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Abstract

In-network computing has gained some traction recently
with the advent of programmable switches in the datacenter,
however, for widespread adoption as a general computing
paradigm, more flexible deployment platforms are required.
We argue that FPGAs, suitably virtualized, can serve such a
role, covering the continuum from edge to cloud, addressing
the key barrier of hardware deployability and flexibility for
in-network computing. FPGAs offer orders of magnitude
more efficient execution than general purpose CPUs and low
overhead packet ingestion—and with the right hardware vir-
tualization techniques, they can also be flexible. We propose
to bring these capabilities together in a Stream-Oriented
Hardware Offload paradigm supported on lightweight host-
less FPGA platforms to enable In-Network Acceleration of
present and emerging distributed applications.
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1 Introduction

In-network computing (INC) has been discussed for close
to three decades, with Active Networks [58] proposing the
idea of replacing passive packets with active capsules that
contain programs to be executed at each traversed router.
However, adoption as a general compute paradigm has not
fully materialized, in part due to a lack of suitable abstrac-
tions, a lack of hardware that can simultaneously support
generalized computing and high performance networking,
and limited use-cases.

In recent years, there has been renewed interest in INC,
driven by the availability of programmable switches and
SmartNICs, with modeling and generalized execution ex-
plored [14, 18]. P4 programming and Protocol Independent
Switch Architecture (PISA), have emerged as a promising
platform for demonstrating such ideas [51]. Management and
processing operations that would traditionally run on host
CPUs can be offloaded to programmable networking nodes
along the data transmission path, freeing up valuable CPU
resources. This enhances the performance of distributed sys-
tems, due to reduced traversal of hierarchies in the process-
ing of packet data. Examples of traffic-processing primitives
suitable for offloading include load balancing [2], congestion
control [49], and intrusion detection/prevention [70]. These
applications share a common assumption: they operate on
a per-packet basis with payloads small enough to fit within
a single packet, or processing that can be performed in the
context of a single packet.

More complex Layer 7 (L7) applications, composed of func-
tion graphs, also present INC-friendly semantics. Various
prototypes have demonstrated benefits such as in-network
acceleration for key-value stores [34, 38, 39], transaction pro-
cessing and databases [31, 32, 53], consensus [16, 17], and gra-
dient aggregation in distributed machine learning [1, 37, 52].
These proofs of concept hint at what could be achieved with
a suitable general abstraction.

Given the promising benefits of INC at the application
level, the question of platform suitability arises. Existing
networking devices have significant limitations. SmartNICs
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with lightweight Arm cores do not offer sufficient compute
capability, while offloads to specialized ASICs such as the
Data Processing Accelerator (DPA) in the BlueField-3 limit
flexibility. Programmable switches offer very high through-
put but impose rigid programming constraints that do not
suit many L7 applications. Most INC demonstrations using
programmable switches rely on workarounds to offload only
partial segments of application logic, e.g., ATP [37] casts
floating-point to integer arithmetic as supported on Tofino
switches.

We argue that the core reason that INC has not yet seen
more widespread adoption as a general compute paradigm
lies in the absence of a unified abstraction framework and
hardware platform capable of addressing its various chal-
lenges holistically. While prior works have attempted to
solve specific problems within the INC stack, these solutions
are often narrow in scope and tightly coupled to their respec-
tive implementations, limiting generalization and broader
adoption. To enable a mature and widely deployable INC
framework, we outline four key features it must incorporate:
Low-overhead compute invocation. Deploying an ap-
plication graph of functions to INC resources necessitates
those functions be computed efficiently, with low latency,
and for network ingestion to have minimal overhead to reap
the expected benefits. That is, reducing abstraction over-
head is critical—it represents a fixed cost per INC invocation
and directly impacts the feasible set of offloaded functions
and scalability to larger function chains. This means we re-
quire line-rate packet ingestion and processing and fully
self-contained hardware acceleration of a range of functions
without reliance on a host system.

Application-oriented invocation abstraction. Packet se-
mantics are insufficient for general L7 offloads as many func-
tions operate on data that exceeds the size of a single packet.
In a packet-oriented system, this necessitates statefulness
between packet processing invocations. A general INC ab-
straction should allocate resources and process requests at a
granularity that matches application semantics, rather than
at the packet level. This allows more efficient allocation and
invocation of resources, and should be flexibly defined for
generality.

Lightweight virtualization. Maximizing utilization and ef-
ficiency necessitates hardware resources be flexibly exploited.
It is essential to enable multiple independent applications
and users to leverage hardware resources in an efficient,
isolated manner, and maximize hardware utilization with
evolving workloads. To ensure scalability and responsive-
ness, INC resources should be allocated on a per-request
basis, avoiding static pre-allocation. Accelerator pipelines
should be invoked only when the required data is available
to minimize delays due to network packet ingestion.
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Feasible deployment strategy. As an emerging comput-
ing paradigm, it is commercially impractical to advocate for
complete replacement of existing networking infrastructure
to enable new INC capabilities. A more viable approach is
for the framework to support augmenting current infras-
tructure in a way that scales with demand. This not only
provides a practical deployment path-both within and be-
yond datacenter environments—but also lays the groundwork
for transitioning to more efficient, purpose-built solutions
as the technology matures. INC devices can be introduced
into a live testbed without interrupting ongoing services,
and workloads can be gradually offloaded from the original
service stack to the accelerators.

Besides existing demonstration of INC applications in dat-
acenters, a variety of broader emerging applications present
significant opportunities for exploiting INC. These include
smart and cognitive cities [22], augmented reality [47], self-
driving [44], smart grids [42], coupling of digital twins [54],
and video surveillance [10]. These applications all rely on
data from multiple distributed sources, that can include com-
plex sensors, such as high definition cameras, Lidar, envi-
ronmental sensors, and end user terminals, which generate
high volumes of images, video frames, dense sensor captures,
or word embeddings. These streams of data are processed
through complex compute pipelines, comprising multiple
composed functions, such as the layers of a deep neural
network [61], event detection and object segmentation in
video frames, or key exchange and signature verification
with advanced encryption schemes. These applications can
also have challenging latency constraints due to safety crit-
icality or interaction time requirements. INC would allow
these applications to be absorbed into the network, reducing
latency and data movement.

Hence, we seek a hardware platform capable of support-
ing meaningful application logic while satisfying the afore-
mentioned requirements. We propose a new abstraction to
address the aforementioned requirements, which we call
In-Network Acceleration. We argue that virtualized, hostless
FPGAs represent an ideal platform for deploying such L7
INC applications. The functions that comprise an applica-
tion are fully executed within hardware accelerators which
are invoked at application-defined granularity, in terms of
the data size and processing complexity (e.g., image process-
ing filters, neural network model segments, stream process-
ing operations). These accelerators are composed across the
network to implement full applications avoiding the data
movement and energy overheads of typical host-managed
deployments. Leveraging FPGAs’ reconfigurability enables
efficient hardware sharing and evolution of supported primi-
tives over time to adapt to changing workloads. FPGAs’ flex-
ibility also allows low-level network transport abstractions
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to evolve over time to encompass additional INC capabilities.
Hence, a fixed hardware deployment transforms into a flexi-
ble, general-purpose computing fabric capable of supporting
diverse applications with minimal network-to-compute over-
head.

2 Hardware Offload Today

While FPGAs have already been widely adopted in network-
ing research and deployed for networked applications, we
find that existing abstractions fall short of meeting the ob-
jectives outlined in §1. Here, we review existing approaches
that utilize FPGAs and hardware accelerators in networked
applications, and highlight the key limitations that prevent
them from serving as effective INC hardware platforms.

Host Oriented Hardware Offload (HOHO) is the dom-
inant approach for deploying FPGAs and other accelerators
in cloud computing, where these resources are exploited
by software running on a host. This may be user facing
and virtualized, or exploited behind the scenes by the op-
erator. Applications are typically long-running, deal with
large amounts of stored data shared between the host and
FPGAs, which typically execute a complex portion of the
whole application to achieve performance improvements.
The accelerator is fully “owned” by the host application and
used for offload as needed. Examples include Microsoft Cat-
apult [48], which augmented cloud servers with FPGAs to
initially accelerate the ranking engine of Bing and other ser-
vice tasks [9], and Brainwave [11]. AWS F1 [4] and Alibaba
F3 [3] offer instances that include FPGAs as a resource simi-
lar to GPUs, where an accelerator is integrated and managed
through a host software application.

ASIC accelerators have also found use in the datacenter.
Google developed the Tensor Processing Unit [35], targeting
the requirements of machine learning workloads using a sys-
tolic array architecture. Similar efforts include Facebook’s
video processing ASICs [63] and Microsoft’s Corsica com-
pression ASIC [15]. Custom hardware that is general enough
to accelerate dominant datacenter workloads is more effi-
cient than implementing accelerators on FPGAs. However,
there is a tension between the application flexibility afforded
by FPGAs and the raw economic efficiency of custom ASICs.
For a datacenter hyperscaler, stable application demand that
requires a specific computational pattern (e.g. matrix/tensor
operations) can justify the cost and effort of custom ASIC de-
sign. However, FPGAs have the flexibility to explore a wide
range of applications on the same hardware deployment,
extending the life of these platforms, while still reaping sig-
nificant efficiency benefits over CPU baselines. FPGAs are
also capable of combining accelerated processing with net-
work ingestion logic in the same hardware, enabling the
virtualization itself to be “hardware accelerated”.
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Figure 1: Comparison of hardware offload approaches.
Application-level requests (black boxes) are comprised of
multiple packet fragments (grey boxes). HOHO uses a host
to manage application semantics and customized invocation
of accelerators. NOHO can only operate on individual pack-
ets. SOHO adds a hardware abstraction to ingest and process
application-level data without the involvement of a host, en-
abling full L7 offloads.

NOHO SOHO

HOHO is not suitable for INC due to reliance on a host
server, resulting in significant overhead due to the variability
of network ingestion and offload over PCle [13, 72], also
resulting in wasted CPU cycles on data movement. HOHO
makes most sense for stored data computations, where the
result of a computation is required at the host, or where data
is already present in the host.

In Network Oriented Hardware Offload (NOHO), hard-
ware is used to offload network functions, usually invisi-
bly to applications. Hardware operates on individual pack-
ets, processing only headers or also payloads through small
pipelines. The aforementioned programmable switch based
INC examples fall within this paradigm. Examples of FPGA-
based platforms include NetFPGA [65] and FPGA-based NICs
like Corundum [23], PANIC [40], and SuperNIC [41]. Appli-
cations demonstrated using this approach include intrusion
detection [66], network monitoring [62], firewalls [7], col-
lective operations [43], etc. Some INC demonstrations have
built atop these FPGA platforms, such as for key-value store
in Caribou [28] and LaKe [59], demonstrating significant
latency, throughput, and power improvements compared to
software baselines. Other examples include State Machine
Replication [29] and the Paxos consensus protocol imple-
mented using a P4-to-FPGA compiler [16], demonstrating
similar benefits. Similarly AxleDB [50] offers orders of mag-
nitude improved efficiency for SQL queries. However, where
the granularity of operations exceeds a single packet, each ac-
celerator is designed as part of a fully customized application-
specific communication stack to ingest and and process data
from the network, with accelerator logic tightly coupled with
network data processing. This leads to a complex monolithic
hardware design lacking an abstraction to support flexible
or evolving workloads. Hence, while these examples show
the potential of FPGA-based INC, they do not offer a feasible
abstraction for general deployment.

3 In-Network Acceleration

We propose In-Network Acceleration through a paradigm we
call Stream Oriented Hardware Offload (SOHO). In this
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Table 1: Hardware offload approaches and their properties.

Property Host-Oriented (HOHO)

Network-Oriented NOHO)  Stream-Oriented (SOHO)

Data granularity
Application complexity
Control of resources
Statefulness

Data Movement Overhead
Resource allocation
Deployment approach

Large stored data

Rich multi-function

User dedicated

Fully stateful

SW kernel network stack/PCle
Host-coupled

Incremental

Individual packets Application request-level
Fixed infrastructure Self-contained functions
Operator Per-request

Stateless Request-level statefulness
Tightly coupled packet payload Abstracted request reassembly
Fixed Per-request

Replacement Incremental

Example for video streams

Complete analytics application Pointwise operations

Frame-based processing

approach, applications are defined as graphs of composed
functions, which are defined atomically at a granularity of
request invocation: e.g., a CNN applied to an image patch, a
face detector applied to a frame of video, or outlier detection
applied to a time window capture of sensor data. Functions
are implemented as fully self-contained accelerators on host-
less FPGAs, enabling composed functions to communicate
directly across the network with minimal latency and energy
overhead from data ingestion. A single virtualized FPGA can
host multiple accelerators, which can be reconfigured at run-
time via partial reconfiguration. Accelerators are invoked at
at the granularity of an application request, allowing fine-
grained time-multiplexed sharing and resource allocation
between multiple client requests. This approach combines
the low-overhead processing benefits of NOHO, with the
meaningful application-level semantics of HOHO.

In Table 1, we summarize the characteristics of the three
hardware offload paradigms we have outlined. Fig. 1 com-
pares the three approaches. We now illustrate how SOHO
satisfies the requirements laid out in §1 and why FPGAs are
a well-suited platform for implementation.

Low-overhead compute invocation: The ability to ingest
and operate on network data at line rate on FPGAs has been
widely demonstrated [25, 26]. The framework we propose is
lightweight and fully implemented in hardware, enabling in-
gestion of network data and direct invocation of accelerators
on request data without the involvement of a host. Crucially,
hardware accelerators do not generally support preemption
and context switching mid-execution due to large distributed
internal state. Hence, adopting a run-to-completion model
for acclerator invocation at the request level significantly
simplifies control logic. Multiple accelerators can be hosted
on a single FPGA with steering and queuing logic consuming
minimal area and latency.

Application-oriented invocation abstraction: Assem-
bling packets into application-level requests can be per-
formed in-flight and adds minimal overhead on FPGAs due
to their low latency on-chip memory capabilities. On-chip
buffers can ensure requests are serviced with minimal wait-
ing time, while accommodating request sizes in the hundreds

of KBs with ease. By standardizing the data ingestion inter-
face, SOHO allows a wide variety of accelerators to be inte-
grated with minimal effort, without tight coupling to the un-
derlying platform. The key requirement is that all functions
comprising the application can be offloaded into hardware
accelerators. While we focus on a stateless abstraction, FPGA
platforms include ample off-chip memory, allowing alterna-
tive levels of statefulness to be explored through evolution
of the framework.

On accelerator design: Designing accelerators at the RTL
level with languages like SystemVerilog is traditionally com-
plex and time consuming. However High Level Synthesis
(HLS) tools have significantly improved, and been success-
fully applied in building both packet processing systems [55]
and general purpose accelerators [12]. Our proposal is fo-
cused on the integration of accelerators in a networked con-
text. We do not claim that all possible applications can be
mapped or that users can have complete flexibility to de-
sign custom accelerators. However, learning from the state-
less function abstraction in serverless computing, we do
believe a suitably rich library of pre-designed functions can
be composed into a wide range of meaningful applications.
Ample examples of accelerator designs across application
domains have been demonstrated in the literature. A set
of functions can be compiled into a function library that
is loaded on-demand at runtime through partial reconfigu-
ration. Alternative programmable hardware structures like
coarse grained overlays [30, 57] can also be explored, allow-
ing a more software-oriented programming interface with
rapid compilation.

Lightweight virtualization: FPGAs offer true spatial par-
titioning and isolation [27, 60]. Separate partitions of hard-
ware resources are dedicated to distinct functions in a way
that they do not interfere with each other. Fair sharing of
input bandwidth and memory access is achievable through
standard resource virtualization approaches. Additionally,
partial reconfiguration enables accelerator swapping at run-
time [64], and a suitable abstraction can enable function
swapping at the millisecond timescale [21, 36]. This enables
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a virtualization granularity of function execution on a com-
plete input request, maximizing hardware utilization.
Feasible deployment strategy: SOHO integrates seam-
lessly with existing network infrastructure and supports flex-
ible form factors to accommodate diverse deployment con-
straints. The FPGA uniquely encapsulates the whole SOHO
abstraction and the compute functions within a single self-
contained device that is not reliant on a standard host server.
We propose these FPGA devices be network-attached to
switches in the network. Being reprogrammable, the SOHO
abstraction can be updated in-place without replacing the
underlying hardware. The FPGAs act as standard network
endpoints while retaining the ability to be reconfigured, en-
abling adoption of emerging paradigms such as message
transport [56] and application-defined networks [71]. Their
wide range of sizes and power profiles allows SOHO to be
deployed on either off-the-shelf accelerator cards or cus-
tom low-power platforms, depending on performance and
energy requirements. Recent FPGA platforms increasingly
include embedded on-chip processors which can be used
to enhance control-plane capabilities, which our framework
integrates without interference with data ingestion and accel-
erator pipelines. Lastly, compared to programmable switch-
ing ASICs, FPGAs offer greater generality and longer-term
flexibility. Unlike Intel’s discontinued Tofino/Intelligent Fab-
ric Processor (IFP) [45], FPGAs continue to provide a viable,
sustainable platform. Meanwhile, proprietary in-network
computing devices (e.g., [PU [24], Azure Boost DPU [5],
FBOSS [46]) are typically for internal use and inaccessible to
the broader research community.

4 Achieving SOHO with FPGA Accelerators

In-network acceleration augments existing networking in-
frastructure with independent FPGAs directly attached to
networks switches. These FPGAs have off-chip DRAM and
high bandwidth network interfaces. The FPGA presents vir-
tual network endpoint interfaces which can terminate dis-
tinct traffic flows, implementing suitable network stacks,
and hosts a number of reconfigurable accelerator slots that
can load functions from a pre-compiled function library. A
lightweight abstraction manages request assembly and ac-
celerator invocation.

Clients establish sessions and submit requests spanning
multiple packets and containing metadata in a custom re-
quest header format. These are reassembled in virtual hard-
ware queues allocated dynamically on a per-request basis
to avoid the overhead and resource under-utilization that
would result from static allocation policies. Reassembled re-
quests are scheduled to the appropriate accelerator, which
runs to completion per request, returning results to the net-
work interface, where they can pass to the next node in
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Figure 2: Proposed SOHO framework. Packet payloads are
passed to Demux as fragments which are then reassembled
in buffers based on information in the request headers. Com-
plete requests queue at the corresponding accelerator. Num-
bers indicate request size in fragments.

the function chain or back to the requester. Request-level
processing means accelerators can interleave independent
requests without storing state. Dynamic allocation of acceler-
ators to slots is supported through partial reconfiguration of
the FPGA, enabling adaptation to dynamic workloads. Live
request statistics are collected to help determine when slots
should be reconfigured.

Application performance is improved due to (1) direct
ingestion of request packets into hardware without involving
a host or software network stack, (2) processing of complete
requests using optimized hardware accelerators, (3) high
utilization of hardware resources to service distinct requests.

Initial Experiments

We show here that hostless FPGAs are capable of applying the
SOHO abstraction with minimal overhead and that hardware
accelerators offer a significant performance improvement.

Testbed. We prototype our system using an AMD Alveo
U280 accelerator card. The FPGA functions as the receiving
endpoint and performs all request processing independently
of any host. Fig. 2 illustrates the internal hardware interface.
Received packets are first processed by a TCP stack based
on [55], with payloads forwarded to our framework. Clients
are implemented using DPDK-based Libtpa [8], generating
high throughput streams of application-level requests, each
of which may span multiple packets over a 100 Gbps network
directly connected to the FPGA.

Implementation. Fig. 2 illustrates how our framework re-
assembles packets on-chip into complete requests before
invoking accelerator functions. Metadata from both network
and application-layer headers is passed and buffers are allo-
cated at the granularity of requests. A new request cannot
join a buffer in which there is an incomplete started request
but can join buffers containing complete requests from other
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clients. Once a request is reassembled, it is queued at the rele-
vant accelerator, and results are passed to the output network
interface. Once an accelerator has completed a request, it can
process any complete request in its queue. Hardware queues
can have sophisticated signaling and control with minimal
overhead, enabling a variety of extensions to queuing logic.

Evaluation. We measure client-observed latency of a Top-K
function implemented in fixed-function hardware (NOHO),
and compare it to our flexible FPGA-based SOHO frame-
work. Clients issue back-to-back requests for 10 seconds
with a 1024B packet size. NOHO is restricted to single-packet
(1024B) requests, while SOHO and software accept larger
4096B requests (fragmented across packets). Fig. 3 shows the
FPGA SOHO abstraction (b) incurs a minimal overhead of
0.3-3 us additional latency when hosting 4 accelerators (i.e.,
equal processing load) compared to fixed function NOHO
(a). Software running on 1 or 4 AMD EPYC 7763 CPU cores
(c) shows significantly higher latency and variability with
more clients. SOHO reduces latency and improves scalability
compared to the software baseline, achieving a 3X speedup
when using four accelerators in SOHO versus four CPU cores
in the software implementation. This highlights the speedup
benefits combined with minimal overhead incurred by the
SOHO abstraction on FPGA. This also results in a significant
efficiency saving since the FPGA can be deployed without a
host, dramatically reducing power consumption compared
to a hosted accelerator. A more thorough investigation of
this design can be referenced in [68].

5 Research Directions

We have demonstrated it is possible to implement in hard-
ware on an FPGA a lightweight accelerator invocation ab-
straction that presents a request-level interface, moving data
into accelerator pipelines with minimal overhead. There re-
main a number of areas to develop to make In-Network
Acceleration a reality.

Service discovery protocol. In a real deployment, discov-
ery and allocation of in-network accelerators needs to be
addressed. Beaconing, as in SCION [69], or pathlet discovery
as in MTP [33] could serve the purpose of resource discov-
ery. FPGAs are well suited to offering real time telemetry to
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enable dynamic discovery and allocation to suitably share
resources across multiple concurrent applications and users.

Function chaining. In-network computing is most effec-
tive when supporting directed acyclic graphs (DAGs) of com-
posed functions allocated across distributed resources, due to
the significant layer traversal overhead savings. This view of
applications is amenable as has been demonstrated in server-
less computing (including exploratory work combining FP-
GAs and the serverless paradigm [6, 20]. New algorithms are
required to address dynamic mapping of DAGs to distributed
accelerator resources based on dynamic conditions, similar
to the scenario explored in MTP [33].

Quality of Service. In-network telemetry can address qual-
ity of service guarantees [67], including dealing with mixed
criticality workloads. Capturing this telemetry has minimal
impact on the data plane due to the hardware pipeline iso-
lation capabilities of FPGAs, thereby offering a level of dy-
namic responsiveness that would not normally be possible
with traditional computing devices. It would additionally be
necessary to consider robustness in the case of hardware
failures or resource capacity limits.

Extending our prototype. Supporting partial reconfigu-
ration, enabling alternative queuing strategies, providing
real-time availability metrics, and supporting task DAGs
remains to be done. Modern FPGAs also include more com-
plex subsystems in their silicon, including processors, PCle
interfaces, and, more recently, networking functions [19].
Exploiting embedded processors to create a more capable
and flexible control plane would enable many of the above
capabilities without impacting data plane performance. It is
also feasible for new FPGAs to be designed that integrate
switching functionality and request assembly pipelines, re-
sulting in a single-chip solution coupling ASIC-level switch-
ing with programmable computing for further efficiency and
performance gains.

6 Conclusions

Building on the success of INC in a constrained datacen-
ter environment, we have proposed In-Network Acceleration
through a stream-oriented request-level abstraction for gen-
eral L7 in-network computing on FPGAs. This paradigm
would enable INC to emerge more widely, with potential
transformational benefits for a range of emerging distributed
applications in cognitive cities and connected infrastructure.
FPGAs offer the flexibility to evolve deployed infrastruc-
ture with emerging applications and novel networking ap-
proaches through augmentation, thereby de-risking hard-
ware deployment. We have demonstrated a prototype and
discussed some key challenges to be explored by researchers
in enabling this computing paradigm.
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