FPGAs Are the Hero In-Network Computing Needs

Suhaib A. Fahmy Ziyi Yang Yixi Chen
KAUST KAUST KAUST
Thuwal, Saudi Arabia Thuwal, Saudi Arabia Thuwal, Saudi Arabia
suhaib.fahmy@kaust.edu.sa ziyi.yang@kaust.edu.sa yixi.chen@kaust.edu.sa

Gustavo Alonso
ETH Zurich
Zirich, Switzerland

Abstract

In-network computing has gained some traction recently
with the advent of programmable switches in the datacenter,
however, for widespread adoption as a general computing
paradigm, more flexible deployment platforms are required.
We argue that FPGAs, suitably virtualized, can serve such a
role, covering the continuum from edge to cloud, addressing
the key barrier of hardware deployability and flexibility for
in-network computing. FPGAs offer orders of magnitude
more efficient execution than general purpose CPUs and low
overhead packet ingestion—and with the right hardware vir-
tualization techniques, they can also be flexible. We propose
to bring these capabilities together in a Stream-Oriented
Hardware Offload paradigm supported on lightweight host-
less FPGA platforms to enable In-Network Acceleration of
present and emerging distributed applications.

CCS Concepts

» Networks — In-network processing; - Hardware —
Reconfigurable logic applications; - Software and its
engineering — Distributed systems organizing principles.

Keywords

In-network computing, field programmable gate arrays, hard-
ware acceleration

ACM Reference Format:

Suhaib A. Fahmy, Ziyi Yang, Yixi Chen, Gustavo Alonso, Zsolt
Istvan, and Marco Canini. 2025. FPGAs Are the Hero In-Network
Computing Needs. In 16th ACM SIGOPS Asia-Pacific Workshop on
Systems (APSys °25), October 12—13, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3725783.
3764402

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

APSys °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1572-3/25/10
https://doi.org/10.1145/3725783.3764402

Zsolt Istvan
Technical University of Darmstadt
Darmstadt, Germany

Marco Canini
KAUST
Thuwal, Saudi Arabia

1 Introduction

In-network computing (INC) has been discussed for close
to three decades, with Active Networks [58] proposing the
idea of replacing passive packets with active capsules that
contain programs to be executed at each traversed router.
However, adoption as a general compute paradigm has not
fully materialized, in part due to a lack of suitable abstrac-
tions, a lack of hardware that can simultaneously support
generalized computing and high performance networking,
and limited use-cases.

In recent years, there has been renewed interest in INC,
driven by the availability of programmable switches and
SmartNICs, with modeling and generalized execution ex-
plored [14, 18]. P4 programming and Protocol Independent
Switch Architecture (PISA), have emerged as a promising
platform for demonstrating such ideas [51]. Management and
processing operations that would traditionally run on host
CPUs can be offloaded to programmable networking nodes
along the data transmission path, freeing up valuable CPU
resources. This enhances the performance of distributed sys-
tems, due to reduced traversal of hierarchies in the process-
ing of packet data. Examples of traffic-processing primitives
suitable for offloading include load balancing [2], congestion
control [49], and intrusion detection/prevention [70]. These
applications share a common assumption: they operate on
a per-packet basis with payloads small enough to fit within
a single packet, or processing that can be performed in the
context of a single packet.

More complex Layer 7 (L7) applications, composed of func-
tion graphs, also present INC-friendly semantics. Various
prototypes have demonstrated benefits such as in-network
acceleration for key-value stores [34, 38, 39], transaction pro-
cessing and databases [31, 32, 53], consensus [16, 17], and gra-
dient aggregation in distributed machine learning [1, 37, 52].
These proofs of concept hint at what could be achieved with
a suitable general abstraction.

Given the promising benefits of INC at the application
level, the question of platform suitability arises. Existing
networking devices have significant limitations. SmartNICs

https://doi.org/10.1145/3725783.3764402
https://doi.org/10.1145/3725783.3764402
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725783.3764402

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

with lightweight Arm cores do not offer sufficient compute
capability, while offloads to specialized ASICs such as the
Data Processing Accelerator (DPA) in the BlueField-3 limit
flexibility. Programmable switches offer very high through-
put but impose rigid programming constraints that do not
suit many L7 applications. Most INC demonstrations using
programmable switches rely on workarounds to offload only
partial segments of application logic, e.g., ATP [37] casts
floating-point to integer arithmetic as supported on Tofino
switches.

We argue that the core reason that INC has not yet seen
more widespread adoption as a general compute paradigm
lies in the absence of a unified abstraction framework and
hardware platform capable of addressing its various chal-
lenges holistically. While prior works have attempted to
solve specific problems within the INC stack, these solutions
are often narrow in scope and tightly coupled to their respec-
tive implementations, limiting generalization and broader
adoption. To enable a mature and widely deployable INC
framework, we outline four key features it must incorporate:
Low-overhead compute invocation. Deploying an ap-
plication graph of functions to INC resources necessitates
those functions be computed efficiently, with low latency,
and for network ingestion to have minimal overhead to reap
the expected benefits. That is, reducing abstraction over-
head is critical—it represents a fixed cost per INC invocation
and directly impacts the feasible set of offloaded functions
and scalability to larger function chains. This means we re-
quire line-rate packet ingestion and processing and fully
self-contained hardware acceleration of a range of functions
without reliance on a host system.

Application-oriented invocation abstraction. Packet se-
mantics are insufficient for general L7 offloads as many func-
tions operate on data that exceeds the size of a single packet.
In a packet-oriented system, this necessitates statefulness
between packet processing invocations. A general INC ab-
straction should allocate resources and process requests at a
granularity that matches application semantics, rather than
at the packet level. This allows more efficient allocation and
invocation of resources, and should be flexibly defined for
generality.

Lightweight virtualization. Maximizing utilization and ef-
ficiency necessitates hardware resources be flexibly exploited.
It is essential to enable multiple independent applications
and users to leverage hardware resources in an efficient,
isolated manner, and maximize hardware utilization with
evolving workloads. To ensure scalability and responsive-
ness, INC resources should be allocated on a per-request
basis, avoiding static pre-allocation. Accelerator pipelines
should be invoked only when the required data is available
to minimize delays due to network packet ingestion.

Suhaib A. Fahmy, Ziyi Yang, Yixi Chen, Gustavo Alonso, Zsolt Istvan, and Marco Canini

Feasible deployment strategy. As an emerging comput-
ing paradigm, it is commercially impractical to advocate for
complete replacement of existing networking infrastructure
to enable new INC capabilities. A more viable approach is
for the framework to support augmenting current infras-
tructure in a way that scales with demand. This not only
provides a practical deployment path-both within and be-
yond datacenter environments—but also lays the groundwork
for transitioning to more efficient, purpose-built solutions
as the technology matures. INC devices can be introduced
into a live testbed without interrupting ongoing services,
and workloads can be gradually offloaded from the original
service stack to the accelerators.

Besides existing demonstration of INC applications in dat-
acenters, a variety of broader emerging applications present
significant opportunities for exploiting INC. These include
smart and cognitive cities [22], augmented reality [47], self-
driving [44], smart grids [42], coupling of digital twins [54],
and video surveillance [10]. These applications all rely on
data from multiple distributed sources, that can include com-
plex sensors, such as high definition cameras, Lidar, envi-
ronmental sensors, and end user terminals, which generate
high volumes of images, video frames, dense sensor captures,
or word embeddings. These streams of data are processed
through complex compute pipelines, comprising multiple
composed functions, such as the layers of a deep neural
network [61], event detection and object segmentation in
video frames, or key exchange and signature verification
with advanced encryption schemes. These applications can
also have challenging latency constraints due to safety crit-
icality or interaction time requirements. INC would allow
these applications to be absorbed into the network, reducing
latency and data movement.

Hence, we seek a hardware platform capable of support-
ing meaningful application logic while satisfying the afore-
mentioned requirements. We propose a new abstraction to
address the aforementioned requirements, which we call
In-Network Acceleration. We argue that virtualized, hostless
FPGAs represent an ideal platform for deploying such L7
INC applications. The functions that comprise an applica-
tion are fully executed within hardware accelerators which
are invoked at application-defined granularity, in terms of
the data size and processing complexity (e.g., image process-
ing filters, neural network model segments, stream process-
ing operations). These accelerators are composed across the
network to implement full applications avoiding the data
movement and energy overheads of typical host-managed
deployments. Leveraging FPGAs’ reconfigurability enables
efficient hardware sharing and evolution of supported primi-
tives over time to adapt to changing workloads. FPGAs’ flex-
ibility also allows low-level network transport abstractions

FPGAs Are the Hero In-Network Computing Needs

to evolve over time to encompass additional INC capabilities.
Hence, a fixed hardware deployment transforms into a flexi-
ble, general-purpose computing fabric capable of supporting
diverse applications with minimal network-to-compute over-
head.

2 Hardware Offload Today

While FPGAs have already been widely adopted in network-
ing research and deployed for networked applications, we
find that existing abstractions fall short of meeting the ob-
jectives outlined in §1. Here, we review existing approaches
that utilize FPGAs and hardware accelerators in networked
applications, and highlight the key limitations that prevent
them from serving as effective INC hardware platforms.

Host Oriented Hardware Offload (HOHO) is the dom-
inant approach for deploying FPGAs and other accelerators
in cloud computing, where these resources are exploited
by software running on a host. This may be user facing
and virtualized, or exploited behind the scenes by the op-
erator. Applications are typically long-running, deal with
large amounts of stored data shared between the host and
FPGAs, which typically execute a complex portion of the
whole application to achieve performance improvements.
The accelerator is fully “owned” by the host application and
used for offload as needed. Examples include Microsoft Cat-
apult [48], which augmented cloud servers with FPGAs to
initially accelerate the ranking engine of Bing and other ser-
vice tasks [9], and Brainwave [11]. AWS F1 [4] and Alibaba
F3 [3] offer instances that include FPGAs as a resource simi-
lar to GPUs, where an accelerator is integrated and managed
through a host software application.

ASIC accelerators have also found use in the datacenter.
Google developed the Tensor Processing Unit [35], targeting
the requirements of machine learning workloads using a sys-
tolic array architecture. Similar efforts include Facebook’s
video processing ASICs [63] and Microsoft’s Corsica com-
pression ASIC [15]. Custom hardware that is general enough
to accelerate dominant datacenter workloads is more effi-
cient than implementing accelerators on FPGAs. However,
there is a tension between the application flexibility afforded
by FPGAs and the raw economic efficiency of custom ASICs.
For a datacenter hyperscaler, stable application demand that
requires a specific computational pattern (e.g. matrix/tensor
operations) can justify the cost and effort of custom ASIC de-
sign. However, FPGAs have the flexibility to explore a wide
range of applications on the same hardware deployment,
extending the life of these platforms, while still reaping sig-
nificant efficiency benefits over CPU baselines. FPGAs are
also capable of combining accelerated processing with net-
work ingestion logic in the same hardware, enabling the
virtualization itself to be “hardware accelerated”.

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

HOHO

ity M e

Figure 1: Comparison of hardware offload approaches.
Application-level requests (black boxes) are comprised of
multiple packet fragments (grey boxes). HOHO uses a host
to manage application semantics and customized invocation
of accelerators. NOHO can only operate on individual pack-
ets. SOHO adds a hardware abstraction to ingest and process
application-level data without the involvement of a host, en-
abling full L7 offloads.

NOHO SOHO

HOHO is not suitable for INC due to reliance on a host
server, resulting in significant overhead due to the variability
of network ingestion and offload over PCle [13, 72], also
resulting in wasted CPU cycles on data movement. HOHO
makes most sense for stored data computations, where the
result of a computation is required at the host, or where data
is already present in the host.

In Network Oriented Hardware Offload (NOHO), hard-
ware is used to offload network functions, usually invisi-
bly to applications. Hardware operates on individual pack-
ets, processing only headers or also payloads through small
pipelines. The aforementioned programmable switch based
INC examples fall within this paradigm. Examples of FPGA-
based platforms include NetFPGA [65] and FPGA-based NICs
like Corundum [23], PANIC [40], and SuperNIC [41]. Appli-
cations demonstrated using this approach include intrusion
detection [66], network monitoring [62], firewalls [7], col-
lective operations [43], etc. Some INC demonstrations have
built atop these FPGA platforms, such as for key-value store
in Caribou [28] and LaKe [59], demonstrating significant
latency, throughput, and power improvements compared to
software baselines. Other examples include State Machine
Replication [29] and the Paxos consensus protocol imple-
mented using a P4-to-FPGA compiler [16], demonstrating
similar benefits. Similarly AxleDB [50] offers orders of mag-
nitude improved efficiency for SQL queries. However, where
the granularity of operations exceeds a single packet, each ac-
celerator is designed as part of a fully customized application-
specific communication stack to ingest and and process data
from the network, with accelerator logic tightly coupled with
network data processing. This leads to a complex monolithic
hardware design lacking an abstraction to support flexible
or evolving workloads. Hence, while these examples show
the potential of FPGA-based INC, they do not offer a feasible
abstraction for general deployment.

3 In-Network Acceleration

We propose In-Network Acceleration through a paradigm we
call Stream Oriented Hardware Offload (SOHO). In this

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Suhaib A. Fahmy, Ziyi Yang, Yixi Chen, Gustavo Alonso, Zsolt Istvan, and Marco Canini

Table 1: Hardware offload approaches and their properties.

Property Host-Oriented (HOHO)

Network-Oriented NOHO) Stream-Oriented (SOHO)

Data granularity
Application complexity
Control of resources
Statefulness

Data Movement Overhead
Resource allocation
Deployment approach

Large stored data

Rich multi-function

User dedicated

Fully stateful

SW kernel network stack/PCle
Host-coupled

Incremental

Individual packets Application request-level
Fixed infrastructure Self-contained functions
Operator Per-request

Stateless Request-level statefulness
Tightly coupled packet payload Abstracted request reassembly
Fixed Per-request

Replacement Incremental

Example for video streams

Complete analytics application Pointwise operations

Frame-based processing

approach, applications are defined as graphs of composed
functions, which are defined atomically at a granularity of
request invocation: e.g., a CNN applied to an image patch, a
face detector applied to a frame of video, or outlier detection
applied to a time window capture of sensor data. Functions
are implemented as fully self-contained accelerators on host-
less FPGAs, enabling composed functions to communicate
directly across the network with minimal latency and energy
overhead from data ingestion. A single virtualized FPGA can
host multiple accelerators, which can be reconfigured at run-
time via partial reconfiguration. Accelerators are invoked at
at the granularity of an application request, allowing fine-
grained time-multiplexed sharing and resource allocation
between multiple client requests. This approach combines
the low-overhead processing benefits of NOHO, with the
meaningful application-level semantics of HOHO.

In Table 1, we summarize the characteristics of the three
hardware offload paradigms we have outlined. Fig. 1 com-
pares the three approaches. We now illustrate how SOHO
satisfies the requirements laid out in §1 and why FPGAs are
a well-suited platform for implementation.

Low-overhead compute invocation: The ability to ingest
and operate on network data at line rate on FPGAs has been
widely demonstrated [25, 26]. The framework we propose is
lightweight and fully implemented in hardware, enabling in-
gestion of network data and direct invocation of accelerators
on request data without the involvement of a host. Crucially,
hardware accelerators do not generally support preemption
and context switching mid-execution due to large distributed
internal state. Hence, adopting a run-to-completion model
for acclerator invocation at the request level significantly
simplifies control logic. Multiple accelerators can be hosted
on a single FPGA with steering and queuing logic consuming
minimal area and latency.

Application-oriented invocation abstraction: Assem-
bling packets into application-level requests can be per-
formed in-flight and adds minimal overhead on FPGAs due
to their low latency on-chip memory capabilities. On-chip
buffers can ensure requests are serviced with minimal wait-
ing time, while accommodating request sizes in the hundreds

of KBs with ease. By standardizing the data ingestion inter-
face, SOHO allows a wide variety of accelerators to be inte-
grated with minimal effort, without tight coupling to the un-
derlying platform. The key requirement is that all functions
comprising the application can be offloaded into hardware
accelerators. While we focus on a stateless abstraction, FPGA
platforms include ample off-chip memory, allowing alterna-
tive levels of statefulness to be explored through evolution
of the framework.

On accelerator design: Designing accelerators at the RTL
level with languages like SystemVerilog is traditionally com-
plex and time consuming. However High Level Synthesis
(HLS) tools have significantly improved, and been success-
fully applied in building both packet processing systems [55]
and general purpose accelerators [12]. Our proposal is fo-
cused on the integration of accelerators in a networked con-
text. We do not claim that all possible applications can be
mapped or that users can have complete flexibility to de-
sign custom accelerators. However, learning from the state-
less function abstraction in serverless computing, we do
believe a suitably rich library of pre-designed functions can
be composed into a wide range of meaningful applications.
Ample examples of accelerator designs across application
domains have been demonstrated in the literature. A set
of functions can be compiled into a function library that
is loaded on-demand at runtime through partial reconfigu-
ration. Alternative programmable hardware structures like
coarse grained overlays [30, 57] can also be explored, allow-
ing a more software-oriented programming interface with
rapid compilation.

Lightweight virtualization: FPGAs offer true spatial par-
titioning and isolation [27, 60]. Separate partitions of hard-
ware resources are dedicated to distinct functions in a way
that they do not interfere with each other. Fair sharing of
input bandwidth and memory access is achievable through
standard resource virtualization approaches. Additionally,
partial reconfiguration enables accelerator swapping at run-
time [64], and a suitable abstraction can enable function
swapping at the millisecond timescale [21, 36]. This enables

FPGAs Are the Hero In-Network Computing Needs

a virtualization granularity of function execution on a com-
plete input request, maximizing hardware utilization.
Feasible deployment strategy: SOHO integrates seam-
lessly with existing network infrastructure and supports flex-
ible form factors to accommodate diverse deployment con-
straints. The FPGA uniquely encapsulates the whole SOHO
abstraction and the compute functions within a single self-
contained device that is not reliant on a standard host server.
We propose these FPGA devices be network-attached to
switches in the network. Being reprogrammable, the SOHO
abstraction can be updated in-place without replacing the
underlying hardware. The FPGAs act as standard network
endpoints while retaining the ability to be reconfigured, en-
abling adoption of emerging paradigms such as message
transport [56] and application-defined networks [71]. Their
wide range of sizes and power profiles allows SOHO to be
deployed on either off-the-shelf accelerator cards or cus-
tom low-power platforms, depending on performance and
energy requirements. Recent FPGA platforms increasingly
include embedded on-chip processors which can be used
to enhance control-plane capabilities, which our framework
integrates without interference with data ingestion and accel-
erator pipelines. Lastly, compared to programmable switch-
ing ASICs, FPGAs offer greater generality and longer-term
flexibility. Unlike Intel’s discontinued Tofino/Intelligent Fab-
ric Processor (IFP) [45], FPGAs continue to provide a viable,
sustainable platform. Meanwhile, proprietary in-network
computing devices (e.g., [PU [24], Azure Boost DPU [5],
FBOSS [46]) are typically for internal use and inaccessible to
the broader research community.

4 Achieving SOHO with FPGA Accelerators

In-network acceleration augments existing networking in-
frastructure with independent FPGAs directly attached to
networks switches. These FPGAs have off-chip DRAM and
high bandwidth network interfaces. The FPGA presents vir-
tual network endpoint interfaces which can terminate dis-
tinct traffic flows, implementing suitable network stacks,
and hosts a number of reconfigurable accelerator slots that
can load functions from a pre-compiled function library. A
lightweight abstraction manages request assembly and ac-
celerator invocation.

Clients establish sessions and submit requests spanning
multiple packets and containing metadata in a custom re-
quest header format. These are reassembled in virtual hard-
ware queues allocated dynamically on a per-request basis
to avoid the overhead and resource under-utilization that
would result from static allocation policies. Reassembled re-
quests are scheduled to the appropriate accelerator, which
runs to completion per request, returning results to the net-
work interface, where they can pass to the next node in

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

FPGA

Reassembly L Accelerators

L 5]

=N

Demux
Scheduler

I
(S}
(S}
-_. ES N w

>

1 >

Packet Interface |‘-

)

Figure 2: Proposed SOHO framework. Packet payloads are
passed to Demux as fragments which are then reassembled
in buffers based on information in the request headers. Com-
plete requests queue at the corresponding accelerator. Num-
bers indicate request size in fragments.

the function chain or back to the requester. Request-level
processing means accelerators can interleave independent
requests without storing state. Dynamic allocation of acceler-
ators to slots is supported through partial reconfiguration of
the FPGA, enabling adaptation to dynamic workloads. Live
request statistics are collected to help determine when slots
should be reconfigured.

Application performance is improved due to (1) direct
ingestion of request packets into hardware without involving
a host or software network stack, (2) processing of complete
requests using optimized hardware accelerators, (3) high
utilization of hardware resources to service distinct requests.

Initial Experiments

We show here that hostless FPGAs are capable of applying the
SOHO abstraction with minimal overhead and that hardware
accelerators offer a significant performance improvement.

Testbed. We prototype our system using an AMD Alveo
U280 accelerator card. The FPGA functions as the receiving
endpoint and performs all request processing independently
of any host. Fig. 2 illustrates the internal hardware interface.
Received packets are first processed by a TCP stack based
on [55], with payloads forwarded to our framework. Clients
are implemented using DPDK-based Libtpa [8], generating
high throughput streams of application-level requests, each
of which may span multiple packets over a 100 Gbps network
directly connected to the FPGA.

Implementation. Fig. 2 illustrates how our framework re-
assembles packets on-chip into complete requests before
invoking accelerator functions. Metadata from both network
and application-layer headers is passed and buffers are allo-
cated at the granularity of requests. A new request cannot
join a buffer in which there is an incomplete started request
but can join buffers containing complete requests from other

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

1-packet requests 4-packet requests 4-packet requests

w
o

I 1 accelerator/core
3 4 accelerators/cores

IS
1)

N
o

=
o

Latency (microseconds)
w
8

o

1 2 3 4 1 2 3 4 1 2 3 4
Number of clients
(b) SOHO (FPGA)

(a) NOHO (FPGA)

(c) DPDK (Software)
Figure 3: Latency comparison of different abstractions.

clients. Once a request is reassembled, it is queued at the rele-
vant accelerator, and results are passed to the output network
interface. Once an accelerator has completed a request, it can
process any complete request in its queue. Hardware queues
can have sophisticated signaling and control with minimal
overhead, enabling a variety of extensions to queuing logic.

Evaluation. We measure client-observed latency of a Top-K
function implemented in fixed-function hardware (NOHO),
and compare it to our flexible FPGA-based SOHO frame-
work. Clients issue back-to-back requests for 10 seconds
with a 1024B packet size. NOHO is restricted to single-packet
(1024B) requests, while SOHO and software accept larger
4096B requests (fragmented across packets). Fig. 3 shows the
FPGA SOHO abstraction (b) incurs a minimal overhead of
0.3-3 us additional latency when hosting 4 accelerators (i.e.,
equal processing load) compared to fixed function NOHO
(a). Software running on 1 or 4 AMD EPYC 7763 CPU cores
(c) shows significantly higher latency and variability with
more clients. SOHO reduces latency and improves scalability
compared to the software baseline, achieving a 3X speedup
when using four accelerators in SOHO versus four CPU cores
in the software implementation. This highlights the speedup
benefits combined with minimal overhead incurred by the
SOHO abstraction on FPGA. This also results in a significant
efficiency saving since the FPGA can be deployed without a
host, dramatically reducing power consumption compared
to a hosted accelerator. A more thorough investigation of
this design can be referenced in [68].

5 Research Directions

We have demonstrated it is possible to implement in hard-
ware on an FPGA a lightweight accelerator invocation ab-
straction that presents a request-level interface, moving data
into accelerator pipelines with minimal overhead. There re-
main a number of areas to develop to make In-Network
Acceleration a reality.

Service discovery protocol. In a real deployment, discov-
ery and allocation of in-network accelerators needs to be
addressed. Beaconing, as in SCION [69], or pathlet discovery
as in MTP [33] could serve the purpose of resource discov-
ery. FPGAs are well suited to offering real time telemetry to

Suhaib A. Fahmy, Ziyi Yang, Yixi Chen, Gustavo Alonso, Zsolt Istvan, and Marco Canini

enable dynamic discovery and allocation to suitably share
resources across multiple concurrent applications and users.

Function chaining. In-network computing is most effec-
tive when supporting directed acyclic graphs (DAGs) of com-
posed functions allocated across distributed resources, due to
the significant layer traversal overhead savings. This view of
applications is amenable as has been demonstrated in server-
less computing (including exploratory work combining FP-
GAs and the serverless paradigm [6, 20]. New algorithms are
required to address dynamic mapping of DAGs to distributed
accelerator resources based on dynamic conditions, similar
to the scenario explored in MTP [33].

Quality of Service. In-network telemetry can address qual-
ity of service guarantees [67], including dealing with mixed
criticality workloads. Capturing this telemetry has minimal
impact on the data plane due to the hardware pipeline iso-
lation capabilities of FPGAs, thereby offering a level of dy-
namic responsiveness that would not normally be possible
with traditional computing devices. It would additionally be
necessary to consider robustness in the case of hardware
failures or resource capacity limits.

Extending our prototype. Supporting partial reconfigu-
ration, enabling alternative queuing strategies, providing
real-time availability metrics, and supporting task DAGs
remains to be done. Modern FPGAs also include more com-
plex subsystems in their silicon, including processors, PCle
interfaces, and, more recently, networking functions [19].
Exploiting embedded processors to create a more capable
and flexible control plane would enable many of the above
capabilities without impacting data plane performance. It is
also feasible for new FPGAs to be designed that integrate
switching functionality and request assembly pipelines, re-
sulting in a single-chip solution coupling ASIC-level switch-
ing with programmable computing for further efficiency and
performance gains.

6 Conclusions

Building on the success of INC in a constrained datacen-
ter environment, we have proposed In-Network Acceleration
through a stream-oriented request-level abstraction for gen-
eral L7 in-network computing on FPGAs. This paradigm
would enable INC to emerge more widely, with potential
transformational benefits for a range of emerging distributed
applications in cognitive cities and connected infrastructure.
FPGAs offer the flexibility to evolve deployed infrastruc-
ture with emerging applications and novel networking ap-
proaches through augmentation, thereby de-risking hard-
ware deployment. We have demonstrated a prototype and
discussed some key challenges to be explored by researchers
in enabling this computing paradigm.

FPGAs Are the Hero In-Network Computing Needs

Acknowledgments

This publication is based upon work supported by King Ab-
dullah University of Science and Technology (KAUST) under
Award No. ORFS-CRG11-2022-5017.

References
[1] [n.d.]. NVIDIA Scalable Hierarchical Aggregation and Reduction

[10

[11

(12

=

=

—

—

Protocol (SHARP).
sharpv300

Ashkan Aghdai, Michael I-C Wang, Yang Xu, Charles H-P Wen, and
H Jonathan Chao. 2019. In-network congestion-aware load balancing
at transport layer. In Proceedings of the IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN)).
Alibaba Cloud. [n.d.]. Retired ECS instance types: f3, FPGA-
accelerated compute-optimized instance family. https:
//www.alibabacloud.com/help/en/ecs/user-guide/retired-instance-
types?spm=a2c63.p38356.0.0.6872f09BQQOot#F3

Amazon Web Services. [n.d.]. Amazon EC2 F1 Instances.
//aws.amazon.com/ec2/instance-types/f1/

Azure Infrastructure Blog. 2024. Enhancing Infrastructure Efficiency
with Azure Boost DPU. https://techcommunity.microsoft.com/blog/
azureinfrastructureblog/enhancing-infrastructure-efficiency-with-
azure-boost-dpu/4298901 Accessed: 2025-05-29.

Marco Bacis, Rolando Brondolin, and Marco D Santambrogio. 2020.
BlastFunction: an FPGA-as-a-service system for accelerated serverless
computing. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE). 852-857.

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-

https://docs.nvidia.com/networking/display/

https:

marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2022.
hXDP: Efficient software packet processing on FPGA NICs. Commun.
ACM 65, 8 (2022), 92-100.

ByteDance. 2024. Libtpa: A DPDK-based userspace TCP stack. https:
//github.com/bytedance/libtpa Accessed: Mar. 7, 2025.

Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Lisa Papamichael, Michael andWoods, Sitaram Lanka,
Derek Chiou, and Doug Burger. 2016. A cloud-scale acceleration
architecture. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1-13.

Jianguo Chen, Kenli Li, Qingying Deng, Keqin Li, and S Yu Philip. 2019.
Distributed deep learning model for intelligent video surveillance sys-
tems with edge computing. IEEE Transactions on Industrial Informatics
(2019).

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Al-
kalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari
Angepat, Christian Boehn, Derek Chiou, Oren Firestein, Alessandro
Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Ah-
mad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K. Kovvuri, Sitaram
Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon
Perez, Amanda Grace Rapsang, Steven K. Reinhardt, Bita Darvish
Rouhani, Adam Sapek, Raja Seera, Sangeetha Shekar, Balaji Sridharan,
Gabriel Weisz, Lisa Woods, Phillip Yi Xiao, Dan Zhang, Ritchie Zhao,
and Doug Burger. 2018. Serving DNNs in real time at datacenter scale
with project brainwave. IEEE Micro 38, 2 (2018), 8-20.

Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan,
Kees Vissers, and Zhiru Zhang. 2022. FPGA HLS today: successes,

challenges, and opportunities. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 15, 4 (2022), 1-42.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Ryan A Cooke and Suhaib A Fahmy. 2020. Characterizing latency
overheads in the deployment of FPGA accelerators. In Proceedings of the
International Conference on Field-Programmable Logic and Applications
(FPL). 347-352.

Ryan A Cooke and Suhaib A Fahmy. 2020. A model for distributed
in-network and near-edge computing with heterogeneous hardware.
Future Generation Computer Systems 105 (2020), 395-409.

Microsoft Corporation and Broadcom Corporation. 2019.
Project Zipline Top Micro Architecture Specification. https:
//github.com/opencomputeproject/Project- Zipline/blob/master/
specs/Project_Zipline_Top_Micro_Architecture_Specification.docx
Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zil-
berman, Hakim Weatherspoon, Marco Canini, Fernando Pedone, and
Robert Soulé. 2020. P4xos: Consensus as a network service. IEEE/ACM
Transactions on Networking 28, 4 (2020), 1726-1738.

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
2016. Paxos made switch-y. ACM SIGCOMM Computer Communication
Review 46, 2 (2016), 18-24.

Rajdeep Das and Alex C Snoeren. 2020. Enabling active networking
on RMT hardware. In Proceedings of the ACM Workshop on Hot Topics
in Networks (HotNets). 175-181.

Jaideep Dastidar, David Riddoch, Jason Moore, Steven Pope, and Jim
Wesselkamper. 2023. AMD 400G Adaptive SmartNIC SoC-Technology
Preview. IEEE Micro (2023).

Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and
Haibo Chen. 2022. Serverless computing on heterogeneous computers.
In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Pperating Systems (ASPLOS).
797-813.

Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtu-
alized FPGA accelerators for efficient cloud computing. In Proceedings
of the IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). 430-435.

Matthias Finger and Edy Portmann. 2016. Towards Cognitive Cities:
Advances in Cognitive Computing and its Application to the Governance
of Large Urban Systems. Springer, Switzerland.

Alex Forencich, Alex C Snoeren, George Porter, and George Papen.
2020. Corundum: An open-source 100-Gbps NIC. In Proceedings of the
IEEE International Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM). 38-46.

Google Cloud. 2023. Titanium underpins Google’s workload-optimized
infrastructure. https://cloud.google.com/blog/products/compute/
titanium-underpins-googles-workload- optimized-infrastructure Ac-
cessed: 2025-05-29.

Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman.
2019. The P4->NetFPGA workflow for line-rate packet processing.
In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). 1-9.

Zsolt Istvan, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2015.
A hash table for line-rate data processing. ACM Transactions on Re-
configurable Technology and Systems (TRETS) 8, 2 (2015), 1-15.

Zsolt Istvan, Gustavo Alonso, and Ankit Singla. 2018. Providing Multi-
tenant Services with FPGAs: Case Study on a Key-Value Store. In 28th
International Conference on Field Programmable Logic and Applications,
FPL 2018, Dublin, Ireland, August 27-31, 2018. IEEE Computer Society,
119-124.

Zsolt Istvan, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelli-
gent distributed storage. Proceedings of the VLDB Endowment 10, 11
(2017), 1202-1213.

Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a box: Inexpensive coordination in hardware. In Pro-
ceedings of the USENIX Symposium on Networked Systems Design and

https://docs.nvidia.com/networking/display/sharpv300
https://docs.nvidia.com/networking/display/sharpv300
https://www.alibabacloud.com/help/en/ecs/user-guide/retired-instance-types?spm=a2c63.p38356.0.0.6f872f09BQQOot#F3
https://www.alibabacloud.com/help/en/ecs/user-guide/retired-instance-types?spm=a2c63.p38356.0.0.6f872f09BQQOot#F3
https://www.alibabacloud.com/help/en/ecs/user-guide/retired-instance-types?spm=a2c63.p38356.0.0.6f872f09BQQOot#F3
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://techcommunity.microsoft.com/blog/azureinfrastructureblog/enhancing-infrastructure-efficiency-with-azure-boost-dpu/4298901
https://techcommunity.microsoft.com/blog/azureinfrastructureblog/enhancing-infrastructure-efficiency-with-azure-boost-dpu/4298901
https://techcommunity.microsoft.com/blog/azureinfrastructureblog/enhancing-infrastructure-efficiency-with-azure-boost-dpu/4298901
https://github.com/bytedance/libtpa
https://github.com/bytedance/libtpa
https://github.com/opencomputeproject/Project- Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_ Specification.docx
https://github.com/opencomputeproject/Project- Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_ Specification.docx
https://github.com/opencomputeproject/Project- Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_ Specification.docx
https://cloud.google.com/blog/products/compute/titanium-underpins-googles-workload-optimized-infrastructure
https://cloud.google.com/blog/products/compute/titanium-underpins-googles-workload-optimized-infrastructure

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

=

—

[l

[

—

=

[

—

Implementation (NSDI). 425-438.

Abhishek Kumar Jain, Douglas L Maskell, and Suhaib A Fahmy. 2021.
Coarse Grained FPGA Overlay for Rapid Just-In-Time Accelerator
Compilation. IEEE Transactions on Parallel and Distributed Systems 33,
6 (2021), 1478-1490.

Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig.
2022. P4db-the case for in-network oltp. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD). 1375-1389.
Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and
Philippe Cudré-Mauroux. 2021. In-network support for transaction
triaging. Proceedings of the VLDB Endowment 14, 9 (2021), 1626-1639.
Tao Ji, Rohan Vardekar, Balajee Vamanan, Brent E Stephens, and Aditya
Akella. 2025. {MTP}: Transport for {In-Network} Computing. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 959-977.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In Proceedings of the
Symposium on operating systems principles (SOSP). 121-136.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the International Symposium on Computer Architecture.
1-12.

Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on FPGAs?. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
991-1010.

ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network Aggregation
for Multi-tenant Learning. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yonggiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. 2017.
Kv-direct: High-performance in-memory key-value store with pro-
grammable nic. In Proceedings of the Symposium on Operating Systems
Principles (SOSP). 137-152.

Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen,
and Michael J Freedman. 2016. Be fast, cheap and in control with
{SwitchKV}. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 31-44.

[40] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh Sivaraman, and

Aditya Akella. 2020. PANIC: A High-Performance programmable NIC
for multi-tenant networks. In Proceedings of the USENLX Symposium
on Operating Systems Design and Implementation (OSDI). 243-259.

Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying
Zhang. 2024. SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC.

Suhaib A. Fahmy, Ziyi Yang, Yixi Chen, Gustavo Alonso, Zsolt Istvan, and Marco Canini

In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA). 130-141.

Donggi Liu, Haolan Liang, Xiangjun Zeng, Qiong Zhang, Zidong
Zhang, and Minhong Li. 2022. Edge computing application, architec-
ture, and challenges in ubiquitous power internet of things. Frontiers
in Energy Research 10 (2022), 850252.

Rui Ma, Evangelos Georganas, Alexander Heinecke, Sergey Gribok,
Andrew Boutros, and Eriko Nurvitadhi. 2022. FPGA-based Al smart
NICs for scalable distributed Al training systems. IEEE Computer
Architecture Letters 21, 2 (2022), 49-52.

Tianle Mai, Sahil Garg, Haipeng Yao, Jiangtian Nie, Georges Kaddoum,
and Zehui Xiong. 2021. In-network intelligence control: Toward a
self-driving networking architecture. IEEE Network 35, 2 (2021), 53-59.

Nick McKeown. 2023. Intel’s Tofino Update to the P4 Commu-
nity. https://groups.google.com/a/lists.p4.org/g/p4-announce/c/frXi_
jjmawE. Message to the P4 Announce mailing list.

Meta Engineering. 2021. OCP Summit 2021: How we’re building open
and efficient data center networks. https://engineering.fb.com/2021/11/
09/data-center-engineering/ocp-summit-2021/ Accessed: 2025-05-29.
Nuno Pereira, Anthony Rowe, Michael W Farb, Ivan Liang, Edward Lu,
and Eric Riebling. 2021. ARENA: The augmented reality edge network-
ing architecture. In Proceedings of the IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). 479-488.

Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2014. A reconfigurable fabric for accelerating
large-scale datacenter services. ACM SIGARCH Computer Architecture
News 42, 3 (2014), 13-24.

Sergi Rene, Onur Ascigil, Ioannis Psaras, and George Pavlou. 2021. A
congestion control framework based on in-network resource pooling.
IEEE/ACM Transactions on Networking 30, 2 (2021), 683-697.

Behzad Salami, Gorker Alp Malazgirt, Oriol Arcas-Abella, Arda Yur-
dakul, and Nehir Sonmez. 2017. AxleDB: A novel programmable query
processing platform on FPGA. Microprocessors and Microsystems 51
(2017), 142-164.

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-network computation is a dumb idea whose
time has come. In Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets). 150—-156.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. 2021. Xenic: SmartNIC-accelerated distributed trans-
actions. In Proceedings of the ACM SIGOPS Symposium on Operating
Systems Principles (SOSP). 740-755.

Summit Shrestha, Zhengquan Li, Khairul Mottakin, Zheng Song, and
Qiang Zhu. 2023. From Tight Coupling to Flexibility: A Digital Twin
Middleware Layer for the ShakeAlert System. In Proceedings of the
IEEE/ACM Symposium on Edge Computing (SEC). 313-318.

David Sidler, Zsolt Istvan, and Gustavo Alonso. 2016. Low-latency
TCP/IP stack for data center applications. In Proceedings of the In-
ternational Conference on Field Programmable Logic and Applications
(FPL).

Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee
Vamanan, and Aditya Akella. 2021. TCP is harmful to in-network com-
puting: designing a message transport protocol (MTP). In Proceedings

https://groups.google.com/a/lists.p4.org/g/p4-announce/c/frXi_jjmawE
https://groups.google.com/a/lists.p4.org/g/p4-announce/c/frXi_jjmawE
https://engineering.fb.com/2021/11/09/data-center-engineering/ocp-summit-2021/
https://engineering.fb.com/2021/11/09/data-center-engineering/ocp-summit-2021/

FPGAs Are the Hero In-Network Computing Needs

[57

—

(58

=

(59]

(60

[t

[61

—

(62

—

(63

=

(64

[l

(65]

of the ACM Workshop on Hot Topics in Networks. 61-68.

Ian Taras and Jason H Anderson. 2019. Impact of FPGA architecture
on area and performance of CGRA overlays. In Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 87-95.

David L Tennenhouse and David J Wetherall. 1996. Towards an active
network architecture. ACM SIGCOMM Computer Communication
Review 26, 2 (1996), 5-17.

Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé,
and Noa Zilberman. 2019. The case for in-network computing on de-
mand. In Proceedings of the European Conference on Computer Systems
(EuroSys). 1-16.

Stephen M Trimberger and Jason J Moore. 2014. FPGA security: Moti-
vations, features, and applications. Proc. IEEE 102, 8 (2014), 1248-1265.
Naveen Vedula, Reza Hojabr, Ahmad Khonsari, and Arrvindh Shrira-
man. 2021. X-Layer: Building Composable Pipelined Dataflows for
Low-Rank Convolutions. In International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE, 103-115.

Petr Velan and Viktor Pus. 2015. High-density network flow mon-
itoring. In Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IM). 996-1001.

Prahlad Venkatapuram, Zhao Wang, and Chandra Mallipedi. 2020.
Custom silicon at Facebook: A datacenter infrastructure perspective
on video transcoding and machine learning. In Proceedings of the IEEE
International Electron Devices Meeting (IEDM). 199-202.

Kizheppatt Vipin and Suhaib A Fahmy. 2018. FPGA dynamic and partial
reconfiguration: A survey of architectures, methods, and applications.
Comput. Surveys 51, 4 (2018), 1-39.

Greg Watson, Nick McKeown, and Martin Casado. 2006. NetFPGA: A
tool for network research and education. In Workshop on Architectural

[66]

[67]

[68]

[69]

[70]

[71]

[72]

APSys ’25, October 12-13, 2025, Seoul, Republic of Korea

Research using FPGA Platforms (WARFP), Vol. 3.

Nicholas Weaver, Vern Paxson, and Jose M Gonzalez. 2007. The Shunt:
an FPGA-based accelerator for network intrusion prevention. In Pro-
ceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA). 199-206.

Tong Wu, Haipeng Yao, Wenji He, Zunliang Wang, Tianle Mai, Zehui
Xiong, and Song Guo. 2023. Low-cost network measurement through
intelligent in-band network telemetry orchestration. In IEEE Global
Communications Conference (GLOBECOM). IEEE, 4326-4331.

Ziyi Yang, Krishnan B. Iyer, Yixi Chen, Ran Shu, Zsolt Istvan, Marco
Canini, and Suhaib A. Fahmy. 2025. OffRAC: Offloading Through
Remote Accelerator Calls. arXiv:2504.04404 [cs.NI] https://arxiv.org/
abs/2504.04404

Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David G Andersen. 2011. SCION: Scalability, control, and
isolation on next-generation networks. In Proceedings of the IEEE Sym-
posium on Security and Privacy. 212-227.

Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and
Justine Sherry. 2020. Achieving 100gbps intrusion prevention on a
single server. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 1083-1100.

Xiangfeng Zhu, Weixin Deng, Banruo Liu, Jingrong Chen, Yongji
Wu, Thomas Anderson, Arvind Krishnamurthy, Ratul Mahajan, and
Danyang Zhuo. 2023. Application Defined Networks. In Proceedings
of the ACM Workshop on Hot Topics in Networks (HotNets). 87-94.
Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Nee-
lakandan Manihatty-Bojan, Gianni Antichi, Marcin Wéjcik, and An-
drew W Moore. 2017. Where has my time gone?. In Proceedings of
the International Conference on Passive and Active Measurement (PAM).
201-214.

https://arxiv.org/abs/2504.04404
https://arxiv.org/abs/2504.04404
https://arxiv.org/abs/2504.04404

	Abstract
	1 Introduction
	2 Hardware Offload Today
	3 In-Network Acceleration
	4 Achieving SOHO with FPGA Accelerators
	5 Research Directions
	6 Conclusions
	Acknowledgments
	References

