
FilFL: Client Filtering for Optimized Client Participation
in Federated Learning

Fares Fouratia,1, Salma Kharrata,1,
Vaneet Aggarwala,b, Mohamed-Slim Alouinia and Marco Caninia

aKAUST
bPurdue University

Abstract. Federated learning, an emerging machine learning
paradigm, enables clients to collaboratively train a model without
exchanging local data. Clients participating in the training process
significantly impact the convergence rate, learning efficiency, and
model generalization. We propose a novel approach, client filtering,
to improve model generalization and optimize client participation and
training. The proposed method periodically filters available clients
to identify a subset that maximizes a combinatorial objective func-
tion with an efficient greedy filtering algorithm. Thus, the clients are
assessed as a combination rather than individually. We theoretically
analyze the convergence of federated learning with client filtering
in heterogeneous settings and evaluate its performance across di-
verse vision and language tasks, including realistic scenarios with
time-varying client availability. Our empirical results demonstrate sev-
eral benefits of our approach, including improved learning efficiency,
faster convergence, and up to 10% higher test accuracy than training
without client filtering.

1 Introduction
Federated learning (FL) is an emerging machine learning paradigm
that enables collaborative training across multiple clients while pre-
serving their local data privacy [27, 39, 28, 26, 31]. The most com-
monly used approach in this setting, federated averaging (FedAvg)
[35], alternates between local training and server aggregation and
broadcasts the latest version of the global model. However, FL faces
various challenges,2 such as training with many clients and data het-
erogeneity, where the clients’ data are non-IID, i.e., different clients
have different data distributions [4, 20, 22, 15, 41].

Recent works have analyzed the effect of data heterogeneity on
the convergence of local-update stochastic gradient descent (SGD)
[38, 16, 24, 40, 42, 25, 23, 45, 37, 34, 31, 1]. Such heterogeneity leads
to unstable and slow convergence [31], resulting in suboptimal or even
detrimental model performance [46]. This occurs because the data
distributions on the clients may differ significantly from the global
distribution, causing clients to converge towards their local optima
rather than the global optimum, refer to Appendix B [13] for more
details. Furthermore, given communication constraints, training with

1 Equal contribution. Corresponding authors.
Emails: salma.kharrat@kaust.edu.sa and fares.fourati@kaust.edu.sa.
2 Although privacy is not the primary concern of this work, it remains a sig-

nificant challenge in FL. However, conventional techniques like differential
privacy and secure multiparty computation could be used in conjunction
with our proposed method.

Optimal
direction

Scenario A:
Outlier should be removed

Scenario B:
Outlier should be added

Optimal direction

Favorable outlier

Unfavorable

outlier Majority

clients directions
Majority

clients directions

Figure 1: Visualization of two scenarios with different suggested de-
scent directions from different clients. Arrows are color-coded to
indicate the quality of direction: blue for optimal, orange for favorable
outlier, green for majority consensus, and red for unfavorable outlier.

all clients may not be possible; previous works have considered client
selection schemes that select a subset At of K clients from a total
of N clients to participate at each training round t. Although client
selection methods address communication constraints and make the
training more practical, they also increase the challenge of managing
heterogeneity. Refer to Appendix B [13] for an extended related work.

To address the aforementioned FL challenges, various client se-
lection schemes have been proposed in earlier studies. Some aim to
provide unbiased estimations of the gradients that would result from
full participation, such as sampling based on the number of local data
points [32] or sampling uniformly at random with weighted updates
(RS) [31]. While these approaches approximate full participation, they
are not explicitly designed to accelerate the training process. Other
schemes select subsets of clients that carry representative gradient
information for full participation by encouraging diverse gradient se-
lections (DivFL) [3]. However, promoting diversity may also include
unfavorable outlier gradients. Additional strategies explicitly aimed
at accelerating training include selecting clients with higher update
norms more frequently [7] or employing a power-of-choice (PoC)
method that biases selection towards clients with higher local losses
[9]. However, these approaches consider clients separately rather
than as part of a collaborative unit, i.e., they make decisions based
on individual performances without considering their collaborative
performance at the current stage of the training process.

Assessing clients based on their collaborative performance is essen-
tial to optimize client participation beyond mere element-wise selec-
tion. Considering gradients from collaboratively-unfavorable clients
or excluding collaboratively-favorable ones can lead to degraded
collaborative performance. To illustrate this, consider the simplified
example depicted in Fig. 1, where we illustrate two possible client
combination scenarios. In these scenarios, the blue arrow represents

an oracle for the optimal descent direction. In scenario A (Fig. 1),
the red arrow, having a significantly different direction and larger
norm than most other directions, might be selected by methods that
prioritize directions with larger norms or that encourage diversity.
However, excluding the red arrow and keeping the green arrows can
lead to a better approximation of the optimal descent direction. In
scenario B (Fig.1), while the orange direction differs from the ma-
jority of directions (green) and may be overlooked by methods that
rely on similarity metrics between gradients or due to its small norm,
its inclusion—based on its contribution to the subset of green direc-
tions—leads to a better approximation of the optimal direction. These
examples highlight the importance of assessing collaboration when
choosing clients.

In this work, we include combinatorial optimization in the stan-
dard FL training to optimize client participation further. We introduce
FilFL, which includes a client filtering procedure that looks for the
best combination of clients within the available ones, which can be
conducted as a periodic prepossessing step to any off-the-shelf client
selection scheme. To achieve this, we formulate a combinatorial opti-
mization problem to periodically identify the clients most compatible
for collaboration. Namely, our objective is to identify the optimal
subset of available clients whose averaged performance yields the
lowest loss. Solving this combinatorial optimization problem would
necessitate an exponential number of tests, rendering it computation-
ally infeasible. As a result, we employ an efficient greedy approach to
approximate its solution. To this end, we present two greedy filtering
algorithms: a deterministic one and a randomized variant, both relying
on marginal gains from adding and removing clients from subsets of
clients. Using different vision and language tasks and realistic feder-
ated scenarios with time-varying client availability, we evaluate the
performance of combining our client filtering methods with different
FL algorithms, such as FedAvg and FedProx [31], and with various
client selection schemes, such as RS, PoC, and DivFL.

Contributions. We propose FilFL, a novel approach that includes
combinatorial optimization through client filtering in FL to optimize
client participation, accelerate the training process, and improve the
overall global model performance. To the best of our knowledge, we
are the first to define a non-monotone combinatorial optimization
problem in the context of FL, aiming to identify the subset of clients
from the available clients whose averaged performance yields the
lowest loss. We propose a greedy filtering algorithm (χGF) with de-
terministic (DGF) and randomized (RGF) versions to approximate
its solution. We provide a theoretical analysis showing that FilFL
achieves a convergence rate of O(1

t
) +O(φ) for t time steps, where

φ represents a time constant, under certain assumptions. Empirical
evaluations on various vision and language tasks under realistic sce-
narios of time-varying available clients show that FilFL outperforms
FL methods, achieving faster training and up to a 10 percentage point
increase in test accuracy. Furthermore, ablation studies and filtering
performance analysis have been conducted.

A companion report of this paper with complete technical details
is available at [13]. The code can be accessed at https://github.com/
salmakh1/FilFL.

2 Problem Formulation

Unlike standard FL training algorithms, where all the available clients
are considered for selection and participation, we formulate a bi-level
optimization problem that combines the standard continuous training
objective with a discrete filtering objective.

2.1 Training Objective

We consider the canonical objective of fitting a global model to the
non-IID data D held across clients [35]. Thus, we consider the fol-
lowing distributed optimization problem:

min
w

{
F (w) ≜

N∑
k=1

pkFk(w)

}
, (1)

where N is the number of clients, and pk is the weight of the k-
th client such that pk ≥ 0 and

∑N
k=1 pk = 1. Suppose the k-th

client holds the mk training data: xk,1, xk,2, · · · , xk,mk . The local
objective Fk(·) is defined as: Fk(w) ≜ 1

mk

∑mk
j=1 ℓ (w;xk,j) where

ℓ(·; ·) is some training loss function. While the training objective
seeks the best client weights, the filtering objective finds the best
combination of clients to optimize these weights. Although the former
is continuous and the latter is discrete, both are interconnected and
combined, which have led to remarkable improvements.

2.2 Filtering Objective

Our filtering objective is to find a subset of clients Sf that approxi-
mates a solution to the following combinatorial optimization problem:

max
S∈St

−F

(
1

|S|
∑
k∈S

wk
t

)
, (2)

such that wk
t is the weight of the kth client in round t. Thus, the

combinatorial problem aims at finding a subset Sf ∈ St where the
average of the weights of the clients in the subset Sf minimizes the
weighted average of the local losses, i.e., maximizes the function −F .
Following the literature on combinatorial optimization, we define the
problem as a maximization problem.

Unfortunately, solving the problem defined in Eq. (2) is both com-
munication and computationally expensive. Even the evaluation of one
possible set of clients S requires all clients to evaluate the combination
of that set, i.e., each client k needs to compute, Fk(

1
|S|
∑

k∈S wk
t) on

their local datasets. Finding or even approximating a solution requires
several evaluations, which introduces additional communication and
computational overhead on the participating clients.

To make this approach more practical, we propose reformulating
the problem into a centrally solvable form, thereby minimizing com-
munication overhead. Therefore, we suggest using a central filtering
dataset, denoted by V , without requiring the clients to share any
datasets. This can be done in several ways, by leveraging a subset of
the server’s validation data for filtering, using samples from a pub-
lic dataset,3 or randomly choosing a client to perform filtering on a
subset of their validation dataset, in each filtering round. We later
show that these approaches, solving on a server dataset or a variable
filtering dataset, depending on the chosen client (see Section 5.3.3 for
details about the stochastic dataset), are possible and show that the
filtering dataset can be stochastic, and does not need to adhere to any
prohibitive requirements, for example, can be as small as 8 samples,
as discussed in detail in Section 5.3.

Unless mentioned otherwise, in the following, we consider a server-
held filtering dataset V with m samples: x1, x2, · · · , xm. Thus, our
filtering objective can be defined as follows:

3 Previous works in FL have used public datasets for various purposes [21, 44,
33, 8, 31].

https://github.com/salmakh1/FilFL
https://github.com/salmakh1/FilFL

Algorithm 1 FilFL

Require: T , E, η, w1, K, S0, h, n, χ
1: Initialize Sf ← S0
2: for t = 1, · · · , T do
3: if (t mod h == 0) OR (St ̸= St−1) then
4: Server broadcasts wt to all clients in St
5: for client k ∈ St in parallel do
6: Update wk for E local SGD steps
7: Send wk back to the server
8: end for
9: Sf , At = client filtering(Shuffle(St), n, χ)

10: else
11: Server selects At including at most K clients from Sf

12: Server broadcasts wt to all clients in At

13: for client k ∈ At in parallel do
14: Update wk for E local SGD steps
15: Send wk back to the server
16: end for
17: end if
18: Server aggregates:
19: wt+1 ← 1

|At|
∑

k∈At
wk

20: end for

max
S∈St

{
R(S) ≜ −FV

(
1

|S|
∑
k∈S

wk
t

)}
, (3)

where FV(w) ≜ 1
m

∑m
j=1 ℓ (w;xj) as the loss on dataset V .

While the reformulation proposed in Eq. (3) of the objective in Eq.
(2) offers improved tractability, saving communication and compu-
tation when evaluated centrally, achieving an exact solution remains
non-trivial. Finding an exact solution to the problem in Eq. (3) would
typically still necessitate an exponential number of queries, rendering
it computationally infeasible. Furthermore, notice that the function in
Eq. (3) is not necessarily monotone4. Suppose we have a set of clients
A and a new client c. If the new client c has a high loss, adding c to
the set of clients A may increase the overall loss, thereby decreasing
the objective value R(A ∪ {c}) compared to R(A), thus violating
monotonicity of the function. Thus, we seek to devise a non-monotone
approximation algorithm to solve this problem efficiently.

3 Client Filtering
We introduce our approach, FilFL, which incorporates client filtering
into standard FL algorithms such as FedAvg and FedProx, alongside
with different client selection algorithms, such as RS, PoC, and Di-
vFL. FilFL filters the available clients, considering only the filtered-in
clients Sf as potential participants in the training process. This en-
sures that the chosen client selection method is only applied to the
chosen subset Sf , rather than the entire pool of available clients St.
To implement client filtering, we define a combinatorial objective
function on the discrete and large space of client combinations in
Eq. (3) and introduce a periodic greedy algorithm denoted as χGF,
which approximates a solution for this objective, optimizing client
combinations for better client participation in FL.

3.1 Client Filtering in FL (FilFL)

FilFL is a FL approach that incorporates client filtering. Algorithm
1 presents its pseudocode. FilFL applies client filtering (line 4) when-
ever the current set of available clients differs from the previous round.

4 A function f is monotone, if any set A is a subset of B (A ⊆ B), then
f(A) ≤ f(B) [14].

Furthermore, to improve computational efficiency, FilFL applies client
filtering periodically every h rounds. We empirically observe simi-
lar results when running χGF every round or running it every few
rounds; a sensitivity analysis to h is given in Section 5.3.1. The client
filtering procedure (cf. Algorithm 2) determines Sf by approximating
a solution for the problem defined in Eq. (3). To determine the set of
active clients At, FilFL uses any client selection method to select K
clients from Sf (line 6). In case Sf only contains K or fewer clients,
FilFL uses Sf as At (line 6). FilFL then runs local steps of SGD for
each active client inAt (lines 8-11). Finally, the server aggregates the
weights returned from the active clients and moves to the next round.

Remark 1. FilFL generalizes standard FL. FilFL adds an extra layer
in FL, which is client filtering. Using an identity filtering algorithm
that accepts all the available clients, i.e., Sf = St, FilFL reduces to
standard FL training schemes. Thus, FilFL can be considered as a
generalization of those. In this paper, we propose χGF for filtering.
However, future work might consider other filtering methods.

Remark 2. Client filtering and client selection are distinct yet com-
plementary methods with key differences. First, client filtering does
not produce a subset with a fixed cardinality, K; therefore, client se-
lection is subsequently applied to the filtered-in group. Second, client
filtering can be implemented periodically, whereas client selection
occurs in every communication round. Finally, we opted to separate
the two for the sake of generality, allowing the flexibility to combine
any filtering algorithm with any off-the-shelf selection method.

Remark 3. FilFL reduces the complexity of client selection schemes.
Firstly, FilFL skips client selection whenever |Sf | ≤ K (line 6).
Furthermore, client filtering often leads to the rejection of multiple
clients. As a result, when FilFL applies client selection on the filtered-
in set Sf instead of the full set of available clients St, the search
space for client selection becomes smaller. For instance, the DivFL
selection method complexity is O(NG(N)K), where N represents
the number of all the clients, K is the cardinality constraint, and
G(N) represents the cost of calling their oracle function, which is a
linearly increasing function of N . Consequently, the complexity of
DivFL is O(N2K). However, by incorporating χGF with DivFL, the
selection complexity is reduced to O(|Sf |2K), with |Sf | the number
of filtered-in clients typically being smaller than n, smaller than N .

3.2 Greedy Filtering (χGF)

Motivated by the successful application of greedy algorithms in
combinatorial optimization [11, 5, 12, 14], we introduce a greedy
client filtering algorithm, called χGF. While monotone approximation
algorithms, greedily adds elements based on their adding marginal
gains [14], non-monotone algorithms considers both the marginal
gain of adding and the marginal gain of removing the same entity
[11, 5, 12]. Adapting the non-monotone algorithm in [12], which has
been demonstrated to be robust to small errors in function evaluations,
as shown in Corollary 2 in [12], we propose two versions for filtering:
randomized (RGF) and deterministic (DGF). Algorithm 2 lists their
pseudocode. The algorithm iterates over each available client and
decides whether to add it to the set of clients X (initially empty) or
remove it from the set of clients Y (initially containing all available
clients). The server determines X and Y in a greedy fashion using
measures of marginal gains of adding and removing until a decision
is made for all individual clients. The algorithm returns the chosen
(filtered-in) set of clients. Specifically, let Xi and Yi be two sets of
clients. Initially, X0 = ∅ and Y0 = St. The algorithm has at most n

Client
Filtering

Client
Selection

Model
Averaging

Available
Clients

Filtered-in
Clients

 False
True

All the
clients

Bool

Figure 2: FilFL incorporates client filtering in FL, which is activated when the boolean condition ’Bool’ becomes true, either when new clients
become available or when h rounds have elapsed since the last filtering call. Otherwise, the condition remains false. In both scenarios, clients
are selected from the filtered-in subset of clients, denoted as Sf .

Algorithm 2 χGF (χ ∈ {D,R})
Require: St, n, χ

1: Initialize X0 ← ∅, Y0 ← St
2: for index i ∈ {1, ..., n} do
3: ui ← client of index i in St
4: ai ←R(Xi−1 ∪ {ui})−R(Xi−1)
5: bi ←R(Yi−1 \ {ui})−R(Yi−1)
6: a′i ← max(ai, 0) and b′i ← max(bi, 0)
7: if χ = D then
8: pi = 1{ai > bi}
9: else if χ = R then

10: pi =
a′
i

a′
i+b′i

(pi = 1 if a′i = b′i = 0)
11: end if
12: with probability pi do
13: Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1

14: else
15: Yi ← Yi−1 \ {ui} and Xi ← Xi−1

16: end for
17: Select Z including at most K clients from Xn

18: Return Xn, Z

steps, where n is the maximum number of considerable clients. In
step i, χGF computes two variables: ai and bi, defined as follows:

ai ≜ R(Xi−1 ∪ {ui})−R(Xi−1),

bi ≜ R(Yi−1 \ {ui})−R(Yi−1).
(4)

These two variables are important for the decision-making process.
ai measures the marginal gain of adding client ui to Xi−1, while bi
measures the marginal gain of removing client ui from Yi−1, which
can be positive due to non-monotonicity. While DGF decides by
comparing both marginal gains via pi = 1{ai > bi}, RGF decides
based on pi =

a′
i

a′
i+b′i

, where a′i = max(ai, 0) and b′i = max(bi, 0).

In the special case when a′i = b′i = 0, we set p = 1 for RGF. With
probability p, the client ui is added to the set Xi−1 and kept in Yi−1;
otherwise, the client is removed from Yi−1 andXi−1 is kept the same.
Therefore, Xi ⊆ Yi for all i = 1, . . . , n. After checking all n clients,
it can be easily seen that by the algorithm’s construction, both sets
Xn and Yn contain the same clients, i.e., Xn ≡ Yn. Hereafter, at
round t, we refer to the final set Xn as the filtered-in set Sf .

Remark 4. In cases where both ai and bi are non-positive, i.e.,
a′i = b′i = 0, the RGF algorithm accepts the client with a probability
of 1. On the other hand, even when both ai and bi are non-positive,
the DGF algorithm may reject this client with a probability of 1 if
ai < bi. Hence, by design, DGF can reject more clients than RGF.
This observation is empirically validated in Fig. 10. Generally, the
clients that are accepted by RGF and rejected by DGF have minimal
impact on FilFL performance, as they are the ones with both negative
marginal gains of adding them to Xi−1 or removing them from Yi−1.

Remark 5. The computational complexity of using χGF is
O(nI(m)), where n is the number of considerable available clients,

fixed by the user, and I(m) is the cost of inference over the server
dataset of size m data points. Therefore, the computational cost of
using the χGF algorithm does not scale with the scaling number of
clients and increases only linearly with the number of considered
available clients n (for reference, DivFL’s computational cost scales
quadratically with the total number of clients N). Therefore, our
method remains practical even as the number of clients increase. Fur-
thermore, the cost of forward passes can be reduced by distributing
the computation across multiple graphical processing units, leading
to faster and more efficient computations.

4 FilFL Convergence Analysis
We now provide a theoretical analysis of the convergence properties
of our proposed FilFL algorithm (see Algorithm 1). Specifically, we
analyze the convergence of the average model weights w̄t at round
t to the optimal solution w∗, under practical assumptions of non-
IID data, partial client participation, and local updates. Our analysis
focuses on the impact of incorporating client filtering into the FedAvg
setting, assuming random sampling as the client selection method.
While our results mainly apply to FedAvg with random sampling,
they can be easily extended to other methods. In the following, we
provide the necessary definitions and assumptions for our analysis
and present the theorem statement for convergence. The proofs of the
main lemmas are provided in Appendix D [13].

4.1 Assumptions and Definitions

The following assumptions are standard assumptions for the conver-
gence analysis in the literature of FL, such as [3, 32].

Assumption 1. F1, · · · , FN are all L-smooth5.

Assumption 2. F1, · · · , FN are all µ-strongly convex6.

Assumption 3. Let ψk
t be sampled from the k-th client’s

local data uniformly at random. The variance of stochas-
tic gradients in each client is bounded by σ2

k, i.e.,
E
[∥∥∇Fk

(
wk

t , ψ
k
t

)
−∇Fk

(
wk

t

)∥∥2] ≤ σ2
k for all k = 1, · · · , N .

Assumption 4. The norms of the stochastic gradients are uniformly
bounded by G, i.e.,

∥∥∇Fk

(
wk

t , ψ
k
t

)∥∥2 ≤ G2 for all k = 1, · · · , N
and t = 1, · · · , T − 1.

Assumption 5. Statistical heterogeneity: F ∗ −
∑

k∈[N] pkF
∗
k is

bounded, where F ∗ := minw F (w) and F ∗
k := minv Fk(v).

Assumption 6. Assume At contains a subset of K indices randomly
selected with replacement according to the sampling probabilities
p
′
i = 1/|Sf |, with simple averaging for aggregation 7.

5 For all k,v and w, Fk(v) ≤ Fk(w)+(v−w)T∇Fk(w)+ L
2
∥v−w∥22.

6 For all k, v and w, Fk(v) ≥ Fk(w)+(v−w)T∇Fk(w)+ µ
2
∥v−w∥22.

7 A theoretical analysis of this sampling scheme was provided in [32].

Limited to realistic scenarios (for communication efficiency and
low straggler effect), FilFL samples a subset At from the filtred-in
set Sf and then only performs updates on them. This makes the
analysis intricate since At varies each E steps. However, we can
use an approach similar to the one used in [32] to circumvent this
difficulty. We assume that FilFL activates all clients at the beginning
of each round and then uses the parameters maintained in only a few
sampled clients to produce the next-round parameter. It is clear that
this updating scheme is equivalent to the original.

Let wk
t be the model parameter maintained in the k-th client at

the t-th step. Let IE be the set of global synchronization steps, i.e.,
IE = {iE | i = 1, 2, · · · }. If t + 1 ∈ IE , i.e., the time step to
communication, FilFL activates all clients. Then, the update of our
algorithm can be described as: for all k ∈ [N],

vk
t+1 = wk

t − ηt∇Fk

(
wk

t , ψ
k
t

)
,

wk
t+1 =

vk
t+1 if t+ 1 /∈ IE ,

sample At+1 from Sf
t+1

and average
{
vk
t+1

}
k∈At+1

if t+ 1 ∈ IE .

Let w∗ ∈ argminw F (w) and v∗
k ∈ argminv Fk(v) for k ∈ [N].

Let v̄t ≜
∑

k∈[N] pkv
k
t , and w̄t ≜

∑
k∈[N] pkw

k
t , where pk ≥ 0 is

the given weight of the kth client and w.l.o.g., we assume
∑

k pk = 1.
Filtering the clients before selection, using biased greedy filtering

algorithms, made the theoretical analysis more challenging. Compared
to previous theoretical federated convergence analysis, such as [32]
and [3], that introduce v̄t and w̄t, to proceed with our analysis we in-
troduce an extra variable z̄t, defined as follows z̄t ≜ 1

|Sf
t |

∑
k∈Sf

t
vk
t .

Furthermore, we define a filtering gap as follows:

δt ≜ F (v̄t)− F (z̄t). (5)

An optimal filtering method leads to the highest δt possible at every
round t. In FilFL, using χGF as a filtering method, we expect the δt
to be optimized over the rounds. In Lemma 1, in Appendix D, we
show that E [δt] is lower bounded by a constant δ.

4.2 FilFL Theoretical Convergence Results

We present our convergence result as follows.

Theorem 1. Let assumptions 1, 2, 3, 4, 5, and 6 hold, then we have

E[∥wt+1 −w∗∥2] ≤ O(1
t
) +O(φ) (6)

for some time constant φ that depends on the filtering.

Proof. Note that

E
[
∥wt+1 −w∗∥2

]
= E

[
∥wt+1 − vt+1∥2

]
+ E

[
∥vt+1 −w∗∥2

]
+ 2E [⟨wt+1 − vt+1,vt+1 −w∗⟩] .

(7)
We bound the three terms in Eq. (7). Using Lemma 4 result,

shown in Appendix D, we have T1 ≜ E
[
∥w̄t+1 − v̄t+1∥2

]
≤ ξ,

for some constant ζ and ξ = ζ − 2δ
µ

. Moreover, using Lemma
1, 2, and 3 in [32], define T2 ≜ E

[
∥vt+1 −w∗∥2

]
, we have

T2 ≤ (1− ηtµ)E
[
∥w̄t −w∗∥2

]
+ η2tB, for a stepsize ηt and some

constant B. Furthermore, using Corollary 1, in Appendix D, we have
T3 ≜ E [⟨wt − vt,vt −w∗⟩] ≤ ρ

√
ξ, for some constant ρ.

Define ∆t ≜ E
[
∥wt −w∗∥2

]
, and φ = ξ+2ρ

√
ξ, thus ∆t+1 ≤

(1− ηtµ)∆t + η2tB + φ. With a stepsize, ηt = β
t

, for β ≥ 1
µ

, the
final convergence result follows from Lemma 3 in [36].

The above result provides a convergence rate guarantee ofO(1
t
) for

FilFL up to a certain neighborhood of size O(φ), which depends on
the client filtering. While our approach differs from that of DivFL, we
obtain similar theoretical guarantees (albeit with different constants)
and better empirical results. Furthermore, our experiments show that
FilFL enhances different FL algorithms; see Experiments Section,
which includes FedAvg and FedProx. It is worth noting that a good
filtering algorithm implies larger values of δt for all t, as defined in
Eq. (5). This, in turn, leads to a larger value of δ, thus smaller ξ, hence
a smaller value of φ. Our greedy filtering algorithms are designed to
maximize δt, thereby minimizing φ. Empirical results demonstrate
that both χGF accelerate the training and lead to better test accuracy.
As discussed in the Experiments section, both versions of χGF enjoy
significantly large approximation ratios of the optimal solution OPT ,
specifically,R(Sf) ≥ 0.96R(OPT), indicating that greedy filtering
identifies near optimal combinations of clients over the rounds.

5 Experiments
As we are the first to propose client filtering in FL, we evaluate the
performance of combining χGF with different FL algorithms, such as
FedAvg [35] and FedProx [31] with different client selection schemes,
namely, random selection (RS) [32], power-of-choice (PoC) [9], and
diverse selection (DivFL) [3]. Moreover, we conduct ablation studies,
analyzing the sensitivity of FilFL to different filtering periodicity
values and for various filtering dataset scenarios, including different
sizes and distributions, and we examine the behavior of χGF.

5.1 Setup

We experiment with different vision and language tasks in a range of
scenarios. We use Shakespeare dataset [6], built from “The Complete
Works of William Shakespeare,” where each speaking role in every
play is considered a different client. The task is a next-character
prediction with 80 classes of characters in total. We use a small
filtering dataset from a different distribution, specifically consisting of
parts of this paper’s introduction, as shown in Table 3 in the Appendix
[13]. We use a two-layer LSTM [19] classifier containing 256 hidden
units with an 8-dimension embedding layer. Moreover, we use CIFAR-
10 [29] in a non-IID setting with ResNet18 [18]. We split CIFAR-10
train dataset into private and filtering datasets, where the filtering
partition fraction is 0.01. Similar to existing works [2, 17, 43], to
simulate the non-IID data distribution among clients, we use the
Dirichlet distribution Dir(α), with α = 0.5. We use the existing
CIFAR-10 test sets as global test sets. Furthermore, we use Federated
Extended MNIST (FEMNIST) [6], which is built by partitioning
the data in Extended MNIST [10, 30] based on the writer of the
digit/character. We use the test set as a global test set. Similar to [6],
we use a model with two convolutional layers followed by pooling
and ReLU and a final dense layer with 2048 units.

In the following experiments, we consider N clients, with only n
considerable available ones, with K selected clients, periodicity h,
and filtering data size m. FilFL samples At from the filtered-in set
of clients Sf , while other FL algorithms sample At from the full
set of available clients St. We experiment with three different seeds
and present the averaged results together with the standard deviation.
Appendix C reports further details about the setup.

0 50 100 150 200 250
20

25

30

35

40

45

50

55

FilFL (DGF+PoC)
FilFL (RGF+PoC)
FedAvg (PoC)

Shakespeare

Round

Te
st

A
cc

ur
ac

y

0 50 100 150 200 250

1.0

1.5

2.0

2.5

3.0
FilFL (DGF+PoC)
FilFL (RGF+PoC)
FedAvg (PoC)

Tr
ai

ni
ng

L
os

s

Shakespeare

Round

Figure 3: FilFL (FedAvg with χGF) vs FedAvg (w/o filtering) both
with PoC on Shakespeare dataset with N = 143, n = 100, K = 10,
m = 34, and h = 5.

0 50 100 150 200 250
10

20

30

40

50

60

FilFL (DGF+RS)
FilFL (RGF+RS)
FedProx (RS)

FEMNIST

Round

Te
st

A
cc

ur
ac

y

0 50 100 150 200 250

1

2

3

4

5 FilFL (DGF+RS)
FilFL (RGF+RS)
FedProx (RS)

Tr
ai

ni
ng

L
os

s

FEMNIST

Round

Figure 4: FilFL (FedProx with χGF) vs FedProx (w/o filtering) both
with RS on FEMNIST dataset with N = 190, n = 50, K = 5,
m = 2000, and h = 5.

5.2 FilFL Outperforms Standard FL Algorithms

FilFL, for any given FL algorithm and any applied client selection
algorithm, includes an extra layer of client filtering using χGF. In the
following sections, we demonstrate the advantages of adding this extra
layer to various combinations of FL algorithms and client selection
methods. For the same FL algorithm and client selection, we assess
the marginal gain of adding such a filtering step.

5.2.1 FilFL (FedAvg with χGF and PoC) vs FedAvg (PoC)

We compare the performance of FilFL (FedAvg with χGF) against
FedAvg, both using PoC for client selection on different datasets.
Fig. 3 illustrates the results of the Shakespeare dataset, with a small
filtering dataset from a different distribution; specifically consisting
of parts of this paper’s introduction (see the filtering dataset in Ap-
pendix C.3). Our results demonstrate that FilFL using DGF or RGF
performs significantly better than FedAvg. In particular, as depicted
in the left plot, FilFL with both filtering methods accomplishes ac-
celerated training and attains around 10 percentage points higher test
accuracy than FedAvg. Furthermore, we conducted the t-test, and the
resulting two-tailed p-value was 0.0001, considered extremely statis-
tically significant. After 200 rounds, the right plot displays a lower
training loss for FedAvg. In Appendix E.1, we present the results on
CIFAR-10 and FEMNIST, which exhibit improved training and better
test accuracy by 5 and 7 percentage points, respectively.

5.2.2 FilFL (FedProx with χGF and RS) vs FedProx (RS)

We compare the performance of FilFL (FedProx with χGF) against
FedProx, both using RS for selection. Fig. 4 demonstrates that FilFL
using χGF achieves significantly superior performance compared to
FedProx on the FEMNIST dataset. Specifically, the left plot illus-
trates that FilFL with DGF and RGF achieves approximately 7 and
4 percentage points higher test accuracy, respectively than FedProx.
The right plot reveals lower training loss for FilFL than FedProx.
Moreover, Fig.5, shows the results on the Shakespeare dataset, where
FilFL with DGF and RGF attains around 3 and 6 percentage points
higher test accuracy, respectively than FedProx.

10 20 30 40 50 60

26
28
30
32
34
36
38
40

FilFL (DGF+RS)
FilFL (RGF+RS)
FedProx (RS)

Shakespeare

Round

Te
st

A
cc

ur
ac

y

10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5 FilFL (DGF+RS)
FilFL (RGF+RS)
FedProx (RS)

Tr
ai

ni
ng

L
os

s

Shakespeare

Round

Figure 5: FilFL (FedProx + χGF + RS) vs FedProx (RS) without
filtering on Shakespeare dataset.

0 100 200 300 400 500
10

20

30

40

50

60

70

FilFL (DGF+RS)
FilFL (RGF+RS)
FedAvg (DivFL)

CIFAR-10

Round

Te
st

A
cc

ur
ac

y

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5 FilFL (DGF+RS)
FilFL (RGF+RS)
FedAvg (DivFL)

CIFAR-10

Tr
ai

ni
ng

L
os

s

Round

Figure 6: FilFL (FedAvg with χGF with RS) vs FedAvg (DivFL w/o
filtering) on CIFAR-10 dataset with N = 200, n = 30, K = 3,
m = 500, and h = 5.

5.2.3 FilFL (FedAvg with χGF and RS) vs FedAvg (DivFL).

As shown in [3], FedAvg with DivFL performs better than FedAvg
with RS or PoC. However, it remains computationally more expensive
than both selection methods. To investigate whether a simple client
selection method like RS combined with χGF can outperform a so-
phisticated selection method like DivFL, we compare FilFL using RS
against FedAvg (DivFL). Fig.6 shows that on the CIFAR-10 dataset,
χGF achieves 10 percentage points higher accuracy than FedAvg
(DivFL) (left plot). While FedAvg (DivFL) exhibits lower training
loss than FilFL (right plot), it suffers from significantly larger test loss
(see the Appendix), which can be due to the overfitting of FedAvg
(DivFL) and the better generalization capabilities of FilFL. Moreover,
our results indicate that although FilFL with RS and FedAvg (DivFL)
have similar convergence theoretical results, our approach empirically
outperforms FedAvg (DivFL). The two-tailed p-value from the t-test
is 0.0018, considered as very statistically significant. In the Appendix,
we show that FilFL with DivFL surpasses FedAvg (DivFL).

5.3 Ablation Studies

We conduct an ablation study of the proposed approach, testing the
filtering approach with various periodicity, using filtering datasets of
different sizes and distributions, and using variable filtering datasets.

5.3.1 Sensitivity to Filtering Periodicity

The set of available clients may remain the same over several rounds;
however, their model weights change due to local training and weight
aggregation. This means that client filtering in each round may not nec-
essarily exclude the same clients. The optimal set of clients changes
significantly as the model weights change over rounds. However,
client filtering may filter in similar sets of clients for a few rounds
when the weights do not change much. That is why we suggest run-
ning client filtering periodically and applying client selection on the
filtered-in set for a few rounds to exploit the set it has already found.
We experiment with different periodicities h ∈ {1, 3, 5, 10, 20}, as
shown in Fig.7, and find that FilFL’s performance is similar for these
values of h. However, from a computational perspective, our approach
is more efficient for larger periodicity h.

0 100 200 300 400 500

10

20

30

40

50

60

70

80

FedAvg (PoC)
FilFL (DGF+PoC) h=20
FilFL (DGF+PoC) h=10
FilFL (DGF+PoC) h=5
FilFL (DGF+PoC) h=3
FilFL (DGF+PoC) h=1

FEMNIST

Round

Te
st

A
cc

ur
ac

y

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 FedAvg (PoC)
FilFL (DGF+PoC) h=20
FilFL (DGF+PoC) h=10
FilFL (DGF+PoC) h=5
FilFL (DGF+PoC) h=3
FilFL (DGF+PoC) h=1

Tr
ai

ni
ng

L
os

s

FEMNIST

Round

Figure 7: FilFL (FedAvg + χGF + PoC) sensitivity to periodicity h on
FEMNIST dataset.

0 50 100 150 200 250
20

25

30

35

40

45

50

55

FilFL (DGF+PoC), m=34
FilFL (DGF+PoC), m=17
FilFL (DGF+PoC), m=8
FedAvg (PoC)

Shakespeare

Round

Te
st

A
cc

ur
ac

y

0 50 100 150 200 250

1.0

1.5

2.0

2.5

3.0
FilFL (DGF+PoC), m=34
FilFL (DGF+PoC), m=17
FilFL (DGF+PoC), m=8
FedAvg (PoC)

Shakespeare

Tr
ai

ni
ng

L
os

s

Round

Figure 8: FilFL (FedAvg with DGF) sensitivity to filtering dataset size
m on Shakespeare dataset with PoC for client selection, N = 143,
n = 100, K = 10, and h = 5.

5.3.2 Sensitivity to Filtering Dataset Size & Distribution

We evaluate the effectiveness of FilFL under different filtering datasets
scenarios, showing its robustness across various sizes and distributions.
In the Shakespeare experiment, we use small datasets consisting
of parts of this paper’s introduction, containing only 34, 17, and 8
samples. Fig. 8, shows that FilFL remains effective even with tiny
filtering datasets with different distributions than the clients’ datasets.
The left plot shows higher test accuracy for FilFL than FedAvg, with
a slight advantage for larger values of m. The middle and right plots
also reveal lower training loss for smaller m and lower test loss
for larger m, indicating that larger m leads to better generalization.
Similar results concerning the effect of dataset size on the FEMNIST
dataset are presented in Appendix, with datasets of 2000, 1000, and
500 samples. Hence, FilFL shows insensitivity to the number of
data points, performing well even with smaller datasets and under
distribution shifts, thereby proving its versatility and robustness.

5.3.3 Sensitivity to Variable Filtering Datasets

We evaluate the use of a variable dataset for client filtering. Instead of
solving the filtering objective on a central dataset, possibly on a subset
of the server validation dataset or one single client throughout the
training, we consider the case of randomly selecting a client from the
available clients to perform the client filtering task. The chosen client
performs client filtering on its own validation dataset. Therefore, the
filtering dataset becomes variable depending on the chosen client in
that round. Our results demonstrate that FilFL, using RGF, even in
such a stochastic scenario, achieves significantly better performance
than FedAvg. In particular, as depicted in Fig. 9, FilFL accomplishes
accelerated training and attains approximately 10 percentage points
higher test accuracy than FedAvg.

5.4 χGF Behavior

We examine the filtering rates and approximation ratios of the RGF
and DGF algorithms compared to brute force search results.

0 100 200 300 400 500
10

20

30

40

50

60

70

FilFL (RGF+PoC)
FedAvg (PoC)

CIFAR-10

Round

Te
st

A
cc

ur
ac

y

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 FilFL (RGF+PoC)
FedAvg (PoC)

Tr
ai

ni
ng

L
os

s

CIFAR-10

Round

Figure 9: FilFL (FedAvg + RGF + PoC) vs FedAvg (PoC) without
filtering on CIFAR-10 dataset.

0 100 200 300 400 500

20

25

30

35

40

45

50

FilFL (DGF+PoC)
FilFL (RGF+PoC)
FedAvg (PoC)

FEMNIST

Round

|S
f
|

0 50 100 150 200 250
20

40

60

80

100

FilFL (DGF+PoC)
FilFL (RGF+PoC)
FedAvg (PoC)|S

f
|

Shakespeare

Round

Figure 10: The number of filtered-in clients, denoted as |Sf |, for FilFL
(FedAvg with χGF), over the rounds in different settings of CIFAR-
10, FEMNIST, and Shakespeare datasets, with considerable available
clients n being 30, 50, and 100, respectively. For FedAvg without
filtering, we consider Sf to be equal to St.

5.4.1 Filtering Rates

χGF rejects multiple clients, with the average rejection rate varying
depending on the task and the version (randomized or deterministic).
As mentioned in Remark 4, DGF rejects more clients than RGF,
roughly half the number of clients (cf. Fig. 10). Therefore, DGF
is more efficient in reducing the complexity of client selection by
significantly reducing the sampling space.

5.4.2 Approximation Ratios
Fig. 11 shows the approxi-
mation ratios of both χGF
versions compared to the
optimal filtering (OPT) on
CIFAR-10 with N = 200
and n = 10, which we
find by evaluating 2n − 1
combinations. We find that
both χGF versions achieve
approximation ratios higher

20 40 60 80 1000.88

0.90

0.92

0.94

0.96

0.98

1.00

DGF
RGF
OPT

CIFAR-10

A
pp

ro
xi

m
at

io
n

R
at

io

Round

Figure 11: Approximation ratios of the
filtering objective solution.

than 0.96, i.e., R(Sf) ≥ 0.96R(OPT) over the multiple rounds.
This indicates that greedy filtering identifies near-optimal combina-
tions of clients. Finally, the filtering performance can be measured by
the improved FL performance and the higher approximation ratios.
Since both versions of χGF show similarly high ratios and improved
FL performance, both can be considered effective for filtering.

6 Conclusion
We proposed client filtering as a promising technique to optimize
client participation and training in FL. Our proposed FL algorithm,
FilFL, which incorporates the greedy filtering algorithm χGF, has
proven theoretical convergence guarantees and empirically shows
better learning efficiency, accelerated convergence, and higher test
accuracy across different vision and language tasks.

References

[1] A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini. Empir-
ical Analysis of Federated Learning in Heterogeneous Environments. In
EuroMLSys, 2022.

[2] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
and V. Saligrama. Federated learning based on dynamic regularization.
arXiv preprint arXiv:2111.04263, 2021.

[3] R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes.
Diverse client selection for federated learning via submodular maxi-
mization. In International Conference on Learning Representations,
2021.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečn´ y, S. Mazzocchi, B. McMahan,
T. Van Overveldt, D. Petrou, D. Ramage, and J. Roselander. Towards
Federated Learning at Scale: System Design. In MLSys, 2019.

[5] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz. A tight linear
time (1/2)-approximation for unconstrained submodular maximization.
SIAM Journal on Computing, 44(5):1384–1402, 2015.

[6] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[7] W. Chen, S. Horvath, and P. Richtarik. Optimal client sampling for
federated learning. arXiv preprint arXiv:2010.13723, 2020.

[8] S. Cheng, J. Wu, Y. Xiao, and Y. Liu. Fedgems: Federated learning
of larger server models via selective knowledge fusion. arXiv preprint
arXiv:2110.11027, 2021.

[9] Y. J. Cho, J. Wang, and G. Joshi. Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies. arXiv
preprint arXiv:2010.01243, 2020.

[10] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on
neural networks (IJCNN), pages 2921–2926. IEEE, 2017.

[11] U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone
submodular functions. SIAM Journal on Computing, 40(4):1133–1153,
2011.

[12] F. Fourati, V. Aggarwal, C. Quinn, and M.-S. Alouini. Randomized
greedy learning for non-monotone stochastic submodular maximization
under full-bandit feedback. In International Conference on Artificial
Intelligence and Statistics, pages 7455–7471. PMLR, 2023.

[13] F. Fourati, S. Kharrat, V. Aggarwal, M.-S. Alouini, and M. Canini. Filfl:
Client filtering for optimized client participation in federated learning.
arXiv preprint arXiv:2302.06599, 2023.

[14] F. Fourati, C. J. Quinn, M.-S. Alouini, and V. Aggarwal. Combinatorial
stochastic-greedy bandit. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 12052–12060, 2024.

[15] B. Ganguly, S. Hosseinalipour, K. T. Kim, C. G. Brinton, V. Aggarwal,
D. J. Love, and M. Chiang. Multi-edge server-assisted dynamic feder-
ated learning with an optimized floating aggregation point. IEEE/ACM
Transactions on Networking, 2023.

[16] F. Haddadpour and M. Mahdavi. On the convergence of local descent
methods in federated learning. arXiv preprint arXiv:1910.14425, 2019.

[17] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu, et al. Fedml: A research li-
brary and benchmark for federated machine learning. arXiv preprint
arXiv:2007.13518, 2020.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[20] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang.
From federated to fog learning: Distributed machine learning over het-
erogeneous wireless networks. IEEE Communications Magazine, 58
(12):41–47, 2020. doi: 10.1109/MCOM.001.2000410.

[21] W. Huang, M. Ye, and B. Du. Learn from others and be yourself in
heterogeneous federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10143–
10153, 2022.

[22] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J.
Wu, H. Zhan, P. Ustinov, H. Srinivas, K. Wang, A. Shoumikhin, J. Min,
and M. Malek. PAPAYA: Practical, Private, and Scalable Federated
Learning. In MLSys, 2022.

[23] Z. Huo, Q. Yang, B. Gu, L. C. Huang, et al. Faster on-device
training using new federated momentum algorithm. arXiv preprint
arXiv:2002.02090, 2020.

[24] A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local

sgd on identical and heterogeneous data. In International Conference on
Artificial Intelligence and Statistics, pages 4519–4529. PMLR, 2020.

[25] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified
theory of decentralized sgd with changing topology and local updates.
In International Conference on Machine Learning, pages 5381–5393.
PMLR, 2020.

[26] J. Konečnỳ. Stochastic, distributed and federated optimization for ma-
chine learning. arXiv preprint arXiv:1707.01155, 2017.

[27] J. Konečnỳ, B. McMahan, and D. Ramage. Federated optimiza-
tion: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

[28] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon. Federated learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492, 2016.

[29] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. Canadian Institute for Advanced Research, 2009. URL
http://www.cs.toronto.edu/ kriz/cifar.html, 2009.

[30] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[31] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith.
Federated optimization in heterogeneous networks. Proceedings of
Machine Learning and Systems, 2:429–450, 2020.

[32] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence
of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[33] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for ro-
bust model fusion in federated learning. Advances in Neural Information
Processing Systems, 33:2351–2363, 2020.

[34] G. Malinovskiy, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik.
From local sgd to local fixed-point methods for federated learning. In In-
ternational Conference on Machine Learning, pages 6692–6701. PMLR,
2020.

[35] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[36] B. Mirzasoleiman, J. Bilmes, and J. Leskovec. Coresets for data-efficient
training of machine learning models. In International Conference on
Machine Learning, pages 6950–6960. PMLR, 2020.

[37] R. Pathak and M. J. Wainwright. Fedsplit: An algorithmic framework for
fast federated optimization. Advances in Neural Information Processing
Systems, 33:7057–7066, 2020.

[38] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Ku-
mar, and H. B. McMahan. Adaptive federated optimization. arXiv
preprint arXiv:2003.00295, 2020.

[39] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, pages 1310–1321, 2015.

[40] S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better
rates for sgd with delayed gradients and compressed communication.
arXiv preprint arXiv:1909.05350, 2019.

[41] S. Wang, S. Hosseinalipour, V. Aggarwal, C. G. Brinton, D. J. Love,
W. Su, and M. Chiang. Towards cooperative federated learning over
heterogeneous edge/fog networks. arXiv preprint arXiv:2303.08361,
2023.

[42] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan,
O. Shamir, and N. Srebro. Is local sgd better than minibatch sgd? In
International Conference on Machine Learning, pages 10334–10343.
PMLR, 2020.

[43] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and
Y. Khazaeni. Bayesian nonparametric federated learning of neural net-
works. In International Conference on Machine Learning, pages 7252–
7261. PMLR, 2019.

[44] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu. Parameterized
knowledge transfer for personalized federated learning. Advances in
Neural Information Processing Systems, 34:10092–10104, 2021.

[45] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu. Fedpd: A federated
learning framework with optimal rates and adaptivity to non-iid data.
arXiv preprint arXiv:2005.11418, 2020.

[46] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

	Introduction
	Problem Formulation
	Training Objective
	Filtering Objective

	Client Filtering
	Client Filtering in FL (FilFL)
	Greedy Filtering (GF)

	FilFL Convergence Analysis
	Assumptions and Definitions
	FilFL Theoretical Convergence Results

	Experiments
	Setup
	FilFL Outperforms Standard FL Algorithms
	FilFL (FedAvg with GF and PoC) vs FedAvg (PoC)
	FilFL (FedProx with GF and RS) vs FedProx (RS)
	FilFL (FedAvg with GF and RS) vs FedAvg (DivFL).

	Ablation Studies
	Sensitivity to Filtering Periodicity
	Sensitivity to Filtering Dataset Size & Distribution
	Sensitivity to Variable Filtering Datasets

	GF Behavior
	Filtering Rates
	Approximation Ratios

	Conclusion

