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Abstract. Interesting research in the areas of traffic classification, net-
work monitoring, and application-oriented analysis can not proceed with-
out real traffic traces, labeled with actual application information. How-
ever, hand-labeled traces are an extremely valuable but scarce resource
in the traffic monitoring and analysis community, as a result of both
privacy concerns and technical difficulties. Hardly any possibility exists
for payloaded data to be released, while the impossibility of obtaining
certain ground-truth application information from non-payloaded data
has severely constrained the value of anonymized public traces.

The usual way to obtain the ground truth is fragile, inefficient and not
directly comparable from one’s work to another. This paper proposes a
methodology and details the design of a technical framework that signif-
icantly boosts the efficiency in compiling the application traffic ground
truth. Further, a case study on a 30 minute real data trace is presented.
In contrast with past work, this is an easy hands-on tool suite dedicated
to save user’s time and labor and is freely available to the public.

1 Introduction

The collection of ground-truth application information of the Internet traffic is
critical to both the research community and the industry:

— it is the basis to build and the only way to evaluate applications for network
monitoring, information assurance, and traffic accounting,

— it facilitates the research on nearly every aspect related to applications,
protocols, network modelling and data analysis, and

— it provides accurate knowledge of how people use the network which is in-
creasingly important for network security and management.

However, due to privacy concerns, hardly any payloaded data can be released,
while publicly accessible non-payloaded traces (e.g., LBNL and MAWI) are of
limited value without the associated application information. A common practice
becomes to obtain the ground truth from payloaded traces by hand.

Many different, although inherently similar, approaches have been used in
the past to obtain the ground truth: Moore and Papagiannaki [1] documented
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a fine-grained classification scheme comprising nine identification methods. The
ground-truth labels used in [2] were based on “hand-classification”, while the
authors in [3] and [4] were using an “automated payload-based classification”
as they described. The collection of many (if not all) of these ground-truth
data was automated using extensible NIDSes such as Snort and Bro, or through
homemade scripts. The efforts made to collect the ground-truth data were both
significant and highly improvised, causing a lot of unnecessary, repeated labor,
untrustworthy results (e.g., ground truth derived by signature matching alone)
and inconsistency (e.g., different levels of completeness) between different works.
Further, there is often a lack of verification mechanisms between multiple infor-
mation sources, hence faults are inevitable and unrecoverable.

In this paper, we present GTVS (Ground Truth Verification System), a
novel framework and methodology dedicated to boost the collection of appli-
cation ground truth. It reduces the time and labor required in the process by
automating the data manipulation and information retrieval processes as well
as significantly increasing the efficiency of the hand-verification methodology. It
facilitates validations among many information sources to improve the general
quality of the ground truth. It works at a finest granularity of a bi-directional
flow defined by the IP 5-tuple (IP addresses, transport ports and protocol) but
provides aggregated views that allow for better recognition of the host behaviors
and it uses heuristic rules based on multiple criteria that accelerate the verifi-
cation. It is extensible to allow additional information sources and user-defined
heuristics, and to achieve different goals. Finally, it provides a neat and handy
platform to facilitate the management of hand-verification projects and to allow
experiences and data to be shared among the research community.

The following section reviews and validates an important assumption used
in our work. Section 3 presents an overview of the GTVS framework. Then,
Section 4 presents a detailed case study on a 30 min trace to guide the read-
ers through our ground-truth verification process. Related work is discussed in
Section 5 and Section 6 concludes the paper.

2 Assumption and validation

We observe that flows belonging to the same service or application often share
a subset of the IP 5-tuple, notably, the {dst IP, dst port} and {src IP, dst IP}
sub-tuples (where dst refers to the server side). This leads to an assumption
that underpins our approach: flows of the same sub-tuples are associated to the
same service or application. With this, the data can be labeled at high-level
aggregations. Similar assumptions are implicitly used in BLINC [3] where traffic
is classified using graphlets which essentially resolve into sub-tuples.

The consistency between the application label and the two sub-tuples was
validated using two day-long traces [1] which had been previously hand-classified
and several segments of most recent data. This consistency assumption holds for
most cases with few exceptions as separately discussed below.
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The {dst IP, dst port} sub-tuple. Exceptions are different application
encapsulated in VPNs and SOCKS proxies. In our settings, this traffic is cur-
rently categorized into the “remote access” class. Others have discussed further
mechanisms that can be applied to identify the encapsulated applications [5].

The {src IP, dst IP} sub-tuple. Exceptions include VPNs and SOCKS
proxies as well as circumstances where there are multiple applications between
a server and a client, e.g., a server operating both an ssh and a web?® server.
However, in such circumstances, the server is usually operating traditional ser-
vices (e.g., web, ftp, mail or ssh). This sub-tuple effectively complements the one
above in classifying applications on multiple ports (e.g., ftp transfers, or P2P).

3 Overview

GTVS can be described as a user-oriented design in a layered structure, as
shown in Figure 1. It is composed of (i) a basic infrastructure layer for data
management including packet traces and flows database, (ii) an information-
rich frontend from which the user can retrieve all information related to the
flows at different aggregations, and (iii) a verification process accelerated by
flexible heuristic rules. A detailed description for each layer is presented below.

3.1 Data infrastructure

The data infrastructure processes payloaded traces to collect information on
different levels of aggregation (flows, {IP, port} tuples, and hosts).

The trace is organized into files of relatively small size (e.g., 512MB) and is
indexed by the timestamp of the first packet contained in each file and by the
IP addresses and protocol of each packet therein. The two indexes enable fast
queries of the payload content for each flow.

The packets in the trace are aggregated into bi-directional flows and matched
against known protocol signatures. For each flow, a number of statistics are

3 In this paper, web-browsing refers to services using a web interface: including web
sites and web-based applications such as gmail or youtube.



collected. This information along with the signature-matching results is stored
in the Flows table. Based on this table, two further tables are created: namely
the Hosts table and HostPorts table, to support aggregated views of the traffic
grouped by server or client IPs. These views enable the user to browse the general
behavior on a higher aggregation and also to verify the traffic at this level.

3.2 The verification frontend

This second layer consists of a frontend that includes a graphical interface which
presents abundant information at various levels of aggregation, and supports the
use of different kinds of heuristic rules, all to facilitate the verification process.
Combining the merits of many traffic classification works, the information
presented in the frontend is collected from a broad set of sources, including:

— Flow statistics (e.g., duration, number of packets, total number of bytes and
payload bytes in each direction and TCP flags) as in [2,6].

— Payload information from a fine-tuned set of protocol signatures as in [1].

— Host name resolution for all the IP addresses appearing in the trace as in [3].

— Port-based mapping using a comprehensive list of well known port numbers.

— Packets payload content (e.g., tcpdump of a flow).

— Host-level connection statistics and transport-layer behavior of the P2P over-
lay networks as in [3,7].

4

Additionally, further information may be available as an extension, such as
data mined from the payload of flows, flow-behavior features as used in [6], or
from external modules (e.g., IDSes, specific traffic analyzers, traffic classifiers).

3.3 Heuristic rules

The verification frontend also supports the use of heuristic rules. The main idea
is to leverage a core set of automated procedures to verify subsets of similar
flows with very high confidence, while resorting to human discernment when not
enough clues are available to recognize the nature of certain flows.

The heuristics can either be derived empirically or built using a combination
of signature matching results and a prior: knowledge about known applications,
port numbers and host names. The user can flexibly build his own heuristics,
blending his own site and application-specific knowledge to facilitate desired
tasks. To validate the heuristics, a specific dry-run mode is available for preview-
ing the results of an action before actually modifying the database. On applying
heuristic rules, GTVS will search for potential candidate flows and verify those
which satisfy the conditions given in the heuristics.

In our experience, the use of heuristic rules has allowed us to drastically
reduce the time needed to verify the ground truth.

% Ideally, the IP addresses should be resolved at the time when the trace is collected.
However, for previously collected traces, host names can be mined from the DNS
traffic in the original trace as well as the Host header field in the HTTP requests,
or, in the worst case, resolved when the trace is being verified.



Distinct IPs|Server IPs[Server IP:port pairs|Client IPs|Flows |Packets|Bytes
25,631 11,517 \127198 14,474 250,403/10.9 M |7.4 GB
Table 1. Working dimensions of our data set.

4 Accelerating the verification: experiences with GTVS

The use of GTVS does not replace the manual verification process but is dedi-
cated to accelerating it. Here we suggest two principles, namely those of efficiency
and accuracy which we apply to the use of GTVS. The efficiency principle is to
always try to work upon higher aggregations (e.g., services rather than individual
flows) whenever possible. For example, large numbers of well-known, traditional
service traffics on a specific host can be verified in the first instance. The accu-
racy principle is to make decisions only with very high confidence, e.g., when
strong evidence from two or more mutually-independent information sources
match with each other.

Normally, the hand verification of an hour-long trace on a 1 Gigabit/s link
would take more than a hundred man-hours®. With GTVS, we hope an experi-
enced user would be able to verify an initial data trace within days.

In this section, we use the case study for a 30 min trace as an example to
introduce the heuristic rules and show how they are exploited to accelerate the
verification process. The trace was collected in mid December 2007 from the
link to the Internet of a research facility. There were several thousands of users
on site, mainly researchers, administrators and technical staff. Table 1 lists the
working dimensions of our data set.

Because of page limit, we focus on describing how we verified the complete
TCP flows, i.e., the flows that are captured entirely from triple handshake to
tear down. As for the rest, the UDP flows are verified in a much similar way,
except that they are defined using a configurable timeout value. The incomplete
TCP flows are typically composed of various kinds of scans and unsuccessful
connection attempts. Most of this traffic has distinguishable patterns upon which
custom heuristic rules can be built up.

4.1 Initial application clues

A set of payload signatures is used in GTVS to help collect the clue of an
application from packet payload. Our signature set is capable of identifying 35
most popular protocols. These signatures are derived from databases available on
the Web, (e.g., 17-filter®). We tested the signatures on previously hand-classified
data and several segments of new data. The underspecified signatures which
create many false positives (e.g., eDonkey, Skype) have either been changed or
excluded, while the undermatching ones (e.g., BitTorrent) have been improved.
Of course, the signatures are still far from being able to identify the totality of

® An indication from the authors’ previous experiences in hand-classification [1].
S http://17-filter.sourceforge.net/



the traffic. However, they can be regarded as a useful clue, especially when the
results they provide can be co-validated with different evidence.

4.2 The verification process (in iterations)

Our approach is based on a number of successive iterations, each refining the
result. Each successive verification iteration focuses upon the remaining unclas-
sified flows about which we have the most confidence. In this way, we can accu-
mulate knowledge based on the highest level of confidence and use this to assist
in the classification of data about which we have lower levels of confidence.

Our approach requires the grouping of the heuristics to each iteration and
then ordering of the iterations based upon the level of confidence we are able to
place in the classification outcome.

We have derived a set of heuristics of which a core subset is presented here. We
consider this subset contains those heuristics that provide sufficient generality
to be useful for a wide range of applications across different physical sites.

First iteration. Based on the assumption introduced and justified in Sec-
tion 2, we derive some simple heuristics below.

If the signature matching results for a specific server:port endpoint appear
to be strongly consistent, we can reasonably assume that we have identified a
particular service on that endpoint. Several criteria are used to quantitatively
justify the consistency: thresholds are specified to guarantee that at least a
certain percentage of flows as well as a minimum number of flows have matched
a specific signature. In addition, only a given subset of signatures is allowed to
have matched the flows. For example, it is known that HTTP might appear in
BitTorrent” traffic, but BitTorrent should not appear in the flows toward a Web
server. This constraint is expressed by defining a subset of possible signatures
(which does not include BitTorrent when the heuristic is used for HTTP traffic).
The thresholds are initially set in a conservative way (e.g., at least 90% and 10
flows), and will be tuned in the third iteration. We apply this heuristic for most
of the protocols, especially for those with a well-established signature.

The next heuristics are based on the assumption that flows between the same
IP addresses pair are likely due to the same application. For example, FTP traffic
between two hosts can be easily verified by considering a host that has an already
verified FTP service (e.g., using the first heuristic) and a number of flows each
going to a different high port number on the same destination in an incremental
fashion. As another example, consider the HTTPS protocol. In many cases a
web server is running both standard and secure HTTP services. If a standard
HTTP service has been verified on port 80, and a certain fraction of flows to
port 443 matches the SSL signature, then the flows between a hosts pair can be
heuristically verified. Other similar heuristics can be derived for streaming and
VoIP applications: for example, RTSP appear within a TCP control channel
while the data are relayed on a unidirectional UDP stream; instead a VoIP
application may use a SIP session and a bi-directional UDP stream.

7 BitTorrent clients use HT'TP in some of their communications.



Class Total Number of flows by iterations
Flows| Packets|Bytes [MB] 1st 2nd 3rd 4th 5th
email 10,871| 808,272 470.55| 7,225 8,743| 9,439| 10,420/ 10,871
ftp 555| 894,805 838.22 555 555 555 555 555
gaming 150 2,882 0.47 0 108 108 108 150
im 506| 21,036 4.18 65 503 505 505 506
malicious 4,008| 62,259 5.30 0 0 0 0| 4,008
p2p 17,851|1,125,766 685.43| 12,046| 12,046| 12,728| 17,708| 17,851
remote 317| 135,735 109.26 254 254 254 254 317
services 618| 16,675 9.22 466 604 610 610 618
streaming 11 17,815 16.33 0 2 8 8 11
voip 1,043] 52,020 11.92 0 121 121 1,042| 1,043
web-browsing|212,432(7,630,649 4,889.80(207,888(208,313|211,522(211,522|212,432
unknown 2,041| 112,840 52.66| 21,904| 19,154| 14,553| 7,671 2,041

Table 2. Traffic breakdown by class and evolution of completeness by iteration.

Second iteration. A great amount of information can be derived from the
host names. For very popular services (e.g., Google, MSN, eBay), heuristics based
on domain names can be easily defined: e.g., HI'TPS traffic to MSN servers
is due to MSN messenger instead of browsers as well as traffic on port 1863.
Further, assuming the trace was captured at the edge of a certain network,
specific site information about the internal services and traffic policies can be
used to efficiently verify a part of the traffic.

Third iteration. Now we try to lower the thresholds of the previous heuris-
tics. We focus on particular hosts where certain flows are matched by a specific
signature, while a part of flows are not matched. If also these flows correspond
to the same application, the thresholds can be lowered for those hosts.

Fourth iteration. In this iteration we consider behavioral characteristics of
hosts in regard to overlay networks, mainly for the identification of P2P traffic.
A typical example, however, is the SMTP traffic which has a strong P2P-like
behavior in that SMTP servers act as both the recipient and the sender of emails.
The assumption is that if a host is an SMTP server, all the flows generated from
this host toward port 25 are mail traffic. In general, this heuristic is applicable for
P2P traffic as long as the information about the port number can be utilized®
and the assumption of the heuristic can be validated. In our experience, for
example, there is a large number of eDonkey flows which can be identified using
port 4662 and for BitTorrent on port 6881. This heuristic can re-iterate through
the data set until no new flows are discovered.

Additionally, for P2P applications that use dynamic port numbers, we resort
to a heuristic that considers the host activities and their relationship with a
certain overlay network. We select an initial set of peers which are known to run
a particular P2P application: some P2P nodes are already identified in the first
iteration, and some Skype clients are identified in the second iteration using the

8 We observe that many P2P nodes still use the well-known port numbers.
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Fig. 2. Verification completeness against successive iterations.

information of login servers.? Then, for each identified peer, we consider the set
of hosts that it communicates with. We select the subset of hosts corresponding
to the intersection of all these host sets. Lastly, we identify hosts that are likely
peers by applying a threshold (e.g., > 3) on the host’s connection degree (i.e.,
how many peers are connected to this host) and selecting those hosts that do
not have other conflicting activities (e.g., if they run multiple P2P applications).

Fifth iteration. From our experience, at this iteration only a small number
of payloaded flows remain. User-defined heuristics can be derived according to
the specific applications in the analyzed trace, or to the particular behaviors
that might be found through manual inspection. Also, based on information of
the already verified hosts, one can start to label the incomplete TCP flows and
unknown UDP flows, using the assumption on the sub-tuple consistency.

So far, the heuristic rules have greatly reduced the time to verify the flows,
although manual verification of a small amount of remaining traffic is still nec-
essary, especially for the identification of new applications.

Table 2 summarizes the total traffic breakdown as we verified, and shows
the partial results measured at the end of each iteration, which are graphically
presented in Figures 2a and 2b for two metrics: flows and packets. Finally, Fig-
ure 2c reports the evolution of completeness for clients and servers during each
iteration. As can be seen, a very small number of clients are responsible for the
2,041 unknown flows toward 1,736 servers. In this case, these hosts happen to
simultaneously run several P2P applications and we are not able to determine a
final conclusion on the specific application.

Finally, we evaluate 17-filter’s accuracy based on the obtained ground truth.
Table 3 shows per-class false negatives and positives. Its signatures do not sig-

9 For identifying Skype clients we also use another heuristic based on the peculiarity
of this application receiving TCP connection on ports 80 and 443 plus a high number
chosen at random.



Class False negatives [%] | False positives [%)]
Flows|Packets| Bytes|Flows|Packets|Bytes
email 25.99| 22.33| 21.75| 0.00 0.00 0.00
ftp 81.26| 99.53| 99.97| 0.00 0.00 0.00
gaming 100.00| 100.00{100.00| 0.00 0.00{ 0.00
im 74.90| 79.60| 81.78| 0.00 0.00 0.00
malicious 100.00{ 100.00{100.00| 0.00 0.00{ 0.00
p2p 16.75| 16.65| 14.67| 0.34 1.85| 2.10
remote 18.93 0.52| 0.04| 0.00 0.00 0.00
services 98.54| 99.48| 99.94| 0.00 0.00{ 0.00
streaming 27.27 0.15| 0.02| 0.00 0.00{ 0.00
voip 100.00| 100.00{100.00| 0.00 0.00 0.00
web-browsing| 0.29 0.42| 0.40| 0.42 0.52| 0.27

Table 3. Evaluation of 17-filter’s per-class accuracy.

nificantly over match, yielding to very few false positives. However, with the
exception of web-browsing class, all classes exhibit many false negatives. This
is due to two major factors: underspecified signatures and obfuscated traffic. In
both cases, our method can exploit information about traffic aggregates to derive
the actual application and produce accurate ground truth.

4.3 Discussion

Here we have focused on describing the verification of application traffic. The
verification processes of malicious and unwanted traffic (left out due to page
limit) are also in progressive development, based on their specific patterns.

One can see that the first-time use of GTVS on any given trace will often re-
quire inspection of small segments of data throughout the process, in customizing
and testing new heuristics, dry-runs, tuning thresholds, and final manual deci-
sions on hard objects. However, if one is carrying out a continuous ground truth
collection work on a specific site or on many sites simultaneously, time would be
further saved as we expect only limited tuning and validation are needed.

Since this framework will become publicly available, it is also easier to share
the knowledge within the community: not only the string signatures but also the
heuristics and application-specific knowledge would become a public resource
and can be constructed and validated by any user of this framework.

We also note that the confidence of the ground truth verified by GTVS relies
mainly on its user. Therefore to collect good ground truth requires sufficient user
interactions and dry-runs to double-confirm the user’s judgments.

5 Related work

On the technical aspects, our work can be seen as a cumulative progress, with
lots of inspirations from previous traffic classification works, including [2,3,6-9].



Each of these works made use of a different set of information sources, which are
combined in our framework.

A content-based classification scheme comprising of nine identification meth-
ods was presented in [1]. Despite their highly accurate and complete results,
there was not a systematic infrastructure or an indication of how the procedure
can be organized. Thus a barrier exists preventing other people from repeating
their method. Further, GTVS uses a broader set of information sources.

In [10], the authors suggested a technique based on active measurements to
cover the shortage of ground-truth data. This work is tackling a similar problem
to ours. However, we argue that this technique is incapable of delivering the
variety and fidelity of real traffic. In contrast, we focus on maximally reducing
the time and labor necessary to obtain accurate ground truth from real traffic.

6 Conclusions

In this paper, we presented the novel Ground Truth Verification System (GTVS).
A detailed guide is shown on how to use GTVS to accelerate the verification
process, as well as the results by iterations from a case study of real traffic.
Further, we are publicly releasing this system and our rule sets. It is hoped that
it will substantially save the time and labor for individual researchers, and more
public data with ground-truth labels may subsequently become available to the
community in the near future.
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