Flashback: Understanding and Mitigating Forgetting
in Federated Learning

Mohammed Aljahdali*, Ahmed M. Abdelmoniem’, Marco Canini*, Samuel Horvéth?

*KAUST

Abstract—Federated Learning (FL) addresses the growing need
to perform large-scale model training directly on distributed
data sources, eliminating the overhead and privacy risks of
transferring data to a central location. However, in FL, forgetting
(or the loss of knowledge across rounds) hampers algorithm
convergence, especially in the presence of severe data heterogeneity
among clients. This study explores the nuances of this issue,
emphasizing the critical role of forgetting leading to FL’s inefficient
learning within heterogeneous data contexts. Knowledge loss
occurs in both client-local updates and server-side aggregation
steps; addressing one without the other fails to mitigate forgetting.
We introduce a metric to measure forgetting granularly, ensuring
distinct recognition amid new knowledge acquisition. Based
on this, we propose Flashback, a novel FL algorithm with a
dynamic distillation approach that regularizes the local models
and effectively aggregates their knowledge. The results from
extensive experimentation across different benchmarks show that
Flashback mitigates forgetting and outperforms other state-of-
the-art methods, achieving faster round-to-target accuracy by
converging in 6 to 16 rounds, being up to 27x faster.

Keywords—Knowledge Forgetting, Distillation, Data Hetero-
geneity, Federated Learning.

I. INTRODUCTION

Federated Learning (FL) is a distributed learning paradigm
that allows training over decentralized private data. These
datasets belong to different clients that participate in training a
global model. Federated Averaging (FedAvg) [1] is a prominent
training algorithm that uses a centralized server to orchestrate
the process. At every round, the server samples a proportion
of the available clients. Starting from the current version of
the global model, each sampled client performs E epochs of
local training using their private data and sends its updated
model to the server. Then, the server aggregates the models by
averaging them to obtain the new global model. This process
is typically repeated for many rounds until a desired model
performance is obtained.

A main challenge in FL is the data heterogeneity in
distribution between the clients’ private datasets, which are
unbalanced and non-1ID [2], [3]. Data heterogeneity causes
local model updates to drift — the local optima might not be
consistent with the global optima — and can lead to slow
convergence of the global model — where more rounds
of communication and local computation are needed — or
worse, the desired performance may not be reached. Slower
convergence in FL increases computational and communication
costs, draining device resources, overloading networks, and
reducing scalability in resource-constrained environments.
Addressing data heterogeneity in FL has been the focus of

fQueen Mary University of London

IMBZUAI

4 FedAvg —+— FedProx
—7— FedDF

R |
P -
LLLRIRYTL R

mmmmmmmmmmmmm
mmmmmmmmm

Round

Test Accuracy
=

Per-class Accuracy
9876543210

-0.0

HIJ
I
@
0 2 50 75 100 125 150 175 200 2
Number of Rounds

(a) Global model accuracy of (b) Per-class accuracy of Fe-
FedAvg and baselines. dAvg’s global model.

Fig. 1: Performance of FedAvg and other methods over training
rounds with CIFAR10.

several prior studies. For instance, FedProx [4] proposes
a proximal term to limit the distance between the global
model and the local model updates, mitigating the drift in
the local updates. MOON [5] mitigates the local drift using a
contrastive loss to minimize the distance between the feature
representation of the global model and the local model updates
while maximizing the distance between the current model
updates and the previous model updates. FedDF [6] addresses
heterogeneity in local models by using ensemble distillation
during the aggregation step (instead of averaging the model
updates). Nonetheless, we experimentally observe that under
severe data heterogeneity, these proposals provide little or even
no advantage over FedAvg. For instance, Figure la illustrates
the highly unstable test accuracy values over rounds of FedAvg
and other baselines while training a DNN over the CIFAR10
dataset [7] (more details are in § VI).

This motivates us to understand better how data heterogeneity
poses a challenge for FL and devise a new approach to
handling non-IID datasets. We investigate the evolution of the
global model accuracy broken down by its per-class accuracy.
Figure 1b shows a heatmap of the per-class accuracy for
FedAvg; each rectangle represents the accuracy of the global
model on a class at a round. Other baseline methods show
similar results. Our key observation is that there is a notable
presence of forgetting: i.e., cases where some knowledge
obtained by the global model at round ¢ is forgotten at round
t + 1, causing the accuracy to decline (e.g., the prominent
number of light-shaded rectangles appearing after darker ones
in the figure; we highlight some cases in red in Fig. 1b).

A similar phenomenon is known as catastrophic forgetting
in Continual Learning (CL) literature [8]. CL addresses the
challenge of sequentially training a model on a series of tasks,
denoted as {T3,T5, ..., T,}, without revisiting data from prior
tasks. Formally, given a model with parameters 6 and task-

specific loss functions L;(f) for each task T, the objective
in CL is to update 6 such that performance on the current
task is optimized without significantly degrading the model’s
performance on previously learned tasks. This is non-trivial, as
naive sequential training often leads to catastrophic forgetting,
where knowledge from prior tasks is overridden when learning
a new task. An inherent assumption in this paradigm is that
once the model transitions from task T; to task 7;.;, data
from T;; becomes inaccessible, amplifying the importance of
knowledge retention strategies [9].

While the premises and assumptions of FL differ from
those of traditional machine learning and continual learning,
forgetting remains an issue. This can be viewed as a side

effect of data heterogeneity, a commonality FL shares with CL.

In FL, the global model evolves based on a fluctuating data
distribution. Specifically, a diverse set of sampled clients with
distinct data distributions contribute a model update in each
communication round. Furthermore, these model updates must
be aggregated to obtain a global model. This situation presents
dual-levels of data heterogeneity. Firstly, at the intra-round
level, heterogeneity arises from the participation of clients with
varied data distributions within the same round. This diversity
can inadvertently lead to “forgetting” specific data patterns or
insights from certain clients. Secondly, at the inter-round level,
the participating clients generally change from one round to
the next. As a result, the global model may “forget” or dilute
insights gained from clients in previous rounds.

To remedy this issue, we propose Flashback, a FL algorithm
that employs a dynamic distillation approach to mitigate the
effects of data heterogeneity. Flashback’s dynamic distillation
ensures that the local models learn new knowledge while
retaining knowledge from the global model during the client
updates by adaptively adjusting the distillation loss. Moreover,
during the server update, Flashback uses a very small public
dataset as a medium to integrate the knowledge from the
local models to the global model using the same dynamic
distillation. Flashback performs these adaptations by estimating
the knowledge in each model using label counts as a proxy
of the model knowledge. Overall, Flashback results in a more
stable and faster convergence compared to existing methods.

Our contributions are the following:

o We systematically investigate the forgetting problem in FL.

We show that under severe data heterogeneity, FL suffers
from forgetting. We dissect how and where forgetting
happens (§ 1IV).

« We propose a new metric for measuring forgetting over
the communication rounds (§ IV).

« We introduce Flashback, a FL algorithm that employs
a dynamic distillation during the local updates and the
server update (§ V). By addressing the forgetting issue,
Flashback mitigates its detrimental effects and converges
to the desired accuracy faster than existing methods (§ VI)

II. BACKGROUND

We consider a standard cross-device FL setup in which
there are IV clients. Each client ¢ has a unique dataset D; =

{(xj,y;)};Z, where z; represents the input features and y;
is the ground truth label for j-th data point and n; represent
the size of the local dataset of client 7. The goal is to train a
single global model that minimizes the objective:

|D;|
|D;|
L;(w) = Hw; (z;,y ,
wERdZ|Uz€N]D| () |Dz|j2::1((] J))

where L;(w) represents the local loss for client ¢, and
l(w; (x,y;)) = Lee(Fuw(x),y) is the cross-entropy loss for a
single data point, where F, denotes the model parameterized
by learnable weights w.

FedAvg provides a structured approach to address this
distributed problem efficiently. At each communication round ¢,
the server randomly selects K clients from the total available
N clients. These clients (denoted with S;) receive the previous
global model, w;_;. Then, they update this model based on
their local data using their local loss function L;. After updating,
each client sends their modified model wy, ; back to the server
that updates the global model usmg a weighted average of local
models, i.e., w; = Y s, \ukD: “”“D’k‘ Various FL algorithms
introduce modifications at the local update level or during the
global aggregation to accommodate the intrinsic heterogeneity
in client data. The nuances of these variations are further
explored in § IIIL.

Among these, Knowledge Distillation (KD) is a training
method wherein a smaller model, referred to as the student, is
trained to reproduce the behavior of a more complex model or
ensemble called the teacher. Let F},, denote the student model
with weights w, and F,,, represent the teacher model with
weights w;. For a given input z, the student aims to minimize
the following distillation loss:

= Lcg(
+ Ly (

Fy,(2),y)(1 —a)
Fy, ($)7 Fy, (:L‘))a

Here, Lcg is the standard cross-entropy loss with true label
y, and Ly represents the Kullback-Leibler (KL) divergence
between the teacher’s and the student’s output probabilities. It
is defined as Lki(p,q) = ZC 1 p°log (, where C is the
number of classes, p is the target output probability vector, and
q is the predicted output probability vector. The hyperparameter
a € [0, 1] balances the importance between the learning from
the true labels and the teacher’s outputs.

While distillation originally emerged as a method for
model compression [10]-[12], its utility extends to FL. In
the federated context, distillation can combat challenges like
data heterogeneity [6], [13] and communication efficiency [14].

ﬁKD((Z‘,y)§wsth) (D

III. RELATED WORK

Federated learning. FL is commonly viewed as an ML
paradigm wherein a server distributes the training process on
a set of decentralized participants that train a shared global
model using local datasets that are never shared [1], [2], [4],
[15]-[17]. FL has been used to enhance prediction quality
for virtual keyboards among other applications [18], [19]. A

number of FL frameworks have facilitated research in this
area [20]-[22].

Heterogeneity in FL. A key challenge in FL systems
is uncertainties stemming from learner, system, and data
heterogeneity. The non-IID distributions of learners’ data
can significantly slow down convergence [1]-[3] and several
algorithms are proposed as means of mitigation [4], [23]-[26].

Forgetting in FL. Forgetting in FL has been explored in
several studies, though many have limitations in addressing
the full scope of the issue. Luo et al. [27] discuss forgetting
due to local updates. Similarly, [28] tackles the problem of
learning personalized models without forgetting what the global
model has learned by using knowledge distillation. However,
these approaches focus on the local update without addressing
forgetting at the aggregation step. On the other hand, [29]
focuses on domain shifts and clients with different data domains,
aiming for personalized models rather than a global model.
[30] investigate the convergence behavior and forgetting of
Transformers compared to other architectures used in FL.
Their experiments show that transformers are robust to data
heterogeneity. While these works address client heterogeneity,
they do not delve into the forgetting issue in FL.

A. Prior Attempts of Mitigating Forgetting

This part delves deeper into the main forgetting baselines
we compare with [13], [31].

FedReg [31] addresses the issue of slow convergence in FL,
asserting it to be a result of forgetting at the local update phase.
They demonstrate this by comparing the loss of the global
model w;_1 on specific client data points with the averaged
loss of updated clients’ models {w; x | k € S;} on the same
data points, highlighting a significant increase in the average
loss, indicative of forgetting. However, our work proposes a
systematic way of measuring forgetting using a metric designed
to capture it. Furthermore, we show that forgetting doesn’t
only occur in the local update and at the aggregation step (§ IV
and Fig. 2). FedReg proposes to generate fake data that carries
the previously attained knowledge. During the local update,
Fast Gradient Sign Method [32] is used to generate these data
using the global model w;_; and the client data. Then, the
loss of the generated data is used to regularize the local update.
While FedReg employs regularization using synthetic data
during local updates, our work, Flashback, leverages dynamic
distillation to ensure knowledge retention at both local updates
and aggregation steps.

FedNTD [13] makes a connection between CL and FL,
suggesting that forgetting happens in FL as well. Similarly
to FedReg, their analysis shows that forgetting happens at
the local update, where global knowledge that lies outside
of the local distribution of the client is susceptible to forget-
ting. To address this, they propose to use a new variant of
distillation Eq. (1) named Not-True Distillation (NTD), that
masks the ground-truth class logits in the KL divergence as
LxL(p,q) = Eiczc’#y p° log(i—i), where y is the ground-truth
class. NTD is used at the local update, while all the other steps

in the algorithm remain the same as FedAvg. FedNTD aims
to preserve global knowledge during the local update.

Both FedReg and FedNTD diagnose the issue of forgetting
primarily within the realm of local updates, asserting that this
stage risks losing valuable global knowledge. Consequently,
both works present innovative solutions specifically tailored
to counteract this local update forgetting. However, their
perspective overlooks a pivotal aspect of the forgetting problem:
the occurrence of forgetting during the aggregation step. As we
delve next into forgetting in § IV, this oversight in recognizing
and addressing forgetting during aggregation has repercussions
on the later local updates. Moreover, in the prior works, there
is no detailed investigation or exploration of what forgetting in
FL entails. In this work, we fill this gap and provide a detailed
analysis of forgetting in FL, demonstrating where and why it
happens, and propose a metric to measure forgetting. Unlike
previous works, which focus on client-side forgetting, we
propose Flashback, which addresses forgetting as a compound
problem that occurs both at the local update and the aggregation
step, suggesting it must be tackled at both levels.

IV. PROBLEM - FORGETTING IN FL

We now investigate where forgetting happens and devise
a metric to quantify this phenomenon. Recall that in FL, the
models are updated in two distinct phases: 1) during local
training — when each client k starts from global model w;_1
and locally train wy ¢ — and 2) during the aggregation step —
when the server combines the client models to update the new
global model wy.

Intuitively, forgetting in FL is when knowledge contained
in the global model will be lost after the completion of
communication round w;_; — w;. We observe that forgetting
may occur in the two phases of FL. We refer to the former
case as local forgetting, where some knowledge in the global
model will be lost during the local training w;—1 — wg,¢. This
is due to optimizing for the clients’ local objectives, which
depend on their datasets. Local forgetting is akin to the form
of forgetting seen in CL, where tasks change over time (as
with clients in FL) and, consequently, the data distribution. We
refer to the latter case as aggregation forgetting, where some
knowledge contained in the clients’ model updates will be lost
during aggregation Y {wy, | kK € S;} — w,. This might be
due to the coordinate-wise aggregation of weights as opposed
to matched averaging in the parameter space of DNNs [33].

We illustrate forgetting in Fig. 2 based on actual experiments
with several baseline methods. Given round ¢, the figure shows
the per-class accuracy of the global model w;_;, all local
models wy, ;, and the new global model w; for four different
methods. The local forgetting is evident in the drop in accuracy
(lighter shade of blue) of the local models wy, ; compared to the
global model w;_;. The aggregation forgetting is evident in the
drop in accuracy of the global model w; compared to the local
models wy ;. The figure also previews a result of our method,
Flashback, which significantly mitigates forgetting. In summary,
local and aggregation forgetting lead to the main forgetting

FedNTD FedDF

L | | || |
2 — pr— — P
S i = - —
N —_— — — S
g 1 I . [
- FedAvg Flashback
gL m B
< s —_— o —
3 — — — — —
B [|
0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9
Classes

Fig. 2: Local (client) & aggregation forgetting in some of the
baselines using CIFAR10. The first row represents the global
model per-class test accuracy at round ¢ — 1; then, the rows in
the middle are the clients that participated in round ¢, and finally,
in the last row, the global model at the end of round ¢. Local
forgetting happens when clients at round ¢ lose the knowledge
that the global model had at round ¢t — 1 (example highlighted
in brown). The aggregation forgetting happens when the global
model at round ¢ loses the knowledge that in the clients’ models
at round ¢ (example highlighted in red).

problem in FL, which we term both as round forgetting,
affecting wy—1 — wy.

In CL, forgetting is often quantified using Backward Transfer
(BwT) [34]. FedNTD [13] adapted this metric, i.e., the
forgetting score F, for FL as follows:

F= % 25:1 argmax; ¢y p_q (Af — A%), 2)

where C' is the number of classes and Af is the global model
accuracy on class ¢ at round t.

However, F is a coarse-grain score that evaluates forgetting
in aggregate across all rounds. We seek a finer-grain metric that
measures forgetting round-by-round. Furthermore, we wish to
account for knowledge replacement scenarios, such as when a
decline in accuracy for one class might be accompanied by an
increase in another, essentially masking the negative impact
of forgetting in aggregate measures. Thus, for our evaluation
results (§ VI), we propose to measure round forgetting by
focusing only on drops in accuracy using the following metric:

F, = ,% Zle min(0, (A7 — AF_,))

where ¢ > 1 is the round at which forgetting is measured.

Our metric accounts for the pitfalls of the previously
proposed forgetting metric. It discounts knowledge replacement
scenarios that can happen between rounds by only focusing on
the negative changes in accuracy. Furthermore, it provides a
granular view of forgetting because it measures round forgetting
(whereas Eq. (2) measures the global model forgetting at the
end of training).

V. FLASHBACK: FORGETTING-ROBUST FL

Our key idea to mitigate round forgetting is to leverage a
dynamic form of knowledge distillation, which is fine-tuned in
response to the evolving knowledge captured by the different
models in the training process. During local training, distillation

Algorithm 1 Flashback algorithm.

input Initial global model wp, number of rounds 7, fraction
of clients R, minibatch size B, number of local epochs E,
number of server epochs E, learning rate
output global model wr
1: =0 € RY // Global model’s label count vector
2: fort =1to T do
3: St < Randomly select [R - N clients
4: for each client £ € S; do
5 Wy, < wy—1 // Initialize local model with current
global model

6: Compute ¢ with v as the local label count and a
single teacher p < m
7: Update wy,; using dKD loss Lgkp for E epochs
8: end for
9: My 4) pes, M /I Total data points in this round
10 wp Y. kes, %’iwk,t /I Average to obtain the new global
model

11: Te{wk,t | kGSt}U{’th_l}

122 Compute v with v < 7 and p; as the label count
Yw; € T

13: Update w; using dKD loss Lgxp for E, epochs

14: 1 < (Increment 7y, for every client k € S;)

15 for each client k € S; do

16: if yrr <1 then

17: 7 < ™+ yp, // Update participation count for
client k € S;

18: end if

19: end for

20: end for

ensures that each local model learns from the client’s local
dataset while retaining knowledge from the current global
model. On the server side, after the clients’ updates, Flashback
begins by aggregating the locally updated models—much in
the vein of FedAvg. Then, Flashback distills the knowledge of
the freshly updated global model using our dynamic distillation
approach, learning from both its immediate predecessor—the
global model obtained at the previous round—and the ensemble
of locally updated models, which all play the role of teachers.
The Flashback algorithm is detailed in Algorithm 1. The
remainder of this section discusses our distillation approach in
more detail.

A. Dynamic Distillation

As established in § IV, a client’s local model can forget
and override model knowledge with what is present in its
private data. Moreover, the global model can be imperfect for
two reasons: i) As we established before, the global model is
susceptible to forgetting in the aggregation step. ii) Assuming
no forgetting in the aggregation step, the knowledge contained
in the clients who participated so far might not represent all the
available knowledge, especially in the early rounds. Overall,
both local models and the global model can be imperfect.
Therefore, the logits of all the different classes cannot be

Client model per-class accuracy over rounlds Client label count
0 - 1.

13 - 400

-05

-200

-0.0 -0
01234567289
Classes

0123 45¢6 7289
Per-class Accuracy

Fig. 3: (left) Per-class accuracy of a client model on all the rounds
where it participated. (right) Data distribution.

treated equally (as in Eq. (1)), and the distillation loss has to
adapt to the model’s knowledge.

We propose using the label count to approximate the
knowledge within a model. Here, the label count refers to
the occurrences of each class in the training data that the
model saw during training. In machine learning, a model’s
knowledge is fundamentally tied to the data it has been exposed
to. If certain classes have higher representation (or label counts)
in the training data, it’s intuitive that the model would have
more opportunities to learn the distinguishing features of such
classes. Conversely, underrepresented classes might not offer

the model sufficient exposure to learn their nuances effectively.

Our experimental results suggest that per-class performance
on the test set correlates highly with the label counts in
the training data. In scenarios where certain classes were
more abundant, the model demonstrated higher proficiency

in predicting those classes on the test set. As an example,

Fig. 3 illustrates for a randomly chosen client that the client’s
model performance on the test set well reflects the label count
distribution of its private data. We conclude from this and
many similar observations that the label count can indicate a
model’s knowledge.

In standard knowledge distillation (Eq. (1)), all logits are
treated equally since it is assumed that the teacher model has
been trained on a balanced dataset. Owing to the heterogeneity
of data distribution in local datasets, this assumption does not
hold in FL. As a result, we cannot directly treat the current
global model nor the local model updates as equally reliable
teachers across all classes. Instead, we propose weighting
the logits using the label count to approximate the per-class
knowledge within a model.

We now revisit the distillation loss in Eq. (1) and transform
the scalar « to a matrix form that is automatically tuned
according to the label count of both the student and the teachers
and used directly within the KL divergence loss. Namely, the
dynamic o parameter (defined below) will change during the
training as the label counts change. Flashback maintains the
global model counts over the rounds; this mechanism is detailed
in the next section.

We consider a single student model F,, with weights w;
and a set T of K teacher models; the i-th teacher model is
denoted as F,,, with weights w;. Let v € R” be the relative
label count vector of the student model, where € is the relative
occurrences of class c in the dataset. Similarly, let p; € RY
be the relative label count vector of the i-th teacher model.

The dynamic « € [0,1]5*¢ is defined as [a], ...

o],

c
My

EZES ST
Then, we embed « directly in the KL divergence loss (Lgr

in Eq. (1)) as follows:

La(p, g; i) Za plog(>

Similar to standard distillation, to account for the student
model knowledge with respect to the ground truth class y,
we define af = . Thus, a + Y 0, a§ =1 for all

classes ¢ € [C].
Finally, the dynamic knowledge distillation loss (Lgkp) is:
Lakn((2,y);ws, T,) = 04”£CE(w, (7),Y)
+ Z Lakr(Fu, (2), Fu,(2); a;))

w; €T

with of =

VC+Z HE,

The dynamic ¢ will weigh the divergence between the logits
of different classes, making the student model focus more on
learning from the teacher’s strengths while being cautious of
its weaknesses. This is important in FL. because of the data
heterogeneity problem. For instance, the global model may
not encounter certain classes in the initial training rounds. Our
distillation approach assigns a zero weight to the divergence
of these classes, shielding the client model from adopting
unreliable knowledge from the global model. Similarly, if a
client possesses significantly larger data for a specific class
than the global model has encountered, the weight assigned
to that class’s divergence will be small. This implies that the
client’s model remains more grounded in classes where it has
more comprehensive data.

An interesting property of our distillation is that it will ignore
the global model as a teacher in the first communication round.
Since the initial global model label counts are all zeros, Eq. (3)
reduces to just the cross-entropy: Lokp = LcE-

B. Estimating the Global Model Knowledge

Note that to apply the dynamic distillation loss Eq. (3), we
must obtain the student’s and teachers’ label count vectors.
While the label count of local models can be easily obtained
(from the class frequency of local datasets), the label count
of the global model is not readily available. We construct 7,
the global model’s relative label count, as follows. Let 7
denote the number of rounds in which client k participated
in the training. For every client k that participates at round ¢,
Flashback adds a fraction v € (0, 1] of client k’s label count
(px) to , unless yr, > 1, in which case 7 is not updated
based on k’s label count. The latter case means that client
k has participated enough times that its label count is fully
accounted for in 7.

Intuitively, the parameter 7 indicates the rate at which we
rely on the global model. When 7 is set to 1, it implies complete
trust in the global model’s ability to incorporate the clients’
knowledge after just one round of participation. However,
expecting such immediate and full assimilation is unrealistic, so
we typically set v < 1. The gradual build-up of the global label
count plays a vital role in maintaining a balanced distillation in

S @ e @@ o - o eene

Labels
ORNWALONOO
Labels
OFRNWAUIONWO

|:30
20

-10

Labels

0 25 50 75

Clients

(a) CIFAR10, Dir(38 = 0.1)

Clients

(b) CINIC10, Dir(8 = 0.1)

100
Clients

(c) FEMNIST with 3432 clients

Fig. 4: Clients data distribution. The x-axis is the clients, and the y-axis is the labels.

Eq. (3) during local updates. This progressive approach mirrors
increasing trust in the global model’s capabilities. It prevents
the risk of assigning excessively high weights too soon, which
could otherwise hurt the learning process.

VI. EXPERIMENTS & RESULTS

We outline and analyze our experimental findings to in-
vestigate whether Flashback’s forgetting-robust FL. method
addresses the slow and unstable convergence issues due to
forgetting problems as laid out in § L.

The experimental results stem from three settings: CIFAR10
[7] and CINIC10 [35], where heterogeneous data partitions are
created using Dirichlet distribution with 5 = 0.1 and FEMNIST
[20] with 3,432 clients, following the natural heterogeneity
of the dataset. Furthermore, we do an ablation study on the
different components of the algorithm. We use the same neural
network architecture used in [1], [13], a 2-layer Convolutional
Neural Network (CNN). Summaries of the datasets, partitions,
and more details on the experimental setup are detailed next.

A. Experimental Setup

Datasets. We provide an overview of the datasets used,
the data split, and the specific experimental setups. For each
dataset, we perform two sets of experiments to analyze the
effects of data heterogeneity on the algorithms’ performance.
The datasets used are CIFAR10, CINIC10, and FEMNIST. The
training data distribution among clients of these datasets is
shown in Fig. 4.

CIFAR10 [7]. A famous vision dataset that includes 50k
training images and 10k testing images. We emulate a realistic,
heterogeneous data distribution by using a Dirichlet distribution
with f = 0.1. A S value of 0.1 is chosen to simulate a
more heterogeneous and challenging data distribution. A 2.5%
random sample of the training set creates a public dataset,
further divided into training and validation sets. This yields
a very small public training dataset with the size of 1.88%
of the whole dataset. The remaining 97.5% of the dataset is
distributed among 100 clients, with each client’s data being
split into training (90%) and validation (10%) subsets.

CINIC10 [35]. A drop-in replacement of CIFARI1O, this
dataset has 90k training, 90k validation, and 90k test images.
We merge the training and validation sets and adopt a similar
approach as with CIFARI10, taking out 2.5% of the data to
be the public dataset; similar to the CIFAR10 case, this 2.5%
is further divided into training set and validation set. Then,
employing Dirichlet distribution with 3 value of 0.1 to split

FedNTD
FedReg

FedProx
MOON

+— FedAvg Flashback

FedDF +

Proportion
Proportion

=l
0.05 0.10

015
Round Forgetting

(a) CIFAR10.
Fig. 5: Round forgetting distribution of Flashback vs baselines.

0.20

010
Round Forgetting

(b) CINIC10.

015 0.20 025 0.30

FedNTD
Flashback

+~— FedAvg —e— Local Models Global Model

FedDF

—_——

Rounds Rounds

(a) CIFAR10. (b) CINIC10.

Fig. 6: Local models loss transition to the global model loss. This
plot compares the loss of local models and the global model,
showing the difference in knowledge before and after the global
update.

the 97.5% remaining data into 200 clients, with each client’s
data divided into training (90%) and validation (10%) sets.

FEMNIST [20]. This federated learning dataset is based on
extended MNIST with natural heterogeneity, where each writer
is considered a client. From the 3597 total writers, those with
less than 50 samples are excluded. We randomly selected 150
writers to form a public dataset. The remaining 3432 writers’
data is divided into train (approx. 70%), validation (approx.
15%), and test (approx. 15%) sets. The collective test sets from
all writers form the overall test set. At every round, 32 clients
are randomly selected for participation.

For CIFAR10 and CINIC10, we chose 3 values of 0.1 and
client participation value of 10. For FEMNIST, we have 3432
clients with a client participation value of 32.

B. Baselines & Hyperparameters

We evaluate the following algorithms as state-of-the-art
baselines: 1) FedAvg [1]; 2) FedDF [6]; 3) FedNTD [13];
4) FedProx [4]; 5) FedReg [31]; and 6) MOON [5] .

Both FedNTD and FedReg target forgetting in FL (discussed
in § III). We use the same neural network architecture that
is used in [1], [13], which is a 2-layer CNN. Note that for

4— FedAvg FedNTD
FedDF +— FedReg
> 04
0.5
@ L S S S
R e e e e e St St S 5.,
|9} (S hhet
g 03 N AW < A
o & AV 02 f\ ¢
$ 02 VA 2 NN] 4 / v
e VAl o) = s
0

%

o
o
o

¢

0 10 20 30 40 50 0 10 20
Number of Rounds

(a) CIFAR10.

Number of Rounds

(b) CINIC10.

Flashback
Central

FedProx
MOON o

o
EY

o
EY

o
N

YR \/ /¥ \\

Test Accuracy
=

A a PN Vad

o
o

30 40 50 0 10 20 30 40 50
Number of Rounds

(c) FEMNIST.

Fig. 7: Round-to-accuracy performance of Flashback and other baselines over training rounds.

TABLE I: Number of rounds to accuracy A, = A -z where A is
the target accuracy and x is a fraction.

CIFARI0, A = 48.2% CINIC10, A = 43.5% FEMNIST, A = 69.5%

our dynamic distillation. We see that the mean loss of the
local models of the other baselines always spikes, signifying a
divergence of these models from the global training objective,

Aos Aors Aoos | Aos Aors Aoogs | Aos Aors Aoos . .
Fedhvg TR ” T 5 while Flashbac.k has a much more stable loss. This shows that
Pt g womy 2 0 : : : - Eq. (3) regularizes the local models well such that they do not
FedProx 35 93 13 - B - diverge too much from the global training objective.
FedReg 35 108 16 - - - - .
MOON 82 . 124]]]]] Improved round-to-accuracy. We evaluate the learning
Flashback | 2 4 0] 4 5 6| 3 5 16 efficiency of Flashback and other baselines by showing the

MOON [5], we add an additional layer to the model as
described in their source code for the projection head. Moreover,
for the optimizer, learning rate, and model, we follow [1], [13],
and when a baseline has different hyperparameters, we use their
proposed values. For example, in FedDF, the number of local
epochs is set to 40, while in the other baselines and Flashback,
it is set to 5 epochs. As for Flashback hyperparameters,
during the server distillation, we train until early stopping
gets triggered using the validation set; we set the label count
fraction v = 0.025 for CIFARI1O0, i.e., we add 2.5% of the
client label count each time it participates, while we set
v = 0.1 for CINIC10 and FEMNIST. As for distillation-specific
hyperparameters, we have one fewer hyperparameter since o
is computed automatically, and for temperature, we use the
standard T" = 3.

C. Results

We evaluate Flashback performance by showing round-to-
accuracy, round forgetting, and the local-global loss.

Reduced round forgetting. We show the round forgetting’s
empirical cumulative distribution function (ECDF) in Fig. 5.
We see that Flashback successfully reduces round forgetting.
The reduction in forgetting indicates that Flashback is learning
efficiently and losing less acquired knowledge as the rounds
progress. Also, FedNTD has less round forgetting than the
remaining baselines, showing that the algorithm does help
alleviate forgetting.

Minimizing local models’ divergence. To further understand
the effect of Flashback on the training behavior, we show the
transition of the mean loss of the local models to the loss
of the global model over the rounds in Fig. 6. This gives
us an insight into the effect of the regularization made by

accuracy over rounds in Fig. 7; we include the result of central
training on the public dataset. Flashback consistently shows
faster convergence and high accuracy. Furthermore, we show
the number of rounds it takes to reach a target accuracy and
fractions of that target accuracy in Table I.

VII. CONCLUSION

We explored the phenomenon of forgetting in FL. Our
investigation revealed that forgetting occurs during both the
local update and the aggregation step of FL algorithms.
We presented Flashback, a novel FL algorithm explicitly
designed to counteract round forgetting by employing dynamic
knowledge distillation. Our approach leverages data label counts
as a proxy for knowledge, ensuring a more targeted and
effective forgetting mitigation. Our empirical results showed
Flashback’s efficacy in mitigating round forgetting, thereby
supporting the hypothesis that the observed slow and unstable
convergence in FL algorithms is closely linked to forgetting.
This result underlines the importance of addressing forgetting,
paving the way for advancing more robust and efficient FL.
algorithms. This is very important as the learning efficiency
of the algorithm dictates its resource usage.

As part of our future work, we aim to investigate forgetting
under other types of heterogeneity. Moreover, Flashback mainly
uses label count to approximate knowledge, which could pose
privacy challenges in certain scenarios.As for computational
overhead, Flashback adds one additional forward pass per
iteration in the local update, similar to FedNTD [13] and less
than MOON [5], which adds two forward passes.

ACKNOWLEDGMENTS

This publication is based upon work supported by the King
Abdullah University of Science and Technology (KAUST)
Office of Research Administration (ORA) under Award No.
ORA-CRG2021-4699.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

REFERENCES

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized
Data,” in AISTATS, 2017.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L.
D’Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascén, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui,
C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi,
G. Joshi, M. Khodak, J. Konecny, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Ozgﬁr, R. Pagh,
H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W. Song, S. U.
Stich, Z. Sun, A. T. Suresh, F. Tramer, P. Vepakomma, J. Wang, L. Xiong,
Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances and Open
Problems in Federated Learning,” Foundations and Trends® in Machine
Learning, vol. 14, 2021.

A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini, “A
Comprehensive Empirical Study of Heterogeneity in Federated Learning,”
IEEE Internet of Things Journal, 2023.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated Optimization in Heterogeneous Networks,” in MLSys, 2020.
Q. Li, B. He, and D. Song, “Model-Contrastive Federated Learning,” in
CVPR, 2021.

T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble Distillation for
Robust Model Fusion in Federated Learning,” in NeurIPS, 2020.

A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” University of Toronto, Tech. Rep., 2009. [Online]. Available:
https://www.cs.toronto.edu/~kriz/cifar.html

G. I Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks, vol.
113, 2019.

M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A Continual Learning Survey: Defying
Forgetting in Classification Tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 7, 2021.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv:1503.02531, 2015.

C. Bucilug, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in KDD, 2006.

J. Schmidhuber, Neural sequence chunkers. Inst. fiir Informatik, 1991.
G. Lee, M. Jeong, Y. Shin, S. Bae, and S.-Y. Yun, “Preservation of the
Global Knowledge by Not-True Distillation in Federated Learning,” in
NeurlPS, 2022.

E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-Efficient On-Device Machine Learning: Federated Distil-
lation and Augmentation under Non-IID Private Data,” arXiv:1811.11479,
2018.

J. Kone¢ny, B. McMahan, and D. Ramage, “Federated Optimiza-
tion:Distributed Optimization Beyond the Datacenter,” arXiv:1511.03575,
2015.

R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in
CCS, 2015.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communication
Efficiency,” arXiv:1610.05492, 2016.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards Federated Learning
at Scale: System Design,” in MLSys, 2019.

T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and
F. Beaufays, “Applied Federated Learning: Improving Google Keyboard
Query Suggestions,” arXiv:1812.02903, 2018.

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated Settings,”
arXiv:1812.01097, 2019.

tensorflow.org, “Tensorflow federated: Machine learning on decentralized
data,” 2020. [Online]. Available: https://www.tensorflow.org/federated
A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A. Fahmy, “REFL:
Resource-Efficient Federated Learning,” in EuroSys, 2023.

F. Fourati, S. Kharrat, V. Aggarwal, M.-S. Alouini, and M. Canini, “FilFL:
Client Filtering for Optimized Client Participation in Federated Learning,”
in ECAI, 2024.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
(32]
[33]

[34]

[35]

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the Ob-
jective Inconsistency Problem in Heterogeneous Federated Optimization,”
in NeurIPS, 2020.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic Controlled Averaging for Federated
Learning,” in ICML, 2020.

L. Li, M. Duan, D. Liu, Y. Zhang, A. Ren, X. Chen, Y. Tan, and C. Wang,
“FedSAE: A Novel Self-Adaptive Federated Learning Framework in
Heterogeneous Systems,” in IJCNN, 2021.

K. Luo, X. Li, Y. Lan, and M. Gao, “GradMA: A Gradient-Memory-based
Accelerated Federated Learning with Alleviated Catastrophic Forgetting,”
in CVPR, 2023.

S. Liu, X. Feng, and H. Zheng, “Overcoming Forgetting in Local
Adaptation of Federated Learning Model,” in PAKDD, 2022.

W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Conference on Computer Vision
and Pattern Recognition, 2022.

L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, L. Fei-Fei,
and D. Rubin, “Rethinking Architecture Design for Tackling Data
Heterogeneity in Federated Learning,” in CVPR, 2022.

C. Xu, Z. Hong, M. Huang, and T. Jiang, “Acceleration of Federated
Learning with Alleviated Forgetting in Local Training,” in /CLR, 2022.
I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572, 2014.

H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated Learning with Matched Averaging,” in /CLR, 2020.

A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
Walk for Incremental Learning: Understanding Forgetting and Intransi-
gence,” in ECCV, 2018.

L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “CINIC-10
Is Not ImageNet or CIFAR-10,” arXiv:1810.03505, 2018.

http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://doi.org/10.1561/2200000083
http://doi.org/10.1561/2200000083
https://doi.org/10.1109/JIOT.2023.3250275
https://doi.org/10.1109/JIOT.2023.3250275
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01057
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
http://doi.org/10.1109/TPAMI.2021.3057446
http://doi.org/10.1109/TPAMI.2021.3057446
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.1145/1150402.1150464
https://proceedings.neurips.cc/paper_files/paper/2022/hash/fadec8f2e65f181d777507d1df69b92f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/fadec8f2e65f181d777507d1df69b92f-Abstract-Conference.html
https://arxiv.org/abs/1811.11479
https://arxiv.org/abs/1811.11479
https://arxiv.org/abs/1511.03575
https://arxiv.org/abs/1511.03575
https://doi.org/10.1145/2810103.2813687
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://proceedings.mlsys.org/paper_files/paper/2019/hash/7b770da633baf74895be22a8807f1a8f-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2019/hash/7b770da633baf74895be22a8807f1a8f-Abstract.html
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1812.01097
https://www.tensorflow.org/federated
https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3552326.3567485
https://doi.org/10.3233/FAIA240773
https://doi.org/10.3233/FAIA240773
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://doi.org/10.1109/IJCNN52387.2021.9533876
https://doi.org/10.1109/IJCNN52387.2021.9533876
https://doi.org/10.1109/CVPR52729.2023.00361
https://doi.org/10.1109/CVPR52729.2023.00361
https://doi.org/10.1007/978-3-031-05933-9_48
https://doi.org/10.1007/978-3-031-05933-9_48
https://doi.org/10.1109/CVPR52688.2022.00982
https://doi.org/10.1109/CVPR52688.2022.00982
https://openreview.net/forum?id=541PxiEKN3F
https://openreview.net/forum?id=541PxiEKN3F
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=BkluqlSFDS
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
http://arxiv.org/abs/1810.03505
http://arxiv.org/abs/1810.03505

	I Introduction
	II Background
	III Related Work
	III-A Prior Attempts of Mitigating Forgetting

	IV Problem - Forgetting in FL
	V Flashback: Forgetting-Robust FL
	V-A Dynamic Distillation
	V-B Estimating the Global Model Knowledge

	VI Experiments & Results
	VI-A Experimental Setup
	VI-B Baselines & Hyperparameters
	VI-C Results

	VII Conclusion
	References

