
Global-QSGD: Allreduce-CompatibleQuantization for
Distributed Learning with Theoretical Guarantees

Jihao Xin

KAUST

Marco Canini

KAUST

Peter Richtárik

KAUST

Samuel Horváth

MBZUAI

Abstract
Distributed training enables large-scale deep learning, but

suffers from high communication overhead, especially as

models and datasets grow. Gradient compression, particu-

larly quantization, is a promising approach to mitigate this

bottleneck. However, existing quantization schemes are of-

ten incompatible with Allreduce, the dominant communica-

tion primitive in distributed deep learning, and many prior

solutions rely on heuristics without theoretical guarantees.

We introduce Global-QSGD, an Allreduce-compatible gradi-

ent quantization method that leverages global norm scaling

to reduce communication overhead while preserving accu-

racy. Global-QSGD is backed by rigorous theoretical analy-

sis, extending standard unbiased compressor frameworks to

establish formal convergence guarantees. Additionally, we

develop a performance model to evaluate its impact across

different hardware configurations. Extensive experiments on

NVLink, PCIe, and large-scale cloud environments show that

Global-QSGD accelerates distributed training by up to 3.51×

over baseline quantizationmethods, making it a practical and

efficient solution for large-scale deep learning workloads.

CCS Concepts
• Computing methodologies→ Machine learning; Dis-
tributed algorithms.

Keywords
Distributed Training, Gradient Compression, Collective Com-

munication

ACM Reference Format:
Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth. 2025.

Global-QSGD: Allreduce-Compatible Quantization for Distributed

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1538-9/25/03

https://doi.org/10.1145/3721146.3721932

Learning with Theoretical Guarantees. In The 5th Workshop on
Machine Learning and Systems (EuroMLSys ’25), March 30–April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3721146.3721932

1 Introduction
Distributed deep learning has become the standard approach

for scaling training across multiple compute nodes, enabling

faster convergence on large models and datasets [1, 9]. How-

ever, as training scales up, communication overhead increas-

ingly dominates total runtime, particularly in large-scale

deployments. For example, Sapio et al. [25] reports that com-

munication accounts for up to more than 90% of the total

training time in deep learning workloads, significantly limit-

ing the benefits of additional computing resources.

Gradient quantization has emerged as a practical solu-

tion to alleviate this bottleneck, which reduces the gradient

precision (e.g., from 32-bit to 8-bit) using random rounding,

making it computationally efficient and naturally unbiased

(in the sense that, in expectation, the quantized gradient is an

unbiased estimator of original gradient). However, existing

quantization methods such as QSGD [3] are often impracti-

cal in real-world scenarios due to their incompatibility with

Allreduce–the dominant communication primitive for dis-

tributed AI tasks [2, 6, 7, 18, 19, 23]. The key issue arises

because quantization is performed locally on each worker.

For example, when reducing the precision from 32-bit to 8-

bit, the gradients must be scaled using a norm, which varies

between workers. As a result, gradients are quantized at dif-

ferent scales, and directly aggregating these quantized values

via Allreduce leads to inconsistencies.

To address this limitation, we introduce Global-QSGD.
Instead of using local norms for scaling, Global-QSGD lever-

ages a global norm computed across all workers, ensuring

consistent quantization scales and enabling Allreduce com-

patibility; that is, quantized gradient values can be directly

aggregated in their compressed (quantized) representation

without the need (and overhead) of switching numeric rep-

resentation. Like other compression methods, quantization

inevitably loses information. Traditional quantization applies

a linear scaling approach, known as standard dithering,

https://doi.org/10.1145/3721146.3721932
https://doi.org/10.1145/3721146.3721932

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

Table 1: Comparision of Allreduce-Compatible Compressors

Algorithm

Seamless

Integration

w/o

Extra Step

w/o

Heuristic

w/o

EF

Tunable

Compression

PowerSGD ✗ ✗ ✗ ✗ ✓
GradiVeQ ✗ ✗ ✗ ✓ ✓
IntSGD ✓ ✓ ✗ ✓ ✗
THC ✗ ✗ ✗ ✗ ✓

Global-QSGD ✓ ✓ ✓ ✓ ✓

which is suboptimal because gradients decrease in magni-

tude as the model converges. Smaller gradients require finer

precision to maintain accuracy. To address this, we propose

exponential dithering, which allocates higher precision to

smaller gradient values, improving convergence accuracy.

Unlike previous approaches that rely on heuristics, we

provide a rigorous convergence analysis in Section 4 to es-

tablish the theoretical foundations. Using its unbiased nature,

we prove that Global-QSGD maintains a bounded variance,

ensuring stable convergence and making it a theoretically

sound choice. To study the impact across different hardware

configurations, we derive a performance modeling in Sec-

tion 5. We also evaluate Global-QSGD on various hardware

settings in Section 7, including single-node and cloud envi-

ronments. Our results show that Global-QSGD accelerates

model training by up to 3.51×, significantly reducing com-

munication overhead while maintaining model accuracy.

This paper makes the following key contributions:

• Global-QSGD is the first quantization method that

integrates seamlessly with Allreduce, achieving up to

𝑂 (
√
𝑛) higher compression efficiency than QSGD.

• We establish a general theoretical framework for un-

biased compressors, proving that Global-QSGD main-

tains bounded variance and ensures convergence.

2 Related Work
Gradient compression methods can be broadly categorized

into three approaches: sparsification [2, 4, 17, 20, 27, 28, 31],

decomposition [21, 30], and quantization [3, 13, 22, 26, 32].

Although these methods differ in how they reduce communi-

cation overhead, they can also be classified according to their

impact on gradient updates, falling into twomajor theoretical

categories: unbiased and biased compressors. Unbiased com-

pressors, such as quantization schemes like QSGD [3], main-

tain an expectation-equal gradient estimate with bounded

variance, making them easier to analyze in theoretical frame-

works [11]. In contrast, biased compressors, including Top-
𝑘 [4], SignSGD [5], and PowerSGD [30], introduce systematic

distortion, requiring correction mechanisms such as error

feedback (EF) [15, 24, 27] or induced compressors (IC) [12] to

restore convergence guarantees. However, these correction

mechanisms introduce additional memory overhead (EF) or

1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0

sign Exponent (8 bits) fraction (23 bits)

1 0 0 0 0 0 11 0 0 0 0 0 0

Standard Dithering Exponential Dithering

1 0 0 0 0 0 1 1 0 0 0 0 1 0

Sign

W.P. 70% to 0

ValueValue Sign Sign ExponentExponent Sign

W.P. 30% to 1 W.P. 20% to -0.5 W.P. 80% to -0.25

IEEE-754
FP32

0 0 0 0

Figure 1: Quantize -0.3 from FP32 to 8 Bits

Local
Norm

Global
Norm

Quantized
Gradient

Allreduced
Gradient

Dequantized
Gradient

Local
Norm

Global
Norm

Quantized
Gradient

Allreduced
Gradient

Dequantized
Gradient

Figure 2: Global-QSGDWorkflow

rely on an auxiliary unbiased compressor (IC), which limits

their practical efficiency.

Unfortunately, most of the existing compressors are not

naively compatible with Allreduce since the sum of two

compressed vectors is not an inexpensive operation, thus it

requires an expensive decompress-aggregate-compress flow.

This includes greedy and random sparsification
1
, quantiza-

tion, and sign-based methods.

Several compressors have been proposed to ensure Allre-
duce compatibility, but all rely on some heuristics, so they

all lack rigorous theoretical guarantees. In addition, some of

them introduce an additional step, which blocks the seam-

less replacing with existing Allreduce. GradiVeQ assumes

adjacent gradients are linearly correlated, IntSGD requires

the clipping of communicated integers, and PowerSGD ap-

proximates low-rank decomposition using power iteration

while depending on memory-intensive error feedback. In

particular, THC also leverages the global norm but needs to

solve an integer linear programming (ILP)problem to heuris-

tically choose the quantization intervals based on the data

distribution. A detailed comparison is provided in Table 1.

3 Global-QSGD
In this section, we present the design details of Global-QSGD.

As a theoretically rigorous approach, we first establish a for-

mal mathematical formulation (Section 3.1), which serves as

the foundation for analyzing convergence (Section 4). We

then describe theworkflow and design details (Section 3.2,3.3).

1
For random sparsification, one can share random seeds across workers to

make it Allreduce compatible, e.g., see synchronized random seed [33].

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 2: Key Notation Table

Symbol Description
𝑑 Dimension of gradients

𝑛 Number of workers

𝑠 Number of divided intervals

𝑙𝑖 Value of the 𝑖𝑡ℎ interval

𝑥,𝑦 ∈ R𝑑
Example vector with dimension d

𝑥𝑖 ∈ R𝑑
Gradients of the 𝑖𝑡ℎ worker

𝑦𝑖 ∈ R𝑑
Normalized Gradients of the 𝑖𝑡ℎ worker

x ∈ R𝑛𝑑
Gradients of all 𝑛 workers

y ∈ R𝑛𝑑
Normalized Gradients of all 𝑛 workers

∥𝑥 ∥𝑝 ℓ𝑝 norm of vector 𝑥

U𝑛,𝑑 (𝜃) Unbiased compressor set from R𝑛𝑑
to R𝑑

∥x∥𝑞,𝑝 (𝑞, 𝑝)-mixed norm of vector x
G(x) Unbiased distributed mean compressor

𝜉𝑖 (𝑦𝑖) Random rounding of the 𝑖𝑡ℎ worker

Global-Q𝑞,𝑝
𝑠 compressor in general

𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠 standard dithering

𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠 exponential dithering

Q𝑞,𝑝
𝑠 ,L𝑞,𝑝

𝑠 , E𝑞,𝑝
𝑠 Global-QSGD’s local compressor

3.1 Theoretical Formulation
We denote ℓ𝑝-norms for 𝑦 ∈ R𝑑

as ∥𝑦∥𝑝
def

= (∑𝑑
𝑖=1

|𝑦𝑖 |𝑝)1/𝑝

for 𝑝 ∈ (1,∞). For 𝑝 = ∞, ∥𝑦∥𝑝 denotes the maximum

element of𝑦 in terms of magnitude. Let x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈
R𝑛𝑑 , where 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R𝑑

. We denote the (𝑞, 𝑝)-mixed

norm in R𝑛𝑑
as ∥x∥𝑞,𝑝

def

= (∑𝑑
𝑖=1

∥𝑥𝑖 ∥𝑝𝑞)1/𝑝
. For any vectors

𝑥,𝑦, 𝑥 ◦ 𝑦 represents their element-wise multiplication, and,

for any vector 𝑥 , |𝑥 |, sign𝑥 stand for element-wise absolute

value and signum operations, respectively. We denote [𝑛] def

=

{1, 2, . . . , 𝑛} for any 𝑛 ∈ N. We provide a notation table in

Table 2. Now we can formally define Global-QSGD:

Definition 3.1 (Global-Q𝑞,𝑝
𝑠). The Global-QSGD operator

with respect to the (𝑞, 𝑝)-mixed norm and with 𝑠 levels

0 = 𝑙𝑠 < 𝑙𝑠−1 < 𝑙𝑠−2 < · · · < 𝑙1 < 𝑙0 = 1,

denotedGlobal-Q𝑞,𝑝
𝑠 , is defined as follows. Let x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈

R𝑛𝑑
. Let 𝑦𝑖

def

= |𝑥𝑖 |/∥x∥𝑞,𝑝 ∈ R𝑑
for all 𝑖 ∈ [1, ..., 𝑛]. Then

Global-Q𝑞,𝑝
𝑠 (x) def

= ∥x∥𝑞,𝑝
1

𝑛

𝑛∑︁
𝑖=1

sign(𝑥𝑖) ◦ 𝜉𝑖 (𝑦𝑖) , (1)

where 𝜉𝑖 (𝑦𝑖) is an independent element-wise random round-

ing operator such that

(𝜉𝑖 (𝑦𝑖)) 𝑗
def

=

𝑙
𝑢
𝑗

𝑖
with probability

(𝑦𝑖) 𝑗−𝑙𝑢𝑗
𝑖
+1

𝑙
𝑢
𝑗
𝑖

−𝑙
𝑢
𝑗
𝑖
+1

𝑙
𝑢
𝑗

𝑖
+1

otherwise

, (2)

Algorithm 1 Global-QSGD

1: Input: Update x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
distributed among 𝑛 machines,

sparse ∈ {True, False}, Global-Q𝑞,𝑝
𝑠

2: ∥x∥𝑝 = (Allreduce
(
SUM

{
∥𝑥𝑖 ∥𝑝𝑝

})
)1/𝑝

3: for 𝑖 ∈ {1, 2, . . . , 𝑛} do {In parallel}

4: Compute sign(𝑥𝑖), 𝜉𝑖 (𝑦𝑖)
5: end for
6: if sparse then
7: return 1

𝑛
Allgather(SUM

{nnz𝑖 , sign(𝑥𝑖) [nnz𝑖], 𝜉𝑖 (𝑦𝑖) [nnz𝑖]})
8: end if
9: return 1

𝑛
Allreduce(SUM{sign(𝑥𝑖), 𝜉𝑖 (𝑦𝑖)})

for 𝑗 ∈ [𝑑], where 𝑢 𝑗

𝑖
∈ {0, 1, 2, . . . , 𝑠} is such that 𝑙

𝑢
𝑗

𝑖
≤

(𝑦𝑖) 𝑗 ≤ 𝑙
𝑢
𝑗

𝑖
+1
.

3.2 Algorithm Design
Algorithm 1 provides the pseudocode for Global-QSGDwhich

can be categorized into 3 steps:

Step 1: global normalization (line 1-2) , where eachworker
computes its local norm and then performs an Allreduce

operation to obtain the global norm. This ensures that all

workers quantize their gradients consistently, preventing

discrepancies due to local scaling differences.

Step 2: quantization (line 3-5) , where each worker nor-

malizes its gradients to [0, 1] and applies stochastic rounding
to the nearest quantization intervals 𝑙𝑖 for 𝑖 ∈ {0, 1, . . . , 𝑠}.
Step 3: aggregation (line 9) , where the workers perform
an Allreduce operation on their quantized values.

Step X: sparsity (line 6-8) . Additionally, we handle sparse
gradients by introducing an extra step to identify and trans-

mit only non-zero elements. Instead of sending full quan-

tized vectors, we use Allgather to efficiently communicate

the nonzero values.

Figure 1 illustrates the example workflow of the Global-

QSGD’s two round Allreduce with 2 GPUs.

3.3 Quantization Interval
We formalize the two variants of Global-QSGD:

• Standard Dithering (𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠): A simple way is

to divide the interval into equal partitions as 𝑙𝑖 = 𝑠−𝑖/𝑠.
However, as the gradients drop to zero during training,

this method becomes less accurate since most values

fall into the same intervals.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

• Exponential Dithering (𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠)2 : To pro-

vide higher precision for smaller values, we propose a

non-uniform interval partitioning inspired by Horvóth

et al. [13], we divide intervals exponentially as 𝑙𝑠 = 0

and 𝑙𝑖 = 1/2
𝑠−𝑖
.

Figure 1 visualizes how both methods quantize a 32-bit

floating-point number −0.3 into an 8-bit representation.

The implementation of 𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠 is simple and in-

herently compatible with Allreduce, since mapping to uni-

form intervals is a holomorphic operation, allowing effi-

cient aggregation by summing integers directly. However,

for 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠 , summation via Allreduce becomes more

complex, as the quantized values follow an exponential form

2
𝑘
. To ensure compatibility with Allreduce, we introduce sto-

chastic unbiased exponential rounding, denoted as Cnat,

following the notation in Horvóth et al. [13]. This rounding

scheme introduces a minor variance increase per step, specif-

ically a factor of 9/8. Over multiple aggregation steps, this

accounts for (9/8)# aggregation steps

, i.e., (9/8)log(𝑛) ≤ 𝑛0.17
for

Tree-Allreduce, resulting in a small increase in variance—for

example, only 1.6× for 𝑛 = 16 and 3.25× for 𝑛 = 1024.

To efficiently implement𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠 , we introduce the

exponential reduce function (Algorithm 2), which aggre-

gates values using integer-based arithmetic, eliminating com-

plex branching and avoiding floating-point operations. The

design principles are detailed in Appendix B.

Finally, we discuss a strong advantage of 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠 ,

which is its scaling with respect to the number of nodes

𝑛. Let us look at the following example, where we use int𝐴

(𝐴 ∈ N) to represent integers with𝐴 bits. In the case of linear

quantization levels𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑝
𝑠 , the maximum number that

we might encounter is 𝑛𝑠 , plus we need to hold one bit for

the sign. Therefore, we require 1 + log(𝑠 + 1) + log(𝑛) ≤ 𝐴,

which cannot be satisfied for any 𝑠 in the cases 𝑛 = 16

and 𝐴 = 4. On the other hand, the maximum number we

can encounter with 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑝
𝑠 is 𝑛2

𝑠
, but since we only

communicate the exponent, we obtain an improved scaling as

the maximum communicated integer is 𝑠 + log(𝑛). Therefore,
we only require 1+ log(𝑠 + 1+ log(𝑛)) ≤ 𝐴, which is satisfied

for 𝑠 ≤ 3. This is because 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑝
𝑠 scales as log(log(𝑛))

with 𝑛 instead of just log(𝑛).

4 Convergence Analysis
We provide a rigorous convergence analysis without heuris-

tics. The theoretical framework extends from [8, 14, 16, 27].

In Section 4.1, we extend the concept ofUnbiased Compressors
(U𝑑 (𝜔)) to a broader class, Unbiased Distributed Mean Com-
pressors (U𝑛,𝑑 (𝜃)). We then prove that Global-Q𝑞,𝑝

𝑠 ∈ U𝑛,𝑑 (𝜃),
2
We use base 2 for natural compatibility with floating-point representation.

Algorithm 2 Reduce Function for 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠

1: Input: (sign
1
, 𝑒1), (sign

2
, 𝑒2),𝑚

def

= 𝑠 + 1

2: 𝑘 = −
⌊
log

(
(2−𝑚 + [𝑝 − 2

−𝑚]+
) ⌋
, where 𝑝 ∼ Unif[0, 1]𝑑

{can be precomputed}
3: e_1_is_not_zero = 1(𝑒1 > 0)
4: e_2_is_not_zero = 1(𝑒2 > 0)
5: e_2_is_zero = 1 − e_2_is_not_zero

6: sign
12

=

sign
1

sign
2

e_1_is_not_zero e_2_is_not_zero

7: diff = |𝑒1 − 𝑒2 | − (1 − sign
12
)//2

8: 𝑙𝑒𝑞 =

(1(𝑒1 ≤ 𝑒2) + e_2_is_zero) e_1_is_not_zero

9: non_zero = 1 − 1
(
𝑒1 = 𝑒2 and sign

12
= −1

)
10: sign

result
= sign

1
𝑙𝑒𝑞 + sign

2
(1 − 𝑙𝑒𝑞)

11: 𝑒result =(
𝑒1𝑙𝑒𝑞 + 𝑒2 (1 − 𝑙𝑒𝑞) − sign

12
1(𝑘 > diff)

)
non_zero

12: Output: sign
result

, 𝑒result

establishing its unbiasedness. In Section 4.2, using this unbi-

ased property, we demonstrate that Global-Q𝑞,𝑝
𝑠 has bounded

variance, a crucial condition to ensure convergence.

All derivation details are provided in Appendix C.

4.1 Unbiasedness
We start by defining the Unbiased Compressor as U𝑑 (𝜔):

Definition 4.1 (Unbiased Compressor). A randomized map-

ping C : R𝑑 → R𝑑
is an unbiased compressor if there exists

𝜔 ≥ 0 such that ∀𝑥 ∈ R𝑑
:

E [C(𝑥)] = 𝑥, E
[
∥C(𝑥) − 𝑥 ∥2

2

]
≤ 𝜔 ∥𝑥 ∥2

2
. (3)

If this holds, for simplicity we will write C ∈ U𝑑 (𝜔).

We now generalize this notion to distributed settings as

follows:

Definition 4.2 (Unbiased Distributed Mean Compressor).
For any 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R𝑑

, let

x def

= [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ R𝑛𝑑 , x̄ def

=
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 . (4)

A randomized mapping G : R𝑛𝑑 → R𝑑
is an unbiased dis-

tributed mean compressor if there exists 𝜃 ≥ 0 such that

∀x ∈ R𝑛𝑑
:

E [G(x)] = x̄, E
[
∥G(x) − x̄∥2

2

]
≤ 𝜃

𝑛
∥x∥2

2,2. (5)

If this holds, for simplicity we will write G ∈ U𝑛,𝑑 (𝜃).

To show that Definition 4.2 is more general than Defini-

tion 4.1, we formalize the following lemma:

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Lemma 4.3 (C ⊂ U𝑛,𝑑
). If C1, C2, . . . , C𝑛 ∈ U𝑛 (𝜔) and they

are independent, then G : R𝑛𝑑 → R𝑑 defined as Equation 6
and belongs to U𝑛,𝑑 (𝜔/𝑛).

G(x) def
=

1

𝑛

𝑛∑︁
𝑖=1

C𝑖 (𝑥𝑖) . (6)

In the next lemma, we show that Global-Q𝑞,𝑝
𝑠 ∈ U𝑛,𝑑 (𝜃)

has an interesting reduction property that helps us to analyze

its theoretical properties using known results for the case

𝑛 = 1 [3, 13].

Lemma 4.4. Let Q𝑞,𝑝
𝑠 (x) def

= ∥x∥𝑞,𝑝 sign(x) ◦ 𝜉 (y), where
𝜉 (y) = [𝜉1 (𝑦1), 𝜉2 (𝑦2), . . . , 𝜉𝑛 (𝑦𝑛)] and 𝜉𝑖 (𝑦𝑖) is defined in (2).
Then,

Global-Q𝑞,𝑝
𝑠 (x) = 1

𝑛

𝑛∑︁
𝑖=1

(
Q𝑞,𝑝
𝑠 (x)

)
𝑖
, (7)

where
(
Q𝑞,𝑝
𝑠 (x)

)
𝑖
refers to coordinates [(𝑖 − 1)𝑑 + 1, . . . , 𝑖𝑑].

Moreover, if Q𝑞,𝑝
𝑠 ∈ C(𝜔) then Global-Q𝑞,𝑝

𝑠 ∈ U𝑛,𝑑 (𝜃) with
𝜃 = 𝜔/𝑛.

Note that there is a difference in the dependence on the

dimension, i.e.,𝑑 → 𝑛𝑑 , sinceweworkwith the concatenated

vector x.

4.2 Variance Bound
Next, we derive the exact bound on the variance of both

𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠 and𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝

𝑠 . In addition, for the special

case of 𝑝 = 𝑞 = 2, we establish an upper bound on sparsity,

i.e., the sum of zero norms of the communicated vectors

(∥𝑦∥0 denotes the number of non-zero elements of 𝑦).

Theorem 4.5. If 𝑝, 𝑞 ≥ 2 then 𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠 ∈ U𝑛,𝑑

(√
𝑑√
𝑛𝑠

)
for 𝑠 ≤

√
𝑛𝑑 , and 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝

𝑠 ∈ U𝑛,𝑑
(

1

8𝑛
+

√
𝑑√

𝑛2
𝑠−1

)
for 𝑠 ≤

1 + log

(√
𝑛𝑑

)
. Moreover, if 𝑝 = 𝑞 = 2 then for any x ∈ R𝑛𝑑

𝑛∑︁
𝑖=1

(L2,2
𝑠 (x)

)
𝑖

0
≤ 𝑠2 +

√
𝑛𝑑,

𝑛∑︁
𝑖=1

(E2,2
𝑠 (x)

)
𝑖

0
≤ 2

2𝑠−2 +
√
𝑛𝑑.

The above theorem guarantees that we can achieveO(
√
𝑛𝑑)

compression ratio for 𝑠 = O(1). Furthermore, we note that

the variance bound scales better for the exponential dithering

with the number of levels 𝑠 , which means that the exponen-

tial dithering exhibits a smaller relative compression error

for larger 𝑠 . Using these definitions, standard convergence

analysis (e.g. [11]) extends naturally to our distributed set-

ting. In particular, employing an unbiased distributed mean

compressor Q ∈ U𝑛,𝑑 (𝜃) increases the iteration complexity

by a factor of 1 + 𝜃𝑛 (recovering 1 + 𝜔 for standard com-

pressors). For example, under exponential dithering, this

factor becomes 1 + 𝑛1.17

(
1

8𝑛
+

√
𝑑√

𝑛2
𝑠−1

)
. Moreover, our anal-

ysis is compatible with a variety of optimizers (e.g., SGD,

Nesterov momentum, Adam), ensuring that our approach

maintains convergence guarantees while reducing communi-

cation costs. Our evaluation of Transformer-XL with Adam

optimizer also empirically demonstrating that our concept

extends seamlessly to optimizers beyond SGD.

5 Performance Model
Gradient compression can only be beneficial if the introduced

computation overhead can be compensated by communica-

tion gains. Thus, we propose a performance model to analyze

when Global-QSGD can speed up the training.

In practice, there are two popular Allreduce implementa-

tions: Ring-based and Tree-based. We adopt the Tree-based

Allreduce, as it has fewer reduction steps, where each quan-

tized reduction introduces computation overhead and ac-

curacy loss due to random rounding. The tree Allreduce

algorithm first recursively aggregates the gradients, then

does a recursive-doubling Allgather. The depth of the tree is

2 log(𝑛) where 𝑛 is the size of workers. The performance of

Allreduce is well studied [29] and it is commonly modeled

as: 2 log(𝑛)𝛼 + 2
log(𝑛)𝑆

𝛽
+ log(𝑛)𝑆

𝛾
, where 𝛼 is the propagation

delay in seconds, 𝑆 is the size of gradients in bytes, 𝛽 is the

bandwidth (byte/s), and 𝛾 is the computation speed (byte/s).

The first term represents the propagation delay, the second

term is the bidirectional transmission delay, and the last term

is the computation cost.

We denote the quantized gradient size as 𝑆 , and the com-

putation cost with custom reduction as𝛾 . The bandwidth and

propagation delay remain the same. Denote the quantization

and dequantization time as 𝛿 factor the gradient size. Then

the Allreduce performance after applying Global-QSGD is:

2 log(𝑛)𝛼 + 2
log(𝑛)𝑆

𝛽
+ log(𝑛)𝑆

𝛾
+ 𝛿𝑆 .

We denote the quantization ratio 𝜌 = 𝑆

𝑆
(= 4)

3
. For the

computation cost, we observe that the quantization and de-

quantization operations are executed only once per Allreduce

invocation, thus we consider it negligible (𝛿 = 0). Therefore,

the cost of the reduction operation will dominate the perfor-

mance as the number of workers increases. We denote the

computation overhead as 𝜔 =
𝛾

𝛾
. We empirically measure

4

this overhead to be 𝜔𝑆 = 1 and 𝜔𝐸 = 79, for standard and

exponential dithering, respectively. The reduction operation

of standard dithering is the native arithmetic summation,

3
Our evaluation by default quantizes from Float32 to 8bits . Global-QSGD

also works with other bits.

4
Measured with 25 MB (PyTorch default communication size) data in one

A100 GPU.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

which has a similar time for uint8 and float32 data types

in our experiments. Instead, the custom reduction used for

exponential dithering involves more arithmetic operations,

which yield a higher computation overhead.

Equation (8) is the condition for Global-QSGD to speed

up training throughput. 𝛽 is the bandwidth (byte/s), 𝛾 is

the computation speed (byte/s). 𝜔 =
𝛾

𝛾
is the computation

overhead, where 𝛾 is the computation speed after applying

Global-QSGD. We put the derivation details in Appendix A.4.{
𝛽 >

6𝛾

(𝜔−4) , if (𝜔 < 4),
𝛽 <

6𝛾

(𝜔−4) , if (𝜔 > 4). (8)

With 𝜔𝑆 = 1, theoretically, standard dithering is guaranteed

to speed up training (since 𝛽 > 0). In the case of exponential

dithering (𝜔𝐸 = 79), there is a training speed up if the relation

𝛽 < 0.08𝛾 holds. Our evaluation is done using A100 GPU

(𝛾 = 2 TB/s) with P2P (𝛽 = 53.9 GB/s) or SHM (𝛽 = 5.4 GB/s).

Therefore, both P2P and SHM network fabrics satisfy the

speedup condition.

6 Implementation
For ease of use, we implement Global-QSGD with support

for both standard dithering 𝐺𝑙𝑜𝑏𝑎𝑙 − L𝑞,𝑝
𝑠 and exponential

dithering𝐺𝑙𝑜𝑏𝑎𝑙 −E𝑞,𝑝
𝑠 , which by default uses the ℓ𝑖𝑛𝑓 -norm

(𝑝 = 𝑞 = ∞), and the gradients are quantized to 8 bits

(𝑠 = 255). Global-QSGD is theoretically compatible with

any bit of precision. We choose 8 bits as a balanced exam-

ple between throughput and accuracy. We plan to support

additional bit configurations. The algorithm is wrapped in

a custom Allreduce module integrated with the standard

PyTorch DDP module as a hook. Our hook procedure is

invoked by PyTorch DDP at the granularity of a gradient

bucket, which by default has a size of at least 25 MB. The

procedure consists of three steps: Quantization, Allreduce,

and Dequantization. In the case of exponential dithering, the

Allreduce step uses a custom reduction function. To achieve

this, we implement a customized Allreduce algorithm us-

ing NCCL’s point-to-point asynchronous communication

API. We support both ring and tree Allreduce. We develop

the quantization, de-quantization, and the custom reduction

function in CUDA to optimize GPU performance.

We will release our code as open source. To use our ap-

proach, the user simply needs to load a Python module and

register our algorithm by invoking the DDP hook API, like:

model.register_comm_hook().

7 Evaluation
The aim of our evaluation is to illustrate that our proposal

is practical and beneficial in a range of scenarios, including

with different bandwidths among GPUs. We focus on mea-

suring the speedup of training throughput in three distinct

Table 3: Summary of Benchmarks Used in This Work

Model Dataset Parameter Size Training Epochs

DeepLight Tiny Criteo 607,959,381 10

Wide ResNet-101-2 MiniImageNet 126,886,696 90

TransformerXL WikiText-103 191,950,298 20

domains of DL application. Through task-specific metrics on

the test set, we show that Global-QSGD does not impair the

model’s generalization ability.We further illustrate that, com-

pared to standard dithering, exponential dithering achieves

better overall performance due to its higher precision and

despite its additional overhead due to the custom reduction

operation.

Setup. For small-scale experiments, we use one ASUS ESC

N4A-E11 server that runs Ubuntu 22.04 with CUDA 11.6, and

we use PyTorch 1.13.0. The server is equipped with 4 NVIDIA

A100 GPUs, each with 40 GB of RAM. GPUs are peer-to-peer

connected by 4 NVlink channels (4th generation). To tease

out the effects of bandwidth on training speed, we run exper-

iments with two interconnects: P2P, which employs Nvidia

GPU Direct allowing data to transmit via NVLink directly

without the interference of CPU and host memory; SHM,

which uses the host memory as a middle buffer; thus, the

data will transmit through PCIe. The empirically measured

bandwidth is 53.9 GB/s and 5.4 GB/s for P2P and SHM, re-

spectively
5
. We also run an additional large-scale experiment

with 64 servers each having 1 A100 GPU on Google Cloud

Platform (GCP). The servers are connected through a net-

work sharedwith other users where the bandwidth fluctuates

from 200 Mbps to 1.5 Gbps.

Baselines. Table 3 lists the three DNN models that we use

for evaluation. On a small scale, we compare Global-QSGD

against the no quantization baseline and with QSGD (base-

line for quantization), PowerSGD (baseline for Allreduce

compatible compression), and L-Greco (baseline for dynamic

compression).
6
On a large scale, we compare Global-QSGD

with the PowerSGD baseline as they are Allreduce com-

patible, while Allgather-based approaches, such as QSGD,

will be considerably slower and expensive. Speedup. Fig-

Table 4: Validation Metrics After Training

DeepLight

AUC

Wide ResNet-101-2

Top 5

TransformerXL

PPL

No Quantization 6.75 ∗ 10
−1

87.06% 22.991

Global-QSGD(Standard) 6.95 ∗ 10
−1

88.87% 32.353

Global-QSGD(Exponential) 6.87 ∗ 10
−1

88.87% 23.678

QSGD 6.78 ∗ 10
−1

89.39% 30.824

PowerSGD 6.76 ∗ 10
−1

88.19% 23.364

5
Measured by NCCL-Test with bucket size 25MB.

6
QSGD: quantize data to 8 bits; PowerSGD: decompose matrix with rank=32;

We keep the other hyper-parameters the same as each method’s original

repo.

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

(a) DeepLight (b) Wide ResNet-101-2 (c) TransformerXL

Figure 3: Training Loss Collected With P2P. Vertical Lines Represent the Completion Times.

Figure 4: Training Throughput Speedup Normalized to No
Quantization Baseline.

ure 4 shows the speedup obtained by Global-QSGD com-

pared to no quantization as the baseline while training dif-

ferent benchmarks on a constant number of epochs. The

compression method usually obtains a higher speedup with

slower connections. Global-QSGD can achieve up to 3.17×
speedup in Cloud, 3.51× with SHM. Even when communi-

cating with P2P through NVLink, which has the highest

bandwidth, Global-QSGD can still achieve 1.38× speedup.

When applying exponential dithering on Wide ResNet-101-2

with P2P, Global-QSGD delivers robust performance in a

model not dominated by communication, with less than 2%

overhead to end-to-end training.

Convergence. Figure 3 shows that Global-QSGD can achieve

the fastest run time while preserving convergence with

P2P. Both standard and exponential dithering achieve good

convergence, while striking a different trade-off between

time and loss. Specifically, as expected, standard dithering

achieves the quickest run time; however, exponential dither-

ing is slightly slower but achieves a better convergence simi-

lar to no quantization. In particular, exponential dithering

can preserve better convergence than other compressors.

Figure 5 shows the DeepLight training in GCP, where the

model experiences more communication bottlenecks, allow-

ing compression to achieve greater time savings.

Generalization. We evaluate models with domain-specific

metrics after the fixed-iteration training. Table 4 shows that

Global-QSGD can maintain the same level of generalizability

as no quantization.

8 Future Work

�
���

Figure 5: DeepLight Training LossCollectedwith 64Nodes
on Google Cloud.

We are still in the process of developing a full framework

for Global-QSGD and conducting a comprehensive evalu-

ation. The current prototype is built on NCCL’s P2P API,

which is less efficient. To achieve a performance comparable

to that of NCCL, we will re-implement Allreduce directly in

CUDA with NVIDIA GPUDirect. So far, our evaluations have

been primarily conducted in a single-node setting; we aim

to extend our experiments to multi-node clusters. For the

Cloud setting, we do not evaluate all baselines due to budget

limits. We only evaluate with 8 bits, and we do not include

the models with sparse Allgather. Additionally, our current

benchmarks focus on medium-scale models, but testing on

large-scale models (e.g., LLMs) will provide a more rigor-

ous evaluation of performance. Our evaluation also lacks

sparse scenarios, which we will address by implementing

an Allgather operation as described in Algorithm 1. Fur-

thermore, synchronous invocations at each step currently

prevent pipelining, limiting opportunities for overlapping

compression and communication. We will optimize this pro-

cess to further improve efficiency.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

Acknowledgments
This publication is based upon work supported by the King

Abdullah University of Science and Technology Research

Funding (KRF) under Award No. ORA-CRG2021-4699.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-

van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.

TensorFlow: a system for large-scale machine learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA,

265–283.

[2] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and

Dimitris Papailiopoulos. 2022. On the Utility of Gradient

Compression in Distributed Training Systems. In Proceedings
of Machine Learning and Systems, D. Marculescu, Y. Chi, and

C. Wu (Eds.), Vol. 4. mlsys.org, Santa Clara, CA, USA, 652–

672. https://proceedings.mlsys.org/paper_files/paper/2022/file/

773862fcc2e29f650d68960ba5bd1101-Paper.pdf

[3] Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka, and Milan

Vojnovic. 2017. QSGD: communication-efficient SGD via gradient

quantization and encoding. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach,

California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY,

USA, 1707–1718.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola

Konstantinov, and Cédric Renggli. 2018. The convergence of sparsified

gradient methods. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems (Montréal, Canada) (NIPS’18).
Curran Associates Inc., Red Hook, NY, USA, 5977–5987.

[5] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and

Animashree Anandkumar. 2018. SIGNSGD: Compressed Optimisa-

tion for Non-Convex Problems. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML (Proceedings of Ma-
chine Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause

(Eds.). PMLR, Stockholmsmässan, Stockholm, Sweden, 559–568. http:

//proceedings.mlr.press/v80/bernstein18a.html

[6] Adrián Castelló, Mar Catalán, Manuel F. Dolz, José I. Mestre, Enrique S.

Quintana-Ortí, and José Duato. 2021. Evaluation of MPI Allreduce

for Distributed Training of Convolutional Neural Networks. In 29th
Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, PDP. IEEE, Valladolid, Spain, 109–116. doi:10.1109/
PDP52278.2021.00025

[7] Adrián Castelló, Mar Catalán, Manuel F Dolz, Enrique S Quintana-Ortí,

and José Duato. 2023. Analyzing the impact of the MPI allreduce in

distributed training of convolutional neural networks. Computing 105,

5 (2023), 1101–1119.

[8] Jean-Baptiste Cordonnier. 2018. Convex optimization using sparsified
stochastic gradient descent with memory. Technical Report. École

Polytechnique Fédérale de Lausanne.

[9] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul

Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large scale distributed

deep networks. In Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 1 (Lake Tahoe, Nevada)
(NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 1223–1231.

[10] Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier.

2022. A Simple Convergence Proof of Adam and Adagrad. Transactions
on Machine Learning Research 2022, 1 (2022). https://openreview.net/

forum?id=ZPQhzTSWA7

[11] Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. 2020. A Uni-

fied Theory of SGD: Variance Reduction, Sampling, Quantization

and Coordinate Descent. In Proceedings of the Twenty Third Inter-
national Conference on Artificial Intelligence and Statistics (Proceed-
ings of Machine Learning Research, Vol. 108), Silvia Chiappa and

Roberto Calandra (Eds.). PMLR, Virtual, Sicily, Italy„ 680–690. https:

//proceedings.mlr.press/v108/gorbunov20a.html

[12] Samuel Horváth and Peter Richtárik. 2021. A Better Alternative to

Error Feedback for Communication-Efficient Distributed Learning. In

9th International Conference on Learning Representations, ICLR. Open-
Review.net, Virtual Event, Austria. https://openreview.net/forum?id=

vYVI1CHPaQg

[13] Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu,

Marco Canini, and Peter Richtarik. 2022. Natural Compression for

Distributed Deep Learning. In Proceedings of Mathematical and Sci-
entific Machine Learning (Proceedings of Machine Learning Research,
Vol. 190), Bin Dong, Qianxiao Li, Lei Wang, and Zhi-Qin John Xu (Eds.).

PMLR, Beijing, China, 129–141. https://proceedings.mlr.press/v190/

horvoth22a.html

[14] M. Takáč K. Mishchenko, E. Gorbunov and P. Richtárik.

2024. Distributed learning with compressed gradi-

ent differences*. Optimization Methods and Software
0, 0 (2024), 1–16. doi:10.1080/10556788.2024.2358790

arXiv:https://doi.org/10.1080/10556788.2024.2358790

[15] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Mar-

tin Jaggi. 2019. Error feedback fixes signsgd and other gradient com-

pression schemes. In International Conference on Machine Learning.
PMLR, PMLR, Long Beach, California, USA, 3252–3261.

[16] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. 2019. De-

centralized stochastic optimization and gossip algorithms with com-

pressed communication. In International conference on machine learn-
ing. PMLR, PMLR, Long Beach, California, USA, 3478–3487.

[17] Jakub Konečný and Peter Richtárik. 2018. Randomized distributed

mean estimation: accuracy vs communication. Frontiers in Applied
Mathematics and Statistics 4, 62 (2018), 1–11.

[18] Matthias Langer, Zhen He, Wenny Rahayu, and Yanbo Xue. 2020. Dis-

tributed training of deep learning models: A taxonomic perspective.

IEEE Transactions on Parallel and Distributed Systems 31, 12 (2020),

2802–2818.

[19] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing

Su. 2014. Scaling distributed machine learning with the parameter

server. In Proceedings of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation (Broomfield, CO) (OSDI’14). USENIX
Association, USA, 583–598.

[20] Shigang Li and Torsten Hoefler. 2022. Near-optimal sparse allreduce

for distributed deep learning. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Seoul,

Republic of Korea) (PPoPP ’22). Association for Computing Machinery,

New York, NY, USA, 135–149. doi:10.1145/3503221.3508399

[21] Ilia Markov, Kaveh Alim, Elias Frantar, and Dan Alistarh.

2024. L-GreCo: Layerwise-adaptive Gradient Compression

For Efficient Data-parallel Deep Learning. In Proceedings of
Machine Learning and Systems, P. Gibbons, G. Pekhimenko,

and C. De Sa (Eds.), Vol. 6. mlsys.org, Santa Clara, USA, 312–

324. https://proceedings.mlsys.org/paper_files/paper/2024/file/

9069a8976ff06f6443e7f4172990a580-Paper-Conference.pdf

https://proceedings.mlsys.org/paper_files/paper/2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf
http://proceedings.mlr.press/v80/bernstein18a.html
http://proceedings.mlr.press/v80/bernstein18a.html
https://doi.org/10.1109/PDP52278.2021.00025
https://doi.org/10.1109/PDP52278.2021.00025
https://openreview.net/forum?id=ZPQhzTSWA7
https://openreview.net/forum?id=ZPQhzTSWA7
https://proceedings.mlr.press/v108/gorbunov20a.html
https://proceedings.mlr.press/v108/gorbunov20a.html
https://openreview.net/forum?id=vYVI1CHPaQg
https://openreview.net/forum?id=vYVI1CHPaQg
https://proceedings.mlr.press/v190/horvoth22a.html
https://proceedings.mlr.press/v190/horvoth22a.html
https://doi.org/10.1080/10556788.2024.2358790
https://arxiv.org/abs/https://doi.org/10.1080/10556788.2024.2358790
https://doi.org/10.1145/3503221.3508399
https://proceedings.mlsys.org/paper_files/paper/2024/file/9069a8976ff06f6443e7f4172990a580-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/9069a8976ff06f6443e7f4172990a580-Paper-Conference.pdf

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[22] Taesik Na, Jong Hwan Ko, Jaeha Kung, and Saibal Mukhopadhyay.

2017. On-chip training of recurrent neural networks with limited

numerical precision. In 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, Anchorage, AK, USA, 3716–3723. doi:10.1109/
IJCNN.2017.7966324

[23] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-

ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi

Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,

and Matei Zaharia. 2021. Efficient large-scale language model train-

ing on GPU clusters using megatron-LM. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for

Computing Machinery, New York, NY, USA, Article 58, 15 pages.

doi:10.1145/3458817.3476209

[24] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. 2021. EF21: a new,

simpler, theoretically better, and practically faster error feedback. In

Proceedings of the 35th International Conference on Neural Information
Processing Systems (NIPS ’21). Curran Associates Inc., Red Hook, NY,

USA, Article 335, 13 pages.

[25] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kal-

nis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan

Ports, and Peter Richtarik. 2021. Scaling Distributed Machine Learning

with In-Network Aggregation. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21). USENIX Associ-

ation, virtual, 785–808. https://www.usenix.org/conference/nsdi21/

presentation/sapio

[26] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-

bit stochastic gradient descent and its application to data-parallel

distributed training of speech DNNs. In 15th Annual Conference of
the International Speech Communication Association, INTERSPEECH,
Haizhou Li, Helen M. Meng, Bin Ma, Engsiong Chng, and Lei Xie (Eds.).

ISCA, Singapore, 1058–1062. doi:10.21437/INTERSPEECH.2014-274

[27] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018.

Sparsified SGD with memory. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (Mon-

tréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,

4452–4463.

[28] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan

McMahan. 2017. Distributed mean estimation with limited communi-

cation. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org,

Sydney NSW Australia, 3329–3337.

[29] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Opti-

mization of collective communication operations in MPICH. The
International Journal of High Performance Computing Applications 19,
1 (2005), 49–66.

[30] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. 2019. Pow-

erSGD: practical low-rank gradient compression for distributed opti-

mization. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook, NY,

USA, Article 1278, 10 pages.

[31] Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris

Papailiopoulos, and Stephen Wright. 2018. Atomo: Communication-

efficient learning via atomic sparsification. Advances in Neural Infor-
mation Processing Systems (NeurIPS) 31 (2018), 9850–9861.

[32] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. 2017. TernGrad: ternary gradients to reduce com-

munication in distributed deep learning. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,

NY, USA, 1508–1518.

[33] Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu Li, and

Haibin Lin. 2020. Cser: Communication-efficient sgd with error reset.

Advances in Neural Information Processing Systems 33 (2020), 12593–
12603.

https://doi.org/10.1109/IJCNN.2017.7966324
https://doi.org/10.1109/IJCNN.2017.7966324
https://doi.org/10.1145/3458817.3476209
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.21437/INTERSPEECH.2014-274

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

A Proofs
In this section, we include complete proofs of the claims

made in the main paper.

A.1 Proof of Lemma 4.3
Firstly, we show unbiasedness.

E [Q(x)] = E

[
1

𝑛

𝑛∑︁
𝑖=1

C𝑖 (𝑥𝑖)
]
=

1

𝑛

𝑛∑︁
𝑖=1

E [C𝑖 (𝑥𝑖)]
(3)

=
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 = x̄.

For the variance,

E
[
∥Q(x) − x̄∥2

2

]
= E

[1

𝑛

𝑛∑︁
𝑖=1

C𝑖 (𝑥𝑖) − 𝑥𝑖

2

2

]
=

1

𝑛2

𝑛∑︁
𝑖=1

E
[
∥C𝑖 (𝑥𝑖) − 𝑥𝑖 ∥2

2

] (3)

≤ 𝜔

𝑛

1

𝑛

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2

2
,

where the second equality is due to independence and zero

mean of each summand.

A.2 Proof of Lemma 4.4
It is easy to that such operator is unbiased since E [(𝜉 (𝑦𝑖))] =
(𝜉 (𝑦𝑖)) 𝑗 by construction. Therefore,

E
[
Global-Q𝑞,𝑝

𝑠 (x)
]
(1)

= E

[
∥x∥𝑞,𝑝

1

𝑛

𝑛∑︁
𝑖=1

sign(𝑥𝑖) ◦ 𝜉𝑖 (𝑦𝑖)
]

= ∥x∥𝑞,𝑝
1

𝑛

𝑛∑︁
𝑖=1

sign(𝑥𝑖) ◦ E [𝜉𝑖 (𝑦𝑖)]

(2)

= ∥x∥𝑞,𝑝
1

𝑛

𝑛∑︁
𝑖=1

sign(𝑥𝑖) ◦ 𝑦𝑖

= ∥x∥𝑞,𝑝
1

𝑛

𝑛∑︁
𝑖=1

sign(𝑥𝑖) ◦
𝑥𝑖

∥x∥𝑞,𝑝
= x̄.

Furthermore, note that for Global-Q, the local compres-

sors do not belong to U𝑛 (𝜔) for any 𝜔 > 0 due to its depen-

dence on x.
To obtain the variance bound, we show that it is suffi-

cient to look at 𝑛 = 1, which corresponds to the unbiased

compressor (Definition 4.1) due to the following property.

E
[
Global-Q𝑞,𝑝

𝑠 (x) − x̄
2

2

]
(1)

= E

[∥x∥𝑞,𝑝 1

𝑛

𝑛∑︁
𝑖=1

(
sign(𝑥𝑖) ◦ 𝜉𝑖 (𝑦𝑖) −

𝑥𝑖

∥x∥𝑞,𝑝

)2

2

]
=

1

𝑛2

𝑛∑︁
𝑖=1

E

[∥x∥𝑞,𝑝 (sign(𝑥𝑖) ◦ 𝜉𝑖 (𝑦𝑖) −
𝑥𝑖

∥x∥𝑞,𝑝

)2

2

]
=

1

𝑛2
E

[∥x∥𝑞,𝑝 sign(x) ◦ 𝜉 (y) − x
2

2

]

=
1

𝑛2
E

[Q𝑞,𝑝
𝑠 (x) − x

2

2

]
,

where the second inequality is due to independence of {𝜉𝑖 }.
If we can show that Q𝑞,𝑝

𝑠 (x) ∈ U1,𝑛𝑑 (𝜔), then

E
[
Global-Q𝑞,𝑝

𝑠 (x) − x̄
2

2

]
=

1

𝑛2
E

[Q𝑞,𝑝
𝑠 (x) − x

2

2

]
≤ 𝜔

𝑛2
∥x∥2

2,2 =
𝜔

𝑛

1

𝑛

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2

2
,

which implies 𝜃 = 𝜔/𝑛.

A.3 Proof of Theorem 4.5
The results provided in the theorem follow the same logic

as we use in Lemma 4.4, i.e., our compression is equivalent

to applying standard compression to concatenated vector

x = x def

= [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ R𝑛𝑑 .

The rest of the proof uses known one-node results of

Alistarh et al. [3], Horvóth et al. [13].

For the variance part, we firstly use the second part of

Lemma 4.4, which shows thatQ𝑞,𝑝
𝑠 ∈ C(𝜔) ⇒ Global-Q𝑞,𝑝

𝑠 ∈
U𝑛,𝑑 (𝜃) with 𝜃 = 𝜔/𝑛. Secondly, we apply 𝑛 = 1 results of

[13, Theorem 7] and [3, Theorem 3.4] combined with the fact

about norm stating that ∥x∥𝑞,𝑝 ≤ ∥x∥2,2 for 𝑝, 𝑞 ≥ 2.

The claim about sparsity with 𝑝 = 𝑞 = 2 follows from the

first part of Lemma 4.4, which implies that the number of

non-zero elements of Global-Q𝑞,𝑝
𝑠 before aggregation is the

same as Q𝑞,𝑝
𝑠 . The rest of the proof for L2,2

𝑠 follows directly

from [3, Lemma 3.1]. For E2,2
𝑠 , one can also directly apply [3,

Lemma 3.1] using the fact that the length of the first segment

[𝑙0, 𝑙1] is 1/2
𝑠−1
.

A.4 Proof for Equation 8
The condition of performance gain is per-batch training time

after applying Global-QSGD is less than the per-batch train-

ing time without quantization, which is:

2 log(𝑁)𝛼 + 2

log(𝑁)𝑆
𝛽

+ log(𝑁)𝑆
𝛾

>

2 log(𝑁)𝛼 + 2

log(𝑁)𝑆
𝛽

+ log(𝑁)𝑆
𝛾

+ 𝛿𝑆

2

𝑆

𝛽
+ 𝑆

𝛾
> 2

𝑆

𝛽
+ 𝑆

𝛾

2

𝜌

𝛽
+ 𝜌

𝛾
> 2

1

𝛽
+ 1

𝛾

2𝜌𝛾𝛾 + 𝜌𝛽𝛾 > 2𝛾𝛾 + 𝛽𝛾

𝜌𝛽𝛾 − 𝛽𝛾 > 2𝛾𝛾 − 2𝜌𝛾𝛾

𝛽 (𝜌𝛾 − 𝛾) > 2𝛾𝛾 − 2𝜌𝛾𝛾

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Since𝛾 is the computation speed (byte/s), so𝛾 ≥ 0. We divide

both sides of the inequality by 𝛾 , and replace 𝜔 =
𝛾

𝛾
:

𝛽 (𝜌 − 𝜔) > 2𝛾 − 2𝜌𝛾

𝛽 (𝜌 − 𝜔) > 2𝛾 (1 − 𝜌)

Then we have:{
𝛽 >

2𝛾 (1−𝜌)
(𝜌−𝜔) , if (𝜌 > 𝜔),

𝛽 <
2𝛾 (1−𝜌)
(𝜌−𝜔) , if (𝜌 < 𝜔).

B Reduce function for 𝐺𝑙𝑜𝑏𝑎𝑙 − E𝑞,𝑝
𝑠

Since our reduction function acts element-wise, we only

consider here a one-dimensional case. Before calling the

compressor and the reduce function, we divide all values by

2𝑛, where 𝑛 is the number of nodes, to ensure that the maxi-

mum power of two we encounter during the aggregation is

−1 that corresponds to 1/2 = 2
−1
. Therefore, all the encoun-

tered exponents during the aggregation are guaranteed to

be negative. This way, we can dedicate exponent zero to the

actual zero instead of 2
0
. Next, we define the representation,

which we use during the aggregation when calling the reduce

function after applying exponential dithering locally. Let

sign ∈ {−1, +1}7 be the sign and 𝑒 ∈ {N+ ∪ {0}} be the com-

municated non-negative integer-valued exponents. Then,

then real number 𝑥 that corresponds to the pair (sign, 𝑒) is
defined as

𝑥 =

{
0, if 𝑒 = 0,

sign 2
−𝑒 , otherwise.

(9)

We proceed with the derivation for the reduce function.

Let 𝑥1, 𝑥2 ∈ R represented by (sign
1
, 𝑒1), (sign

2
, 𝑒2), respec-

tively, be the values to be summed using reduce function. To

facilitate efficient rounding, let us define

𝑘 = −
⌊
log

(
2
−𝑚 + [𝑝 − 2

−𝑚]+
) ⌋
,

where 𝑝 ∼ Unif[0, 1] is a sample from the uniform distri-

bution on the interval [0, 1], 𝑚 def

= 𝑠 + 1 is the maximum

difference |𝑒1 − 𝑒2 | that can appear during the aggregation,

and [𝑥]+
def

= max{0, 𝑥}. Note that the support set for 𝑘 is

{0, 1, . . . ,𝑚}, and for 𝑏 ∈ {0, 1, . . . ,𝑚 − 1}, it holds

Prob(𝑘 > 𝑏) = Prob(−𝑘 < −𝑏) = Prob

(
𝑝 < 2

−𝑏
)
= 2

−𝑏 .

Without loss of generality, we assume that sign
1
= 1 and

0 < 𝑒1 ≥ 𝑒2. We discuss how to handle the case 𝑒1 at the end

of this section. If sign
2
= 1, then

Cnat (2−𝑒1 + 2
−𝑒2) =

{
2
−𝑒1+1, w.p. 2

𝑒1−𝑒2 ,

2
−𝑒1 , w.p. 1 − 2

𝑒1−𝑒2 ,

7
Zeros have any sign.

where w.p. stands for “with probability.” We note that

𝑝 < 2
𝑒1−𝑒2 ⇐⇒ 𝑘 > 𝑒2 − 𝑒1.

Therefore,

Cnat (2−𝑒1 + 2
−𝑒2) =

{
2
−𝑒1+1, if 𝑘 > 𝑒2 − 𝑒1,

2
−𝑒1 , otherwise.

Analogically, when sign
2
= −1, we write Cnat (2−𝑒1 − 2

−𝑒2)
as:

0, if 𝑒1 = 𝑒2{

2
−𝑒1−1, w.p. 2

𝑒2−𝑒1−1,

2
−𝑒1 , w.p. 1 − 2

𝑒2−𝑒1−1,
otherwise.

Equivalently, we can write Cnat (2−𝑒1 − 2
−𝑒2) as:

0, if 𝑒1 = 𝑒2{
2
−𝑒1−1, w.p. 𝑘 > 𝑒2 − 𝑒1 − 1,

2
−𝑒1 , w.p. 𝑘 > 𝑒2 − 𝑒1 − 1,

otherwise.

In general case, we compare 𝑘 to the following quantity

diff = |𝑒1 − 𝑒2 | − (1 − sign
12
)//2,

where sign
12

def

= sign
1

sign
2
∈ {−1, 1} and // corresponds to

the integer division. It is easy to check that the above quantity

recovers all the above mentioned cases. To determine which

exponent is smaller, we use 𝑙𝑒𝑞 = 1(𝑒1 ≤ 𝑒2) ∈ {0, 1}, where
1 is the indicator function. Finally, to filter out the case of the
different signs and the same exponent, we use non_zero

def

=

1 − 1
(
𝑒1 = 𝑒2 and sign

12
= −1

)
∈ {0, 1}. Then, we obtain the

resulting sign and exponent as

sign
result

= sign
1
𝑙𝑒𝑞 + sign

2
(1 − 𝑙𝑒𝑞)

𝑒result =
(
𝑒1𝑙𝑒𝑞 + 𝑒2 (1 − 𝑙𝑒𝑞) − sign

12
1(𝑘 > diff)

)
non_zero .

To incorporate zeros, we first define the following variables

to identify zeros

e_1_is_not_zero = 1(𝑒1 > 0)
e_2_is_not_zero = 1(𝑒2 > 0)
e_2_is_not_zero = 1 − e_2_is_not_zero .

In the case of at least one of the exponents being zero, we

do not change the exponents by adding or subtracting zero.

This can be achieved by redefine sign
12

∈ {−1, 0, 1} to

sign
12

def

= sign
1

sign
2

e_1_is_not_zero e_2_is_not_zero .

Furthermore, we need to redefine 𝑙𝑒𝑞 to account for zeros.

This can be achieved by

𝑙𝑒𝑞
def

= (1(𝑒1 ≤ 𝑒2) + e_2_is_zero) e_1_is_not_zero .

This concludes our construction of the reduce function for

the exponential dithering.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

C Convergence Analysis
In this section, we showcase how the standard analysis for unbiased compressors can be generalized to the proposed unbiased

distributed mean compressor. Since we construct compressors to be unbiased, the only extra challenge of the analysis is to

bound the variance of the gradient estimator
8
. In Lemma C.1, we show that applying the unbiased distributed mean compressor

Q ∈ U𝑛,𝑑 (𝜃) yields the same bound on variance as the difference that 𝜔/𝑛 is replaced with 𝜃 . The rest of the analysis is the

same as the general analysis of Gorbunov et al. [11], which shows that the worst-case increase in the number of iterations

to achieve the same precision as the algorithm without compression is by the factor 1 + 𝜔 that translates to 1 + 𝜃𝑛 for the

unbiased distributed mean compressors Q ∈ U𝑛,𝑑 (𝜃). [11, Theorem 4.1 for Alg. 1: SGD and Alg. 13: Quantized-SGD] For

our exponential dithering, this would be a factor of 1 + 𝑛1.17

(
1/8𝑛 +

√
𝑑/√𝑛2

𝑠−1

)
. In this estimate, we consider all the sources of

variance for Allreduce, i.e., variance due to initial quantization and extra variance due to stochastic rounding during Allreduce.

For example, let us consider the setup, where we use exponential dithering to decrease communication precision from 32 to 8

bits, the dimensionality of the model is 𝑛 = 10
6
, and the number of machines is 𝑛 = 16. We have to reserve 1 bit to the sign and

the other 7 bits to levels. Plugging these numbers into our formula yields the worst-case increment in the expected number of

iterations, which is 20%, while we save 75% of communication. Therefore, if communication is a significant bottleneck, our

quantization leads to guaranteed speed-up. Note that this is only the worst case, and in real-world scenarios, this can be much

less, e.g., the empirical compression error in our experiments is below 0.5% for exponential dithering.

Furthermore, while our analysis primarily focuses on SGD, the concept of global quantization is intentionally designed to be

broadly compatible with various optimizers, including popular ones like Nesterov momentum and Adam. This compatibility

stems from its core property of being unbiased with bounded variance, aligning it with the theoretical foundations underlying

these optimizers. Typically, optimizers such as SGD are predicated on the use of stochastic gradients that are unbiased and

maintain variance within specific limits—conditions supported by our method. For instance, the integration with adaptive

methods can be directly obtained by generalizing the results of Défossez et al. [10].

Lemma C.1 (Variance bound). Let 𝑥 ∈ R𝑑 be deterministic and E𝜉𝑖∼D𝑖
[∇𝑓𝑖 (𝑥, 𝜉𝑖)] = ∇𝑓𝑖 (𝑥) for all 𝑖 ∈ [𝑛]. Then

E
[
∥Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) − ∇𝑓 (𝑥)∥2

2

]
≤

𝜌

𝑛

∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥))∥2

2
+

(
𝜌 + 1

𝑛

)
1

𝑛

∑︁
𝑖=1

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
(10)

holds with 𝜌 = 𝜔
𝑛
for Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)])

def
= 1

𝑛

∑
𝑖=1

C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)), where C1, C2, . . . , C𝑛 ∈ U𝑛 (𝜔) are independent.
Furthermore, if Q ∈ U𝑛,𝑑 (𝜃) then (10) holds with 𝜌 = 𝜃 .

Proof. We assume that the noise due to sampling and compression are independent. For the first case, we have

E

[1

𝑛

∑︁
𝑖=1

C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓 (𝑥)
2

2

]
=

1

𝑛2

∑︁
𝑖=1

E
[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)∥2

2

]
+ 1

𝑛2

∑︁
𝑖≠𝑗

E
[〈
C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥), C𝑗 (∇𝑓𝑗 (𝑥, 𝜉𝑖)) − ∇𝑓𝑗 (𝑥)

〉]
=

1

𝑛2

∑︁
𝑖=1

E
[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)∥2

2

]
+ 1

𝑛2

∑︁
𝑖≠𝑗

〈
E [C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)] , E

[
C𝑗 (∇𝑓𝑗 (𝑥, 𝜉𝑖)) − ∇𝑓𝑗 (𝑥)

]〉
.

Using tower property, we get

E [C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)] = E𝜉𝑖∼D𝑖

[
EC𝑖 [C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥) |𝜉𝑖]

]
= E𝜉𝑖∼D𝑖

[∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)] = 0.

8
The same applies to the analysis of non-smooth functions, where gradients are replaced with subgradients.

Global-QSGD EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Furthermore, using the same technique and the unbiasedness and bounded variance of the compression operator yields

E
[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)∥2

2

]
= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥)∥2

2
|𝜉𝑖

]]
= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖))∥2

2
|𝜉𝑖

]]
− 2E𝜉𝑖∼D𝑖

[
EC𝑖 [⟨C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)),∇𝑓𝑖 (𝑥)⟩ |𝜉𝑖]

]
+ ∥∇𝑓𝑖 (𝑥)∥2

2

= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖))∥2

2
|𝜉𝑖

]]
− ∥∇𝑓𝑖 (𝑥)∥2

2

= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥, 𝜉𝑖) + ∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2
|𝜉𝑖

]]
− ∥∇𝑓𝑖 (𝑥)∥2

2

= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2
|𝜉𝑖

]]
+ E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
− ∥∇𝑓𝑖 (𝑥)∥2

2

+ 2E𝜉𝑖∼D𝑖

[
EC𝑖 [⟨C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥, 𝜉𝑖),∇𝑓𝑖 (𝑥, 𝜉𝑖)⟩ |𝜉𝑖]

]
= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2
|𝜉𝑖

]]
+ E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
− ∥∇𝑓𝑖 (𝑥)∥2

2

+ 2E𝜉𝑖∼D𝑖

[〈
EC𝑖 [C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖))] − ∇𝑓𝑖 (𝑥, 𝜉𝑖),∇𝑓𝑖 (𝑥, 𝜉𝑖)

〉
|𝜉𝑖

]
= E𝜉𝑖∼D𝑖

[
EC𝑖

[
∥C𝑖 (∇𝑓𝑖 (𝑥, 𝜉𝑖)) − ∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2
|𝜉𝑖

]]
+ E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
− ∥∇𝑓𝑖 (𝑥)∥2

2

+ 2E𝜉𝑖∼D𝑖
[⟨0,∇𝑓𝑖 (𝑥, 𝜉𝑖)⟩ |𝜉𝑖]

≤ (𝜔 + 1)E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
− ∥∇𝑓𝑖 (𝑥)∥2

2

= (𝜔 + 1)E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥) + ∇𝑓𝑖 (𝑥)∥2

2

]
− ∥∇𝑓𝑖 (𝑥)∥2

2

= (𝜔 + 1)E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
+ 2(𝜔 + 1)

〈
E𝜉𝑖∼D𝑖

[∇𝑓𝑖 (𝑥, 𝜉𝑖)] − ∇𝑓𝑖 (𝑥),∇𝑓𝑖 (𝑥)
〉
+ 𝜔 ∥∇𝑓𝑖 (𝑥)∥2

2

= (𝜔 + 1)E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
+ 𝜔 ∥∇𝑓𝑖 (𝑥)∥2

2
,

which concludes the first part of the proof. For the second part, we proceed analogously and have that for Q ∈ U𝑛,𝑑 (𝜃)
E

[
∥Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) − ∇𝑓 (𝑥)∥2

2

]
= E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[
EQ

[Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) −
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) +
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

|{𝜉𝑖 }𝑛𝑖=1

]]
= E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[
EQ

[Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) −
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖)
2

2

|{𝜉𝑖 }𝑛𝑖=1

]]
+ E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
+ E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[〈
EQ

[
Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) |{𝜉𝑖 }𝑛𝑖=1

]
− 1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖),
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
〉]

.

The first element of the scalar product is zero since Q is unbiased. Therefore

E
[
∥Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) − ∇𝑓 (𝑥)∥2

2

]
= E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[
EQ

[Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) −
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖)
2

2

|{𝜉𝑖 }𝑛𝑖=1

]]
+ E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
≤ 𝜃

𝑛

𝑛∑︁
𝑖=1

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
+ E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Jihao Xin, Marco Canini, Peter Richtárik, and Samuel Horváth

For E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
we have E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
=

1

𝑛2

𝑛∑︁
𝑖=1

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
+ 1

𝑛2

∑︁
𝑖≠𝑗

〈
E𝜉𝑖∼D𝑖

[∇𝑓𝑖 (𝑥, 𝜉𝑖)] − ∇𝑓𝑖 (𝑥), E𝜉 𝑗∼D𝑗

[
∇𝑓𝑗 (𝑥, 𝜉 𝑗)

]
− ∇𝑓𝑗 (𝑥)

〉
=

1

𝑛2

𝑛∑︁
𝑖=1

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
Finally, for the E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
, we have

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
= E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥) + ∇𝑓𝑖 (𝑥)∥2

2

]
= E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥) + ∇𝑓𝑖 (𝑥)∥2

2

]
+ ∥∇𝑓𝑖 (𝑥)∥2

2
+ 2

〈
E𝜉𝑖∼D𝑖

[∇𝑓𝑖 (𝑥, 𝜉𝑖)] − ∇𝑓𝑖 (𝑥),∇𝑓𝑖 (𝑥)
〉

= E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥) + ∇𝑓𝑖 (𝑥)∥2

2

]
+ ∥∇𝑓𝑖 (𝑥)∥2

2
.

Putting them all together

E
[
∥Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]) − ∇𝑓 (𝑥)∥2

2

]
≤ 𝜃

𝑛

𝑛∑︁
𝑖=1

E𝜉𝑖∼D𝑖

[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥2

2

]
+ E{𝜉𝑖∼D𝑖 }𝑛𝑖=1

[1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓 (𝑥)
2

2

]
=
𝜃

𝑛

∑︁
𝑖=1

E
[
∥∇𝑓𝑖 (𝑥))∥2

2

]
+

(
𝜃 + 1

𝑛

)
1

𝑛

∑︁
𝑖=1

E
[
∥∇𝑓𝑖 (𝑥, 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2

2

]
yields the desired bound. □

For the adaptive methods, we show that the assumptions in Section 2.3 of [10] remain applicable when combining stochastic

gradients with global quantization. The only assumption related to the stochastic gradients is that the ℓ∞ norm of the stochastic

gradients is almost surely bounded.

In our case, the stochastic estimator has the following form

Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)]).
We assume that ∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥∞ ≤ 𝑅, for all 𝑖 ∈ [𝑛] . Furthermore, for both standard and exponential global quantization, we

have

∥Q([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)])∥∞ =

 1

𝑛

𝑛∑︁
𝑖=1

(
Q𝑞,𝑝
𝑠 ([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)])

)
𝑖

∞

≤ 1

𝑛

𝑛∑︁
𝑖=1

(Q𝑞,𝑝
𝑠 ([∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)])

)
𝑖

∞

≤ ∥[∇𝑓1 (𝑥, 𝜉1), . . . ,∇𝑓𝑛 (𝑥, 𝜉𝑛)] ∥𝑝,𝑞

=

(
𝑛∑︁
𝑖=1

∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥𝑝𝑞

)
1/𝑝

≤
(

𝑛∑︁
𝑖=1

(𝑑 ∥∇𝑓𝑖 (𝑥, 𝜉𝑖)∥∞)𝑝/𝑞
)

1/𝑝

≤ 𝑛1/𝑝𝑑1/𝑞𝑅.

Therefore, global quantization preserves the bound of the ℓ∞ norm of the stochastic gradients up to constant. This implies that

all the convergence guarantees of Défossez et al. [10] also apply to our setting with global quantization.

To sum up, global quantization is compatible with standard optimization methods designed for efficient distributed learning,

such as distributed variants of Adam and SGD. By maintaining unbiased gradient estimates with bounded variance, our

quantization method preserves convergence guarantees comparable to those of uncompressed methods while significantly

reducing communication costs.

	Abstract
	1 Introduction
	2 Related Work
	3 Global-QSGD
	3.1 Theoretical Formulation
	3.2 Algorithm Design
	3.3 Quantization Interval

	4 Convergence Analysis
	4.1 Unbiasedness
	4.2 Variance Bound

	5 Performance Model
	6 Implementation
	7 Evaluation
	8 Future Work
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Lemma 4.3
	A.2 Proof of Lemma 4.4
	A.3 Proof of Theorem 4.5
	A.4 Proof for Equation 8

	B Reduce function for Global-QSGD Exponential Dithering
	C Convergence Analysis

