each other in order to
achieve a particular task without human intervention. Multiple
works have explored this concept. Camel [19] is an open-
source library contributed by researchers. It proposes a role-
playing framework and uses inception prompting, allowing
agents to collaborate on completing a task and ensuring it
aligns with the given prompt. ChatDev [20] is another example
of the concept of communicative agents. Their contribution is
a virtual chat-powered SWE company that simulates the whole
software development process. Kashef is designed to leverage
communicative agents, each tasked with a specific role in the
testing process, thereby mimicking the approach a software
tester would take in a black-box testing environment.

III. KASHEF DESIGN OVERVIEW

Kashef is an LLM-powered software testing tool that au-
tomates the generation and execution of tests for web-based
microservices applications. The primary goal of Kashef is to

https://github.com/Kashef-KAUST/Kashef
https://github.com/Kashef-KAUST/Kashef

Testing

Engineer

HTML

Interpreter

Code

Excutor

A

B D

C

Fig. 1: Workflow of Kashef agents.

assist testing engineers in a) determining the test cases needed
to test the system, b) generating test cases, and c) executing
tests. As stated previously, our implementation currently only
accomplishes (b) and (c). We plan on achieving (a) in future
work.

Automating these tasks is challenging, especially if we are
to view the MSA system under test as a black box and there
is no given specification for the application interfaces. On
the other hand, we assume, as it is common practice, that
a deployed instance of the system executes in a controlled
environment wherein various experiments can be run that poke
at the system using a variety of scenarios. Thus, our primary
aim is to identify interesting testing scenarios with as little
human input as possible.

The main feature of Kashef is its utilization of the advanced
capabilities of LLMs in reasoning and code generation. Our
design for Kashef is based on the concept of communicative
agents (§II-C). In this paradigm, different agents with different
roles engage with each other (in a conversational manner) with
the goal of completing a particular task, with no need for
human involvement besides the initial task prompt. The multi-
agent setup allows Kashef to generate tests in an automated
and incremental manner, which is essential in our context of
testing web applications since the testing task often involves
performing multiple, sequential actions.

Before describing the specifics, it is worth to remark our
rationale for using a multi-agent setup. We initially attempted
to describe the test-case generation using step-by-step in-
structions and examples as part of a single prompt for the
LLM. We generally observed that with this approach the
LLM was unable to succeed and would fail to follow the
instructions. Therefore, we set up the approach to offer simpler
piecemeal tasks that can be solved by different LLM agents
collaboratively.

The design of Kashef consists of three agents: Testing
Engineer (TE), HTML Interpreter (HI), and Code Executor
(CE). The TE and HI are LLM-based agents, while the
CE is a tool to execute code. Serving as the entry-point
in the tests generation workflow, the TE expects a simple
prompt from the user specifying the action to perform on the
application. For example, in the context of an e-commerce
application, the prompt could be: “checkout a random product
from the website www.example.com”. Figure 1 illustrates the
workflow of the three agents. (A) Working in incremental and

collaborative fashion, the TE sends the generated code to the
CE. (B) If the code execution fails, the CE simply returns
the errors to the TE for code fixing. (C) Otherwise, if the
code execution succeeds and HTML code is retrieved from the
application under test, the CE sends the result to HI. (D) Upon
receiving and analyzing the HTML code, the HI provides a
detailed description of the key elements in the HTML page to
the TE. This workflow continues until the task is completed
or a certain iterations threshold is reached.

To implement Kashef, we used the machine learning
frameworks LangGraph [27] (a module developed on top of
LangChain) and AutoGen [21]. These frameworks enable the
design of multi-agent workflows. Within each framework, we
experimented with multiple LLM models, such as GPT-3.5,
GPT-4, CodeLlama, and Llama2 to serve as the LLM for
our agents. In addition to the machine learning frameworks,
we also used Selenium, a testing framework that enables
programmatic interaction with web browsers. Specifically, we
instruct the TE of Kashef to use Selenium library when
generating the testing code. The choice of Selenium comes
as a result of its suitability for our testing approach as well as
its widespread popularity.

As of this writing, we were not able to obtain a fully
working setup with LangGraph (which is still a preview library
under heavy development). The results in the rest of this paper
are based on the AutoGen implementation.

IV. EXPERIMENTS AND EVALUATION

To evaluate Kashef, we define four tasks (IV-A). Further,
for the LLM agents of Kashef, we make use of four different
LLMs: lama-2-70b-chat-hf (Llama 2), CodeLlama-70b-
Instruct-hf (CodeLlama), gpt-3.5-turbo-0125 (GPT-3.5), and
gpt-4-0125-preview (GPT-4). For each LLM, we execute 10
runs for each task, resulting in a total or 40 runs for each
LLM. We report average results across the runs.

A. Testing Tasks

We provide Kashef with four testing tasks, with varying
levels of difficulty. A testing task consists of a website and a
task prompt that specifies for Kashef what functionality needs
to be tested in that website. We use this message as an input
prompt to the TE agent. Our selection of websites for the tasks
includes an e-commerce demo, a word counter, a pastebin, and
a to-do list. We aim to test websites with different layouts and
different functionalities. For the task prompts, we construct
them to be general and provide as little details as possible so
we can assess the LLMs ability to reason on how to approach
the tasks. The prompts for these tasks are given below:

1) Task 1: “Checkout a random item from this website
https://cymbal-shops.retail.cymbal.dev. Make sure
to complete the entire checkout process and randomize
the item selection. When you reach the shipping and
payment page, use the pre-filled information.”

2) Task 2: “Open this word counter website https://looabu
zfed.com/. Then, I want you to verify the word counting
functionality and ensure it is working correctly.”

https://cymbal-shops.retail.cymbal.dev
https://looabuzfed.com/
https://looabuzfed.com/

TABLE I: Evaluation metrics and definitions.

Metric Definition

1 Success Rate The tool completed the task fully and
successfully

2 Subtasks Completed % The percentage of the full task that is
completed (given that tasks consist of
specific subtasks)

3 Code Regenerations The number of code regenerations dur-
ing a successful run due to errors

4 LLM Invocations The number of LLM invocations dur-
ing a successful run

5 HTML Non-utilization The number of times the LLM agent
did not utilize the HTML code

6 Versioning Ignored Whether or not the TE preserved pre-
viously generated code in new itera-
tions of the code

7 False Positive The indication by the tool of a suc-
cessful run when the actual outcome
should have been otherwise (e.g., fail-
ure to complete the task)

8 Context Length Exceeded Whether or not the LLM’s context
length was exceeded

9 Random Product Selection Whether or not random product selec-
tion was achieved (only for task 1)

3) Task 3: “I have a website for to-do list. Open the website
and create a to-do by clicking on ’create projoodle’.
When having to input information, just provide ran-
dom information. For date inputs, format the date like
MM/DD/YY.”

4) Task 4: “I want you to verify the functionality of this
pastebin website https://privatebin.net. Specifically, you
have to ensure the post data is persistent by comparing
the text you posted with the text found in the generated
pastebin link.”

B. Metrics

To evaluate the performance of Kashef on the tasks defined
earlier, we devise a set of evaluation metrics. We outline in
Table I these metrics and their corresponding definitions. Note
that the metrics are defined for a single run of Kashef.

We elaborate here on a few metrics that are not self
explanatory. The reason behind metric 2 is the observation that
for some tasks, Kashef is able to achieve a significant portion
of the task but fails at a certain step. Therefore, we want to
measure the subtasks completion to gain a detailed insight
into the per-task performance. Metric 3 is useful because it
measures the accuracy of Kashef and the consequent cost
(since code regenerations involve LLM invocations), while
metric 4 is helpful because it can approximate the cost of
running Kashef.

In certain runs, the LLM does not utilize the HTML code
properly, resulting in incorrect web interactions and Selenium
exceptions like NoSuchElementException. Due to this rea-
son, we devise metric 5. Further, in runs involving complex
tasks with a long sequence of steps, the TE tend to discard
previously generated code that accomplished earlier steps of
the task, and generates new code that tackles the remaining
steps with the assumption that previous interactions are saved
in the browser session. This leads to errors because each code

execution starts from a fresh browser session. We refer to this
issue as code versioning and measure it in metric 6.

Lastly, for the e-commerce task (task 1), we reason that
random selection of products is essential to effective testing
of the website. Therefore, we measure the number of times
Kashef achieves random selection of products using metric 9.

C. Results

Out of the four LLMs we experimented with, GPT-4 yielded
the highest performance. For clarity, we present results based
on each LLM used.
GPT-4: Table II presents the test results for GPT-4. The
metrics are averaged across the 10 execution runs of each
task. For task 1, Kashef using GPT-4 successfully completes
the task in 7 out of 10 runs (70% success rate). However, when
measuring the percentage of subtasks completed, we find that
on average, 90% of the full task is completed. Further, we
find that on average, each successful run involves about 0.4
code regenerations and requires around 6.8 LLM invocations
(accounting for both the TE and the HI). Out of the 10 runs,
Kashef did not utilize the HTML code twice only and this
occurred within a single run. During the 10 runs, Kashef did
not ignore versioning, did not report false positives, and did not
exceed the model’s context length. Kashef achieved random
selection of products in all execution runs.

For task 4, creating a task on a to-do list website, Kashef
did not succeed in any of the runs. We note that the reason
for failing in this task was largely due to disregard for code
versioning. In several runs, the TE does not retain previously
generated code in new versions of the code. Because browsers
sessions are cleared after every code execution, a subsequent
code version that does not include earlier versions naturally
fails to execute.

Due to space limit, we refer the reader to Table II for a
summary of the results for all the tasks. However, we mention
below a few observations that we think are noteworthy:

• In tasks 1 and 4, some of the failed runs are due to the HI
refusing to analyze the HTML code. One of the responses
from the HI is: “I’m unable to execute or interact with
web pages directly...” The other responses of the HI are
very similar. We are not sure of the reason behind this
behavior, but we speculate that this might have happened
due to model temperature, the HI misunderstanding its
role, and/or the HI misinterpreting script elements as code
that it should run.

• In one of the runs for task 2, the TE writes the testing
script twice. In the first test script, the agent makes an
arithmetic error in counting the words of its generated
text, therefore concluding that the outputted word count
from the website is incorrect. It then decides to test
the functionality of the website again and succeeds in
the second test script. This confirms observations made
elsewhere [28] about how LLMs can struggle with certain
simple tasks, and suggests that we should instruct the
agents to use tools whenever possible during verification
attempts.

https://privatebin.net

TABLE II: Test results for GPT-4 model.

Task Success Rate Subtasks Completed % Avg. Code Regeneration Avg. LLM Invocations Avg. HTML Non-utilization Versioning Ignored Avg. False Positives Context Length Exceeded Random Product Selection

1 70.0% 90.0% 0.4 6.8 0.2 0.0% 0.0% 0.0% 100.0%

2 100.0% 100.0% 0 5.1 0 0.0% 0.0% 0.0% N/A

3 0.0% 46% N/A N/A 0.3 60.0% 0.0% 0.0% N/A

4 80.0% 87.50% 0.3 5.3 0.1 0.0% 0.0% 0.0% N/A

TABLE III: Test results for GPT-3.5 model.

Task Success Rate Subtasks Completed % Avg. Code Regeneration Avg. LLM Invocations Avg. HTML Non-utilization Versioning Ignored Avg. False Positives Context Length Exceeded Random Product Selection

1 0.0% 33.33% N/A N/A 1.0 10.0% 20.0% 10.0% 80.0%

2 80.0% 83.33% 0.7 5.3 0 0.0% 20.0% 0.0% N/A

3 0.0% 13.0% N/A N/A 0 0.0% 0.0% 0.0% N/A

4 0.0% 22.5% N/A N/A 0 0.0% 10.0% 0.0% N/A

GPT-3.5: Table III presents the results for GPT-3.5. The
metrics are averaged across the 10 execution runs of each
task. For task 1, Kashef using GPT-3.5 is unable to execute
any of the trials successfully (0% success rate). However, when
measuring the percentage of subtasks completed, we find that
on average, 33.33% of the full task is completed. Since all
trials failed to complete, we do not note the average LLM
invocations and average code generation. The tool does not
utilize the HTML code a total of 10 times (distributed among
4 out of the 10 trials). Out of the 10 trials, 1 ignored code
versioning, 2 were false positives, and 1 exceeded the context
length limit. The tool achieved random selection of products
in 8 out of the 10 trials.

For space constraints, we refer the reader to Table III for a
summary of the results for the rest of the tasks. However, we
mention here a few observations that we think are noteworthy:

• In all tasks, the TE seems to struggle with generating
correct Selenium code. Many of the code regenerations
are a result of webdriver errors. It is also unable to fix
these errors regardless of the multiple times it tries to.
Additionally, instead of having one code block in a given
response, the TE provides multiple code blocks in one
response with each being a version of the code block
prior to it. However, it does that for the first response only
and before getting more context from the HI. Other than
that, the TE seems to completely ignore the specification
of providing the HTML after each code increment. We
believe this is the main reason why many trials have
failed. Lastly, the way that the code generated by TE
handles errors is by printing the stack trace instead of
the error description. Thus, when the CE executes the
code and it fails, it doesn’t provide a useful description
of the error that the TE can use to fix the error.

• Tasks 2 and 4 are very similar in terms of the website’s
simplicity and the actions needed to test them. However,
there is a big difference in their success rates (80% vs
0%, respectively). This is due to the absence of providing
the HTML content of the website to the HI. In the code
generated for task 2, the HTML content is printed to the
HI, while this is not the case for task 4. We are still
unsure as to why this behavior happens, especially since
the system prompts are the same and the task prompts
are very similar.

Llama 2: For Llama2, there were several challenges that
hindered the collection of meaningful test results. First, the
context length of Llama2 was too small to handle lengthy
HTML codes retrieved from web pages. For task 1, 2, and
4, the model’s context length was already exceeded by the
first HTML code fetched from the landing page of the web-
site. Second, the Llama2-powered TE was largely incapable
of building the code incrementally and maintaining code
versioning. Indeed, in several of the runs, the TE simply
produced the entire code at once. That is, as opposed to first
opening the website and retrieving the HTML code in order
to proceed with next steps, the TE generated a boilerplate that
approximated the steps necessary for accomplishing the task.
Third, the code generated by the TE was often not formatted
in one block, but instead interleaved with explanatory text. As
a result, the CE was unable to effectively execute the full code
produced by the TE.

Due to the aforementioned challenges, we did not run all
the testing trials (compared to GPT models) because doing so
seemed unproductive. We postulate that either the model is
incapable of achieving our defined tasks or that our prompts
require modifications.
CodeLlama: When running trials on the CodeLlama model,
we faced a problem where it refused to comply with the system
and task prompts due to ethical concerns. We observed that
this behavior is affected by the temperature of the model. If
we increase the temperature, it would occasionally generate
the code we requested. However, code generation was very
infrequent, which made it infeasible to conduct tests and obtain
meaningful test results.

V. CURRENT LIMITATIONS AND CHALLENGES

It is worth noting that what we have accomplished barely
scratches the tip of the iceberg in terms of system testing. The
challenges ahead lie in generating and executing test cases
that can stress the system, identifying stragglers and breaking
conditions. Kashef is currently limited for two reasons. First,
Kashef adopts the black-box testing approach and interacts
with applications through one entry point (i.e., the frontend
service). However, it would be more effective to also trig-
ger other services independently and simultaneously. Second,
Kashef is not yet designed to generate and execute test cases
in parallel, which is essential to producing a workload repre-

sentative of the production environment that can reasonably
test the microservices application.

Moreover, while Kashef is currently able to conduct simple
black-box testing tasks, there are several challenges to address
in this context as well. First, the output of Kashef does not yet
scale reliably as the task complexity increases, as shown in the
evaluation. This seems largely due to code versioning issues,
where the complete code is not maintained across versions but
rather discarded for newer versions that achieve later subtasks
of the full task. Second, the job of crafting effective prompts
for the LLM agents is challenging due to the manual effort
required in revising and improving the prompts.

After successfully achieving the black-box testing objective,
the natural progression of Kashef is using gray box testing and
reaching a level of sophistication where Kashef can generate
more complex tests that can effectively and automatically
stress the system under test, reporting (mis)behaviors of in-
terest when they arise.

VI. CONCLUSION AND FUTURE WORK

We presented our preliminary work on Kashef, an LLM-
powered software testing tool that aims to automate the
generation and execution of tests for web-based microservices
applications. We discussed the design of Kashef, the evaluation
metrics, and the results of our experiments. We found that
Kashef was able to successfully complete some of the tasks,
but faced challenges in others.
Additional agents: In actions that require a long sequence
of steps, we observed that the TE stops building on previous
code at one point, leading to execution errors (an issue we
referred to as code versioning). Thus, we plan on introducing
an agent responsible for ensuring that functional code from
previous versions is preserved in new code iterations.
Prompt engineering and optimization: There are two strate-
gies we are considering for improving the prompt. First,
we are interested in exploring chain-of-thought and few-shot
prompting techniques, which have been shown to provide
performance improvements [18]. Second, we are interested
in the concept of automatic prompt optimization [18]. In
particular, we plan to explore DSPy [29], a framework for
optimizing prompts for language models.

REFERENCES

[1] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A Systematic grey literature review,” Journal of
Systems and Software, vol. 146, 2018.

[2] J. Lewis and M. Fowler, “Microservices: a definition of this new archi-
tectural term,” https://martinfowler.com/articles/microservices.html, Feb
2014.

[3] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic
systems to Microservices: An assessment framework,” Information and
Software Technology, vol. 137, 2021.

[4] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using Docker technology,” in SoutheastCon, 2016.

[5] Amazon Web Services, “AWS re:Invent 2015: A Day in the Life of a
Netflix Engineer (DVO203),” https://www.youtube.com/watch?v=-mL3
zT1iIKw, 2015.

[6] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study,” IEEE Transactions on Soft-
ware Engineering, vol. 47, no. 2, 2021.

[7] R. Sophocleous and G. M. Kapitsaki, “Examining the Current State of
System Testing Methodologies in Quality Assurance,” in XP, 2020.

[8] M. Waseem, P. Liang, G. Márquez, and A. D. Salle, “Testing Microser-
vices Architecture-Based Applications: A Systematic Mapping Study,”
in APSEC, 2020.

[9] M. Camilli, A. Guerriero, A. Janes, B. Russo, and S. Russo, “Microser-
vices Integrated Performance and Reliability Testing,” in AST, 2022.

[10] L. Gazzola, M. Goldstein, L. Mariani, I. Segall, and L. Ussi, “Automatic
Ex-Vivo Regression Testing of Microservices,” in AST, 2020.

[11] P. P. Ray, “ChatGPT: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope,” Internet
of Things and Cyber-Physical Systems, vol. 3, 2023.

[12] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code Llama: Open Foundation Models for Code,” 2024,
arXiv:2308.12950.

[13] Anthropic, “Claude,” https://www.anthropic.com/claude, 2023.
[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,

H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” 2021, arXiv:2107.03374.

[15] N. Alshahwan, J. Chheda, A. Finegenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated
Unit Test Improvement using Large Language Models at Meta,” 2024,
arXiv:2402.09171.

[16] D. Zimmermann and A. Koziolek, “GUI-Based Software Testing: An
Automated Approach Using GPT-4 and Selenium WebDriver,” in ASEW,
2023.

[17] Z. Xie, Y. Chen, C. Zhi, S. Deng, and J. Yin, “ChatUniTest: A
Framework for LLM-Based Test Generation,” 2023, arXiv:2305.04764.

[18] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
Testing with Large Language Models: Survey, Landscape, and Vision,”
2024, arXiv:2307.07221.

[19] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem,
“CAMEL: Communicative Agents for ”Mind” Exploration of Large
Language Model Society,” in NeurIPS, 2023.

[20] C. Qian, X. Cong, W. Liu, C. Yang, W. Chen, Y. Su, Y. Dang, J. Li,
J. Xu, D. Li, Z. Liu, and M. Sun, “Communicative Agents for Software
Development,” 2023, arXiv:2307.07924.

[21] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang,
S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger, and
C. Wang, “AutoGen: Enabling Next-Gen LLM Applications via Multi-
Agent Conversation,” 2023, arXiv:2308.08155.

[22] K. Ronanki, C. Berger, and J. Horkoff, “Investigating ChatGPT’s Po-
tential to Assist in Requirements Elicitation Processes,” in SEAA, 2023.

[23] T. Stojanovic and S. D. Lazarević, “The Application of ChatGPT
for Identification of Microservices,” E-business technologies conference
proceedings, vol. 3, no. 1, 2023.

[24] P. Denny, V. Kumar, and N. Giacaman, “Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural
Language,” 2022, arXiv:2210.15157.

[25] L. Belzner, T. Gabor, and M. Wirsing, “Large Language Model Assisted
Software Engineering: Prospects, Challenges, and a Case Study,” in
AISoLA, 2023.

[26] R. I. T. Jensen, V. Tawosi, and S. Alamir, “Software Vulnerability and
Functionality Assessment using LLMs,” 2024, arXiv:2403.08429.

[27] LangChain, “Langgraph,” https://langchain-ai.github.io/langgraph/,
2024.

[28] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, L. Zettle-
moyer, N. Cancedda, and T. Scialom, “Toolformer: Language Models
Can Teach Themselves to Use Tools,” 2023, arXiv:2302.04761.

[29] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller,
M. Zaharia, and C. Potts, “DSPy: Compiling Declarative Language
Model Calls into Self-Improving Pipelines,” in ICLR, 2024.

https://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=-mL3zT1iIKw
https://www.youtube.com/watch?v=-mL3zT1iIKw
https://www.anthropic.com/claude
https://langchain-ai.github.io/langgraph/

	Introduction
	Background and Related Work
	LLM-Assisted Software Engineering
	LLM-Assisted Testing
	Communicative Agents

	Kashef Design Overview
	Experiments and Evaluation
	Testing Tasks
	Metrics
	Results

	Current Limitations and Challenges
	Conclusion and Future Work
	References

