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Abstract—Large foundation models, such as language models
with billions of parameters, have become pivotal in various fields,
including natural language processing, healthcare, and AI-driven
applications. These models require many GPUs to train or fine-
tune, which presents a challenge when obtaining GPUs within
the same cloud datacenter or region is not viable. Moreover,
organizations with limited computational resources may acquire
cloud-based resources but cannot fully offload to the cloud due
to privacy, legal or data sovereignty concerns.
In this paper, we propose FluidPipe, a distributed parallel train-
ing algorithm that is tailored for geo-distributed resources. Our
algorithm takes inspiration from Federated Group Knowledge
Transfer (FedGKT), a federated learning method that splits
model training between clients and the server. Our approach
greatly reduces the runtime over pipeline parallelism at the cost
of slightly changing the learning objective. While effective, our
approach still suffers from idle times due to synchronization
and data communication delays, especially in geo-distributed
scenarios where latency and bandwidth issues lead to substantial
idle times. To address this we incorporate idle training, that is,
carefully orchestrated additional training steps during idle times
enhancing resource utilization.

I. INTRODUCTION

Current state-of-the-art machine learning models are get-
ting larger and require increasing amounts of compute re-
sources—particularly GPUs. Cloud computing has provided
a scalable way to obtain these resources. However, with the
rapid expansion of ML models, the demand for GPUs has
surged, making it increasingly difficult to acquire them within
the same geographical zone [1].
Traditional distributed parallel training methods, such as
pipeline parallelism, can still function with GPUs distributed
across different regions. However, due to the inherent chal-
lenges of high latency and limited bandwidth in these settings,
such approaches may not always be the most efficient. This
raises the question: can we develop a more efficient training
algorithm that is less affected by latency constraints?
The primary cause of this inefficiency is the synchronization of
data dependencies. Since progressing through a batch requires
frequent communication of intermediate features and gradi-
ents—proportional to the micro-batch size—training efficiency
is significantly hindered. While pipelining can mitigate this
delay by overlapping computation and communication, its ef-
fectiveness diminishes in scenarios where GPUs are distributed
across different regions with high latency.

To address this, we propose FluidPipe an asynchronous
training algorithm inspired by Federated Group Knowledge
Transfer (FedGKT) [2] a Federated Learning [3] method. In
FluidPipe, the model is split into two parts, similar to model
parallelism and Split Learning (SL) [4], [5], but with a key
modification: we introduce a classification head at the end of
the first part.
During training, the machine responsible for the first part
processes its segment of the model and, after each forward
pass, sends intermediate features—produced by the last layer
before the classification head—to the second machine. The
first machine then proceeds with a backward pass using the
loss computed from its own classification head. This classifi-
cation head enables machine 1 to train without synchronizing
with machine 2 at every batch. However, machine 2 remains
dependent on receiving intermediate features from machine 1.
A limitation of this formulation is that part 1 of the model
does not learn from part 2, unlike model parallelism and SL
where gradients flow back from part 2 to part 1. To overcome
this, we incorporate knowledge distillation [6], [7] at machine
1, starting from the second epoch. At the end of the first
epoch, machine 2 synchronizes with machine 1 by sending
logits for all training data. This synchronization occurs once
per epoch to minimize communication overhead, but this step
may still introduce a delay. The accumulation of delays at
every training step at machine 2 mainly causes this delay.
To further enable bidirectional collaboration, machine 1 also
sends logits alongside intermediate features to machine 2.
Unlike FedGKT, our approach involves only two machines
instead of multiple clients and a single server. Additionally,
we modify the communication frequency to allow overlapping
training across both machines.
Even though our proposed algorithm significantly reduces
communication overhead and synchronization requirements, it
does not completely eliminate them. Machine 2 must still wait
for features before starting an iteration, and machine 1 must
wait for machine 2 to finish the epoch and send all logits. To
further improve efficiency and take advantage of idle periods
caused by synchronization, we introduce opportunistic train-
ing. This mechanism leverages the structure of our algorithm
to easily train during otherwise wasted time. Specifically:

• At machine 2: While waiting for new features, it can



TABLE I: Algorithms Notation and Hyperparameters

Symbol Meaning
D Dataset, with Nb mini-batches
θ1 = (θh1 , θ

o
1) M1 partial model (first part

of the split model + classification head)
θ2 M2 partial model

(the 2nd half of the split model)
E Number of epochs
Ltask task loss (e.g., cross-entropy)
LKD distillation loss (e.g., KL-divergence)
η learning rate

use previously received features to perform additional
training steps.

• At machine 1: When it completes an epoch and is waiting
for machine 2 to finish, it can continue training beyond
the current epoch.

By utilizing idle periods, our approach enhances the algorithm
efficiency, mitigating the impact of latency and bandwidth
limitations.

II. FLUIDPIPE DESIGN

In this section, we describe FluidPipe in detail. FluidPipe
breaks the 2-way data dependency at every training step found
in both model and pipeline parallelism. FluidPipe instead only
sends data in one direction, by adding a classification head to
the first part of model gradient propagation through the model
parts is replaced with knowledge distillation. In Fluidpipe
machine 1 (M1) sends intermediate features and logits to
machine 2 (M2), while M2 sends no gradient back or anything
right away making a 1-way data dependency from M1 to M2.
Instead, M2 delegates its data communication to the end of the
training epoch, at which point it sends all of the logits of the
training data. Starting from the 2nd epoch machine 1 would
use the logits received from the M2 to distill in addition to
the task loss. The FluidPipe algorithm is described in detail
for M1 algorithm 1 and M2 algorithm 2.
To enhance efficiency—measured as GPU utilization—we
propose performing training during idle periods referred to
as opportunistic training. The idea is straightforward: train
on available data until the machine becomes active again.
However, naive implementations of idle training could degrade
model quality due to several challenges.
M1 experiences idle times after completing an epoch while
waiting for M2 to finish its epoch. During this period, M1
can perform idle training by starting new epochs on its local
data until server updates are received. However, excessive
additional steps risk overfitting, as the duration of idle training
depends on network conditions.
In opportunistic training, M1 can utilize idle time by accessing
all training data, whereas M2 is limited to the data points it
has already received from M1. Idle training on M2 occurs
whenever M2 is waiting for additional data points during an
epoch. Let i be the index of the last data point received by M2,
and let Ns be the total number of data points in the current

Algorithm 1 FluidPipe: Machine 1 (M1) Procedure
Initialize a storage P2 ← {} {Will hold M2’s logits.}
for epoch← 1 to E do

(A) Local Training Loop on M1
for each mini-batch B in D do

1. z1 = f(θh1 ;B) {Feature extraction}
2. p1 = f(θo1; z1) {Local logits}
3. Send (z1, p1, sample IDs) to M2 {Non blocking}
4. Ltotal ← Ltask(B; p1)
if epoch ≥ 2 then

6.1 p2 ← P2[sample IDs] {Teacher (θ2) logits}
6.2 Ltotal ← Ltotal + LKD(p1, p2)

7. Backward on M1: θ1 ← θ1 − η∇θ1 Ltotal

8. Receive P2 from M2 {Logits for all samples.}
(B) Opportunistic Training
while not all p2 are received do

9. Sample batch B (for opportunistic steps)
10. p1 ← f(θo1; f(θ

h
1 ;B))

11. Ltotal ← Ltask(B; p1)
if epoch ≥ 2 then

13.1 p2 ← P2[sample IDs]
13.2 Ltotal ← Ltotal + LKD(p1, p2)

14. Backward on M1: θ1 ← θ1 − η∇θ1 Ltotal

Output: Final θ1 {from M1}

Algorithm 2 FluidPipe: Machine 2 (M2) Procedure
for epoch← 1 to E do

(C) Local Training Loop on M2
Initialize a dictionary P2 ← {} {Logits, to be sent to M1}
Initialize a dictionary DM1 ← {} {Store for opp. training}
for each mini-batch B in D do

1. Receive (z1, p1, sample IDs) from M1
(D) Opportunistic Training
while Receive is not complete do

2.1 Sample batch (z′1, p
′
1, sample IDs′) from DM1

2.2 p2 ← f(θ2; z
′
1)

2.3 Ltotal ← Ltask(B
′; p2) + LKD(p

′
1, p2)

2.4 Backward on M2: θ2 ← θ2 − η∇θ2 Ltotal
2.5 P2[sample IDs′]← p′2 {Update the logits}

3. p2 ← f(θ2; z1)
4. Ltotal ← Ltask(B; p2) + LKD(p1, p2)
5. Backward on M2: θ2 ← θ2 − η∇θ2 Ltotal
6. P2[sample IDs]← p2 {Store logits for this batch}
7. DM1[sample IDs]← (z1, p1)

(E) End-of-Epoch Bulk Send
7. Send entire P2 (all p2) to M1 {Blocking}

Output: Final θ2 {from M2}



epoch. If M2 becomes idle while awaiting data points beyond
index i+ 1, it can perform idle training on the set

S = {1, 2, . . . , i}.

When i = 0, no data have been received, so S is empty
and no idle training is possible. Conversely, when i = Ns, S
contains all data points in the epoch, indicating that the epoch
is complete and a new one can begin. Limited data availability
makes M2 opportunistic training more challenging. To this
end, we propose two data sampling strategies that circumvent
these challenges. These strategies can be applied at both M1
and M2.
a) Random Sampling. : In this strategy, whenever an op-
portunistic training step is started, the sampler will randomly
sample |B| data points to create a training batch–|B| is the
batch size. This randomness serves as a form of regularization
that helps mitigate the challenges of opportunistic training.
Moreover, the approach is straightforward, making it a useful
baseline and a convenient sanity check against more sophisti-
cated sampling strategies.
b) Difficulty Sampler. : We maintain a composite score
C(i, t) for each data point i at update step t by combining
multiple metrics (e.g., cross-entropy or distillation losses) with
weights and signs indicating whether each metric should be
maximized (+1) or minimized (−1). Formally, if xm(i, t)
is the value of metric m for data point i at time t, and
sm ∈ {+1,−1} denotes its orientation, then

C(i, t) =

M∑
m=1

wm

(
sm xm(i, t)

)
,

where wm ≥ 0 is the weight for metric m, and M is the total
number of used metrics. We store these composite scores in a
local history Hi for each data point, and compute a difficulty
slope D(i) via simple linear regression on the most recent
entries of Hi. Specifically, if Hi = [C(i, t1), . . . , C(i, tL)]
with L ≥ 2,

D(i) =

∑L−1
k=0

(
k − k

) (
C(i, tk+1)− Ci

)∑L−1
k=0

(
k − k

)2
+ ε

,

where k = (L−1)/2 and Ci is the mean of the C(i, tk) values
in the history. If L < 2, we set D(i) = 0. In Difficulty Sampler,
we always use D(i) to prioritize points for sampling, so data
points with larger slopes (positive D(i)) are deemed “harder”
and selected first; points with D(i) = 0 are effectively given
a neutral ranking (e.g., newly added data).
c) EH-Difficulty Sampler. : Building on this framework,
EH-Difficulty Sampler classifies each data point into easy,
hard, or diversity pools based on a combination of the last
composite score C(i, tL) and slope D(i). Specifically, once
we have accumulated enough updates, we derive easy and hard
thresholds by taking the 30% and 70% quantiles of the last
composite score for each data point Hlast = {C(i, tL)|i ∈ D}.
We then label a point easy if its composite score C(i, tL)
falls below the easy threshold and D(i) is not positive, hard
if its score exceeds the hard threshold or D(i) is positive,

and diversity otherwise. At sampling time, we draw a
user-defined fraction of data points from each category (e.g.,
30% from easy, 30% from hard, and the remainder from
diversity), although these fractions can be adjusted as
desired. This design ensures that both newly emerging hard
examples and simpler ones are included, while preserving
variety across the difficulty spectrum and preventing any single
category from dominating the batch.

III. ANALYTICAL COST MODELS

We compare FluidPipe to pipeline parallelism, restricted to
p = 2 stages. If more parallelism is required within a single
FluidPipe stage, we could apply pipeline parallelism within
each stage of FluidPipe independently. For instance, if we
have 4 GPUs in a US region and 4 GPUs in an EU region,
we can run FluidPipe between the US and EU groups, while
employing 3D parallelism within each region.
a) Two-Stage Pipeline Parallelism. : We split the model into
two stages, each hosted on a separate machine. Let:

• tA: forward + backward compute time on M1 (per micro-
batch),

• tB : forward + backward compute time on M2,
• α: time to send activations forward (M1 → M2),
• β: time to send gradients backward (M2 → M1),
• m: number of micro-batches into which each mini-batch

is subdivided,
• Nb: number of mini-batches per epoch.

A common approximation for the time per mini-batch, once
the pipeline is warmed up, is:

Tpipeline ≈
(
m+ (P − 1)

)
max

(
tA + α, tB + β

)
, (1)

where P = 2 for a two-stage pipeline, so m+(P−1) = m+1.
Hence, for one epoch:

Tpipeline, epoch ≈ Nb

(
m+ 1

)
max

(
tA + α, tB + β

)
. (2)

This formula captures how pipeline parallelism overlaps com-
pute and communication, but also shows that both forward
(A → B) and backward (B → A) transfers are needed per
micro-batch.
b) FluidPipe. : Similar to the two-stage pipeline parallelism,
we define:

• τ1: forward+backward time at Stage 1, including the extra
classification head overhead and KD computation cost
(starting from epoch 2) on M1,

• τ2: forward+backward time at Stage 2, including a small
KD computation cost M2,

• α: communication overhead per mini-batch from M1 →
M2 (sending (z1, p1)),

• γ: bulk overhead at the end of each epoch for sending
the final M2 logits {P2} to M1,

• Nb: total mini-batches per epoch,
Here, τ1 is larger than the classical stage-1 time tA since M1
has the classification head and local KD. Meanwhile, τ2 is
roughly tB plus a minor KD overhead (relative to the size of
batch and micro-batch).



c) Concurrency-Aware Epoch Cost. : M1 spends τ1 time
on forward+backward for each mini-batch, while M2 spends
τ2 time on forward+backward for the same mini-batch, after
receiving (z1, p1). Also, each mini-batch requires a communi-
cation overhead α from M1 to M2. But backward at iteration
i and the forward+backward at any future iteration i + 1 of
M1 can overlap with the forward+backward of M2 at iteration
i. Consequently, over Nb mini-batches:

• M1 total local time: Nb × τ1.
• M2 total local time + forward data transfer: Nb ×

(τ2 + α), because M2 cannot begin its forward pass for
batch i until it has received (z1, p1).

• Bulk transfer at epoch end: γ, for sending final M2
logits back to M1.

Since M1 and M2 run concurrently (M2 is effectively “one
batch behind” M1), the total epoch time is approximately:

TFluidPipe, epoch ≈ max
(
Nb × τ1, Nb × (τ2 + α)

)
+ γ.

In other words, we take whichever stage is the bottleneck for
the Nb mini-batches, and then add the one-time bulk cost
γ. This approach mirrors the pipeline formula max

(
tA +

α, tB + β
)

but omits the per-step backward gradient transfer
(i.e., the β term) in favor of a single bulk γ each epoch. If
γ < Nb β, FluidPipe can be significantly cheaper in high-
latency or bandwidth-limited scenarios.
d) Fully Sequential Approximation. : For completeness, if
there were no concurrency between M1 and M2 iterations, one
might (over)estimate each mini-batch cost as (τ1+α+τ2) and
then sum over Nb batches, plus γ. That is,

TFluidPipe, epoch = Nb (τ1 + α+ τ2) + γ.

However, this sequential view overestimates the runtime when
overlap is present; in practice, the concurrency-aware model
is more accurate.
e) Comparison to Two-Stages Pipeline Parallelism. : Once
warmed up with micro-batches, pipeline parallelism is:

Tpipeline ≈ (m+ 1) max
(
τ1 + α, τ2 + β

)
,

and over Nb mini-batches per epoch,

Tpipeline, epoch ≈ Nb (m+ 1) max
(
τ1 + α, τ2 + β

)
.

By contrast, FluidPipe eliminates step-by-step gradients (the
β term) and replaces them with a one-time bulk γ at epoch
end. Hence, for concurrency we get:

TFluidPipe, epoch ≈ max
(
Nb τ1, Nb (τ2 + α)

)
+ γ,

leading to simpler one-directional communication at each
mini-batch, plus a single epoch-level transfer for final logits.
f) Communication Overhead Analysis. : Finally, let us com-
pare communication volume. Suppose:

• αbatch: cost of sending z1 per mini-batch in FluidPipe
and classical pipeline,

• αp: cost of sending p1 per mini-batch in FluidPipe,
• βbatch: cost of sending backward gradients per mini-batch

in a classical pipeline,

• γ: end-of-epoch bulk for FluidPipe,
• Nb: total mini-batches in an epoch (ignoring micro-

batching).
Two-Stage Pipeline Parallelism:

Total communication per epoch = Nb × (αbatch + βbatch).

FluidPipe:

Total communication per epoch = Nb× (αbatch+αp) + γ.

For FluidPipe to incur lower communication, we need:

Nb (αbatch + αp) + γ < Nb (αbatch + βbatch)

⇐⇒ (Nb αp) + γ < Nb βbatch.

Note that volume of γ is the same as Nb αp, so we can simplify
further and say FluidPipe will incur lower communication if
and only if:

2(Nb αp) < Nb βbatch

Since the gradient tensor for half the model (e.g., 6 encoder
layers of a 12-layer BERT) often far exceeds the size of the
logits, thus 2(Nb αp) < Nb βbatch almost always holds in
practice.

IV. EXPERIMENTS & RESULTS

In our experiment, we focus on a small setup that can answer
our main question: can we develop a more efficient training
algorithm that is less affected by latency constraints? We run
our experiment on two machines each with one A100 GPU.
We use the tc (traffic control) program on Linux to simulate
real-world scenarios using latency. Specifically, we picked 3
different latencies: 1ms, 25ms, and 50ms. These values can
represent various scenarios, such as, within data-center latency,
same-region cross-zone latency, or cross-region latency. These
values are not exhaustive, however, they are enough to show
the effect of latency on the training algorithm runtime and
efficiency. We use the 12-layer BERT base [8] model, which
we split into two halves. Part 1 has the embedding layer
and the first 6 encoder layers, while part 2 has the last 6
encoder layer and the classification head. We load the bert-
base-uncased pre-trained weights. Our main baseline is this
BERT model trained using pipeline parallelism. This baseline
gives us the expected model quality and runtime if we train
using the standard techniques. In all of the experiments, we
train for 5 epochs.
As for the datasets, we use tasks from the well-known bench-
marks GLUE [9] and SuperGLUE [10]. The selected tasks are:
RTE, CoLA, and BoolQ. Additionally, we train and evaluate
using a subset of the IMDB Reviews dataset.
We break down our results into five parts: (i) Iterations
Timeline, where we visualize how training steps progress
under different latencies; (ii) Runtime & Accuracy, examin-
ing overall performance trade-offs; (iii) Sampling Strategies,
exploring how data selection affects opportunistic training;
(iv) Number of Opportunistic Training Steps, assessing the
impact of limiting fixing the number opportunistic training
steps; and (v) Regularized Opportunistic Training, discussing



(a) Latency = 1ms. (b) Latency = 50ms.

Fig. 1: Iteration timeline comparing Pipeline Parallelism, FluidPipe, and FluidPipe with opportunistic training. This plot focuses on
the second and third epochs, highlighting the effect of idle time caused by latency on the progression of iterations.

how possible regularization techniques for FluidPipe. Parts (iii)
through (v) are in the appendix.
a) Iterations Timeline. : We visualize the progression of
training steps under different latencies seen in fig. 1, compar-
ing how Pipeline Parallelism and FluidPipe advance between
mini-batches and how network delay affects their performance.
We record timestamps at the start and end of each forward
pass, backward pass, and model update (the latter is considered
part of the backward phase). We also differentiate the events
that occur during opportunistic training. Notably, even without
opportunistic training, FluidPipe runs faster than Pipeline
Parallelism. Although FluidPipe adds extra overhead—due to
the classifier on Machine 1 and the distillation loss computa-
tion—these costs are outweighed by the communication and
synchronization overheads of sending gradients and coordinat-
ing each batch in Pipeline Parallelism. Lastly, when latency
is very low (1ms) overheads of opportunistic training make
FluidPipe slower.
b) Runtime & Accuracy. : We compare the overall training
duration (wall-clock time) against final model accuracy for
four different tasks under various latencies as shown in fig. 2.
This setup allows us to gauge both performance stability and
how each method scales in increasingly negative network
latency.
Across all four tasks, we observe that Pipeline Parallelism
remains competitive at low latency (1 ms), but its performance
degrades significantly as latency increases to 25 and 50 ms. In
contrast, FluidPipe —by eliminating per-step gradient trans-
fers— achieves a notably faster runtime across different laten-
cies, allowing it to exceed the overall efficiency of Pipeline
Parallelism under more challenging network conditions.
Among the FluidPipe sampling strategies, random sampling
and EH-Difficulty sampling yield the best model quality at
25 and 50 ms latency. By comparison, difficulty-only sam-

pling exhibits larger performance fluctuations and often lags
behind the other approaches. Moreover, FluidPipe without
opportunistic training underperforms its opportunistic variant,
demonstrating that extra training steps during idle periods are
beneficial. Based on these observations, we mainly focus on
FluidPipe with random or EH-Difficulty sampling in subse-
quent analyses.
Looking at individual tasks, FluidPipe (both random and
EH-Difficulty) outperforms Pipeline Parallelism on IMDB,
excelling in both accuracy and runtime. On BoolQ, FluidPipe
provides a slight accuracy edge over Pipeline Parallelism. In
CoLA, Pipeline Parallelism achieves the highest final accu-
racy overall, but under high latency, FluidPipe can reach a
competitive accuracy much sooner—potentially enabling early
stopping. Finally, for RTE, accuracies are more irregular;
intriguingly, FluidPipe without opportunistic training scores
best followed by its opportunistic training variants, though
its unclear why FluidPipe without opportunistic training per-
formed the best.
In summary, while FluidPipe introduces a small overhead from
the classification head and knowledge-distillation computa-
tions, it avoids the frequent synchronization costs of Pipeline
Parallelism. As latency increases, FluidPipe tends to maintain
or improve its accuracy lead, largely thanks to its opportunistic
training mechanism.

V. CONCLUSION

We have presented FluidPipe, a novel distributed training algo-
rithm designed for geo-distributed and communication-limited
environments. By decoupling forward and backward gradients
across two model partitions and introducing a lightweight
knowledge-distillation step on the first partition, FluidPipe
effectively reduces synchronization costs and mitigates idle
times. Our experiments on multiple NLP tasks—including
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Fig. 2: Accuracy vs runtime on IMDB and BoolQ datasets. Each Row has the same experiment but with different latencies (1ms,
25ms, 50ms). Each plot is generated by running the experiments three times with different random seeds, where error bars on both
axes represent the standard deviation in runtime and accuracy.

BoolQ, CoLA, RTE, and IMDB—demonstrate that FluidPipe
not only maintains competitive or superior accuracy under
various latencies but also significantly cuts overall runtime
compared to classical pipeline parallelism. Furthermore, our
opportunistic training mechanism capitalizes on inevitable
idle phases, enhancing resource utilization without excessive
overhead. Taken together, these findings suggest that Flu-
idPipe offers a promising direction for large-scale training
in distributed, latency-prone settings. Future work includes
extending FluidPipe to multi-stage scenarios, improving op-
portunistic training strategies, and data sampling techniques.
In this paper, we mainly compared with vanilla pipeline
parallelism, and at the small case where we have 2 GPUs and 2
stages only. In the future, we aim to extend our experiments to
more GPUs and compare against different pipeline parallelism
algorithm such as GPipe [11].
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APPENDIX

In this section, we continue the remaining parts of the results from the main text.
a) Sampling Strategies. : In addition to our earlier methods, we introduce two priority-based samplers that select data points
according to their task loss (cross-entropy) or distillation loss (KL-divergence) –samples with higher loss are prioritized. These
serve as “sanity checks” for our difficulty-based sampler: if they substantially outperform the difficulty approach, it suggests
the latter may be less valid. In fig. 3, we compare these naive strategies against the random and difficulty-based samplers on
BoolQ and CoLA. Overall, the task-loss sampler consistently underperforms the others, whereas the distillation-loss sampler
shows more promise—falling short of random and EH-Difficulty, yet still achieving reasonable results.
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Fig. 3: Accuracy vs runtime comparing multiple sampling strategies on two different datasets.

b) Number of Opportunistic Training Steps. : In this experiment, we impose a fixed upper bound on the number of
opportunistic training steps per epoch (e.g., x extra steps), rather than letting FluidPipe exploit all idle time freely. We
choose the highest x by measuring how many idle-time steps naturally occur at 50ms latency on the CoLA dataset, then
evaluate smaller values to see how limiting extra steps affects both runtime and model quality. As shown in fig. 4, increasing
the cap on opportunistic steps consistently boosts final accuracy, showing that using idle periods more extensively yields better
performance—yet remains faster than pipeline parallelism, given the same overall latency.
c) Regularized Opportunistic Training. : To examine whether repeatedly using the same data during idle-time steps risks
overfitting or instability, we introduce three regularization techniques specific to opportunistic training: (1) scaling down the
task loss, (2) scaling down the distillation loss, and (3) applying dropout. By toggling each approach on or off, we obtain
23 = 8 configurations, illustrated in fig. 5. Examining individual techniques, we find that applying dropout alone has minimal
impact on final accuracy, whereas scaling down the task loss degrades performance—indicating the task loss remains important
in idle-time updates. In contrast, scaling down the distillation loss often proves beneficial, likely preventing an excessive focus
on teacher outputs –which could be a stale signal we shouldn’t overuse. Overall, no combination surpasses our non-regularized
baseline except for the single scenario in which we scale down the distillation loss alone. Note that we apply each technique to
both M1 and M2 during opportunistic training. Investigating these regularization methods individually at M1 or M2—and in all
possible pairwise combinations—would further expand the parameter space, as each new configuration requires multiple runs
(each lasting around an hour) to ensure statistically robust conclusions. As a result, a thorough evaluation of these finer-grained
settings remains an avenue for future work.
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Fig. 4: Accuracy over runtime when limiting the number of opportunistic training steps. All of the experiments are ran with 50ms
latency.
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Fig. 5: Effects of different regularization techniques applied to opportunistic training under 50ms latency. We combine three
methods—scaling the task loss, scaling the distillation loss, and dropout—in all possible ways (eight variants), comparing their
accuracy and runtime. TaskLoss and DistillLoss refer to the weight of their respective losses, the values are either 1 (no scaling
down) or 0.4. Dropout refers to whether we apply dropout or not, and the its probability.


