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Abstract—Accurate explanations of how a trained neural
network (NN) behaves are desirable for a wide range of labor-
intensive activities, including troubleshooting, validation, and
understanding performance issues or identifying biases.

We address the problem of explaining feedforward piecewise
NNs (such as CNNs with RELU) by breaking them down into
their linear components. Automatic encoding of the NN structure
into linear program constraints is used to extract continuous
exact explanations, which help interpret model behavior over
continuous regions, provide model descriptions that convey the
importance of input features and answer model queries that
analyze the feature contributions under user-defined constraints.

Our examples show that we can extract explanations for
NNs with a moderate number of layers without relying on
approximations. We demonstrate that the high-level explanations
can help understand the outputs of NNs and the comparative
importance of features by observing the linear models. We also
show how explaining continuous inputs prevents certain attacks
that have been proposed against existing explainers.

I. INTRODUCTION

Explaining neural networks is a significant and necessary
step to enhance trust in the growing body of ML applications,
particularly where the risks of unpredictability and mistakes
may bear unacceptable costs. The ML literature has no single,
well-accepted definition of what an “explanation” is [1].
However, a flurry of recent works is advancing on the long-
standing desire to pierce through the black-box nature of NNs.
We aim to take explainability a step further, by proposing
an approach helping domain experts through three properties:
completeness, exactness, and explicit validity boundaries.

We embrace the approach introduced with techniques for
post-hoc explanations [2, 3, 4], which offer a way to locally
analyze a trained NN and determine, for a given input data
point, how the model decided on its output, attributing a score
or weight to individual input features based on their effects on
the output. For data scientists, this kind of local explanation
as feature weights provides direct insights into the model
behavior and assists in increasing confidence around it or
seeking for remedy when the behavior is not the expected one.
This approach differs from other works that use a mathematical
approach to explore the low-level structure of NNs [5, 6, 7].
Explanations as feature weights yield high-level and human-
interpretable explanations, making their interpretation signif-
icantly simpler; this is especially useful when the available
domain expertise and ML expertise do not overlap.

However, current post-hoc explanations have significant
drawbacks. First, they only explain the specific data points pro-
vided for analysis [2, 8]. With this approach, it is impossible
to depict a broader understanding of the model behavior over
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Fig. 1: Illustration contrasting post-hoc explanations versus
continuous exact explanations. A post-hoc explanation typically
consists of feature weights that yield, as an explanation, a
single linear model of the input x̄ (shown as a dashed line)
approximating the NN around a specific data point. The farther
from the data point, the more inaccurate this approximation is.
Our approach provides the NN’s decision boundaries and the
exact linear model for each piecewise-linear subregion of the
analysis region. In the common case, for ease of interpretation,
this is a 2D bounding box around the data point of interest.

ranges of continuous inputs. Second, previous works rely on
sampling and approximation to extract explanations in a rea-
sonable time [9, 10] or build a surrogate model [11, 12]. Ap-
proximation introduces several issues: underapproximation can
leave errors undetected and creates a vector for attacks [13];
overapproximation can lead to valid models being rejected,
sacrificing performance benefits and preventing models from
adjusting their behavior for irregular objectives. In summary,
prior post-hoc explanations are too localized and approximate.

We propose a new explanation method that extracts contin-
uous explanations over ranges of inputs (called the analysis re-
gion). Our approach introduces continuous exact explanations
to divide the model into a set of linear models, from which
we extract explanations based on normalized feature weights.
Compared to existing techniques, we extract explanations
for input subregions rather than single points and do not
suffer from approximation. Moreover, we explicitly identify
the validity region of explanations (Figure 1).

At its core, our technical approach builds upon methods for
the efficient encoding of a feedforward NN as a linear problem,
that is tractable using off-the-shelf solvers for many NNs
of moderate size and analysis regions. Further, a significant
benefit of linear solvers is that they are sound and complete to
finite precision.1 This approach allows us to find every possible
set of activation states in the analysis region efficiently without
relying on approximations.

Since existing encodings are insufficient to obtain continu-
ous explanations, we contribute a new formalization of contin-

1We use 10−8 precision; errors are essentially negligible.
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Fig. 2: Our process to automated continuous exact explanations of NN models.

uous explanations and an efficient end-to-end approach that (1)
exploits an extended encoding to obtain linear models and (2)
transforms the linear models into explanations. Specifically, we
design an automated way for encoding feedforward NNs and
obtaining piecewise linear models that preserve the mapping
of inputs to outputs within the identified validity regions (§III).

We express explanations in two forms (§IV): (1) model
descriptions encode normalized feature weights, and (2) model
queries restrict the explanations to specific model behaviors in
terms of its outputs. We also generate a visual representation
of explanations that provides meaningful information to data
scientists that is not available through extrapolating from
single-point explainers (§VI-C).

As with other exact methods [6, 14], we acknowledge
that our method fails to scale to large models (e.g., im-
age classification), our work being primarily aimed at such
small NNs with intelligible inputs (§V). Further, we make
no attempt to address scalability issues via parallelization
or accelerators ; therefore, we expect that our method can
still be significantly improved in terms of performance and
optimizations. However, we already show that this approach
is practical for models with a small number of layers; for
applications where approximation is acceptable and models
using non-feedforward piecewise linear structures, our work
can be extended through approximate encodings [15, 16, 17].

We demonstrate the value of our approach through several
use case scenarios (§VI). They illustrate how continuous exact
explanations help identify which regions of the input space
map to a particular output, and show how the weights of
input features vary in the input space, confirming that the
observed weights match the feature importance of the original
model. We also show how adversarial models trained to fool
single-point post-hoc explanations can be countered. Finally,
we demonstrate with examples how excessive simplification
would lead to incorrect interpretations, and why all the infor-
mation included in the explanations is significant.

II. OVERVIEW

We propose a framework to automatically analyze a given
trained NN model and output interpretable explanations for
it. Our explanations are without approximation and are valid
for continuous ranges of inputs within the desired analysis
region (R). We support different explanation types aimed
at supporting different use cases, including describing how

much each input feature influences the model’s outputs and
answering detailed queries about the outputs.

The precursor to obtaining explanations is to compute a set
of linear models, each of which captures the mapping between
inputs and outputs of the NN within a validity region. Figure 2
illustrates the different steps of the process.

1 We convert a trained NN into a framework-agnostic
neural graph representation. We further compress the neural
graph using simple semantics-preserving transformations (e.g.,
merging successive operations as a single linear transforma-
tion and removing identity operations) and optimizations that
reduce the number of operations.

2 We encode the neural graph as a Mixed Integer Linear
Programming (MILP) problem, which defines the relationship
between inputs and outputs through a “chain” of variables
linked together by constraints. Following [18], we convert the
neural graph into variables and we define a set of linear con-
straints representing the relationship between those variables.

3 Using an off-the-shelf solver (e.g., CPLEX), we find
solutions for the MILP. A solution is an assignment of values
to each variable, such that those values satisfy the constraints.
We obtain one solution for every possible activation state, i.e.,
the valuation of indicator variables.2

4 For each activation state, we determine a linear model
along with its corresponding validity region. We leverage the
observation that once an activation state is fixed, every neuron
of a NN becomes a linear transformation of its inputs. Thus,
we extract a set of functions of the form y = a0+a1x1+. . .+
amxm. As the NN is piecewise linear, each function expresses
the NN in a certain region of the inputs x. We then determine
the constraints on the inputs x that yield the validity region
of each linear model.

5 We extract high-level explanations for the analysis region
R. We define two types of explanations. 1) A model descrip-
tion provides an importance score for each input towards the
output, where a higher score means that a small change in
the input value leads to a larger shift in the output value. 2)
A model query is a search within R for either the subregion
where a model’s output has the highest value among all outputs
or the subregion where the model attributes a higher value to
one output over another.

2Although the number of possible states is exponential in the number of
non-linear activations, NNs are often overparameterized and thus, the number
of realizable activation states is in practice much smaller than the total one.



III. NNS AS LINEAR TRANSFORMATIONS

We formalize the definition of exact (without approxima-
tion) and complete (explaining every point within continuous
bounds) linear transformations for piecewise linear models and
review their encoding. We then describe how to extract those
transformations for feedforward piecewise linear NNs.

A. Defining the model as linear transformations

Let f : Rm → Rn, a piecewise linear function, be the
original prediction model to be explained. Without introducing
any approximation or inaccuracy, we seek to obtain gR(x), a
simplified representation of f(x) whenever the model inputs x
is in the analysis region R. Let g : Rm → Rn denote guarded
affine transformations, the composition of affine transforma-
tions guarded by Boolean predicates. An affine transformation
h is in the form h(x) = ŵ·x+b̂, with ŵ ∈ Rm×n and b̂ ∈ Rn.
The guard expression is a function e : Rm → {True,False}
as a conjunction of linear constraints: e(x) :=

∧
i(ci(x) ≥ 0),

where ci(x) is a linear function.
Definition 1 (Piecewise linear representation). Let h1, . . . , hk

be a set of affine transformations that are equivalent to f
for some x, and e1, . . . , ek a set of guard expressions, such
that every value of x ∈ R satisfies exactly one of the guard
expressions. We define gR(x) := {hk(x) | ek(x)}, such that
∀x ∈ R : ∃k | ek(x).

Note that there exists a mapping ek → Ak defined as Ak :=
{x | ek(x)}. Thus, the constraint on ∀x ∈ R : ∃k | ek(x) is
equivalent to ∪Ak = R. Ak is the validity region of hk.

B. MILP encoding

We briefly review our encoding, which derives from the one
by [18]. We remark that, although this encoding is not novel,
we introduce several non-trivial extensions in §IV.

The encoding follows the layer-wise composition of the NN.
Consider layer l ∈ [1, L] with inputs xl ∈ Rnl−1

(n0 = m)
and outputs yl ∈ Rnl

. The model parameters (weights W l and
biases bl) are treated as constants. When not needed, we omit
the superscript l to simplify the notation. The layer’s relation
y = RELU(Wx+b) yields as variables: x, y, the RELU state
indicator variables z ∈ {0, 1}n and auxiliary variables s ∈ Rn.
The constraints below are used:

∀i ∈ {1, . . . , n}, yi =
∑

j Wi,jxj + bi − si;

zi = 1 ⇒ si = 0; zi = 0 ⇒ yi = 0.
That is, zi = 1 denotes an activated RELU, which propagates
its input value (x ≥ 0); otherwise, zi is 0. The auxiliary
variable si captures the residual value when the constraint
yi = 0 holds. Encoding layer (l+1) introduces the propagation
constraint xl+1 = yl, and enables the solver to propagate the
inputs x1 ∈ R, to the outpus yL in a NN with L layers.

C. Extracting linear models

We feed the encoding to an off-the-shelf solver to compute
all possible activation states in R, representing the possible
states of all RELUs in the NN (on if they propagate their input
value, off otherwise). Finding all solutions is a hard problem

that can potentially take a long time (and dominates the
time to create explanations); however, by leveraging existing
optimizations, the time remains practical in many examples.

We extract the linear models hk(x) = {hk
1(x), . . . , h

k
n(x)}

for each of the n output neurons. k indexes the activation
states. For every activation state k, we resolve the non-linearity
introduced by RELU neurons by substituting their output
according to the value of the corresponding indicator variable
z at each layer. This reduces the value of each layer’s output in
the NN to a recursive linearization function yl = vl(x;W l, bl),
where vl is a linear function with i-th component in the form
v1i (x) = xi and for l > 1:

vli(x) =

{
0, if zli = 0∑nl−1

j=1 W l
i,jv

l−1
j (x) + bli, if zli = 1

(1)

We simplify the value of each neuron as a linear transformation
in the form vli(x) = ŵl

i · x + b̂li, with ŵl
i ∈ Rm and b̂li ∈ R.

The linearized parameters are equal to:

ŵl
i =

{
0, if zli = 0∑nl−1

j=1 W l
i,jŵ

l−1
j , if zli = 1

(2)

b̂li =

{
0, if zli = 0∑nl−1

j=1 W l
i,j b̂

l−1
j + bli, if zli = 1

(3)

where ŵ1
i is a one-hot vector with 1 at i and b̂1 = 0. We

then collect the value function vLi (x) of each output neuron
yi as the linear transformation yi = ŵL

i ·x+ b̂Li (with L being
the output layer). Then, hk

i (x) = yi ≡ vLi (x) is an affine
transformation and satisfies definition 1. This technique can
also provide the value function for intermediate layers of the
network, although there is no guarantee that such information
would be meaningful because the values in intermediate layers
may not be interpretable.

D. Extracting validity regions

Recall from §III-A that the validity region Ak of hk is
equivalent to the guard expression ek(x). To extract ek(x), we
note that for each of the k activations states z = z1, . . . , zN ,
the activation conditions of the RELU function yield a se-
quence of constraints cli(x) of the form:

cli(x) =

{
zli = 1 ⇒

∑
j W

l
i,jx

l
j + bli ≥ 0

zli = 0 ⇒
∑

j W
l
i,jx

l
j + bli ≤ 0

(4)

By substituting for xl
j the linearized representation of the

neuron computed in §III-C, we can express the value of the
layer inputs as a linear function of the NN inputs, xl

j = yl−1
j =

ŵl−1
i · x + b̂l−1

i . Thus, cli(x) is a linear constraint on x and
satisfies the conditions from §III-A. Since the activation states
z returned by the solver are valid for the analysis region R, we
express ek(x) as the following conjunction: (

∧
l,i c

l
i(x)) ∩R.

As ek(x) is the intersection of linear constraints on x, it must
necessarily yield a convex polytope Ak in the analysis region.
We can then simplify the set of constraints by computing the
convex hull of Ak to express it through the vertices of the
polytope. This removes redundant constraints and yields the
minimal set required to express ek.

The MILP encoding blocks each previously-found set of
activations z, to ensure that no two solutions are identical.



As described above, each validity region Ak is associated
with a single z and the number of (non-empty) regions is
finite, which guarantees a finite number of solutions even for
continuous inputs. Figure 1b illustrates in 2D how a NN is
broken down into its linear components. Each area represents
one validity region, and is associated with a linear function
of the inputs. In general, the validity regions {Ak} are m-
dimensional polytopes (for m input features), rather than 2D.

E. Generalizing to any piecewise linear layer
The approach discussed in §III-C describes the extraction

of linear constraints for a fully-connected layer with RELU
activations. We can generalize this approach to any kind of
linear layer. For instance, a convolution layer is encoded
similarly to a fully-connected layer, but the weight matrix is
replaced with the values of the convolution filter, while the
inputs are replaced with the convolution window.

Given an arbitrary piecewise linear layer l with input
xl = ŵl−1 · x + b̂l−1, and its MILP encoding using indi-
cator variables zl, we define the operation of this layer by
the following transformation: Φl(ŵl−1, b̂l−1, zl) 7→ ŵl, b̂l, cl.
This transformation propagates the weights from layer l to
layer l + 1, enabling extracting the linear models from NNs
with any piecewise-linear layer, including convolution and
fully-connected layers, Leaky RELU or Parametric RELU
activations. This also allows the automatic encoding of typical
NN transformations like slicing and reshaping.

IV. MODEL EXPLANATIONS

The obtained coefficients ŵL of the linear model hk and
validity region Ak describe the model, but lack ease of
interpretation. Their usefulness is also reduced when NNs are
used as a tool for nonlinear approximation because they do
not reveal when a subregion (i.e., multiple contingent validity
regions) exhibits linear or quasi-linear behavior. Treating the
model as entirely linear also carries risks of misinterpretation.
Thus, we avoid using directly the linear models, but instead
focus on feature weights, as in [2, 3, 4].

Although it is possible to convert the low-level information
extracted in §III during post-processing, doing so comes at an
additional cost of higher complexity and lower performance.
Thus, in this section, we develop two critical aspects: (i)
we formally define the relation between low-level and high-
level, human-interpretable explanations, and (ii) we express
that relation as constraints in the MILP encoding, enabling our
approach to produce high-level explanations from the solver
and with minimal additional processing.

As we make no assumptions about the expected input
ranges, the above coefficients are not proportional to features’
importance; they simply reflect how an ϵ variation in input
values reflects on the output, despite that the features might
have different scales. Thus, we seek to normalize those coef-
ficients to obtain a set of weights that satisfies the following
ranking criterion.
Definition 2 (Ranking Criterion). The feature with the k-
largest weight provides the k-largest change in the output when
the feature value varies in its expected range.

A. Model description

Given the linear model hk with output vector hk(x) =
{hk

1(x), . . . , h
k
n(x)} holding the value of all output neurons,

we treat each component of the output as a different linear
model and seek to extract the weights for all of them sepa-
rately. In the rest of this section, we assume that we are ex-
plaining a single component hk

o(x) = w1x1+. . .+wmxm+co,
and determine the set of parameters w1, . . . , wm, co of each
input feature for that component. We first show how the
model coefficients can be normalized assuming, for simplicity,
that each feature has uniform distribution and bounded range.
Later, we generalize the weights to the unbounded-range case
and non-uniform distributions.

Assuming the valid range of inputs is a m-dimensional box
in which each feature xi can vary in the range [ai, bi], the lin-
ear function can be written as hk

o(x) =
∑m

i=1 wixi+co, ai ≤
xi ≤ bi. To express weights independent of the input range, we
express the equivalent model h̄k

o(x̄) = w̄1x̄1+. . .+w̄mx̄m+co
where each component of the input x̄i has range [0, 1]. We
write the model as h̄k

o(x̄) =
∑m

i=1(w̄ix̄i+ci)+ c̄, 0 ≤ x̄i ≤ 1
with c̄ = co −

∑m
i=1 ci.

To ensure that the models are equivalent on ranges [ai, bi]
and [0, 1], we require a mapping of xi to x̄i such that
hk
o(x)|biai

≡ h̄k
o(x̄)|10. This equivalence is guaranteed by se-

lecting ci, w̄i such that:
wixi|biai

= (w̄ixi + ci)|10 ci = wiai w̄i = wi(bi − ai)
We conclude that the weight of each variable xi is w̄i =
wi(bi − ai). This value is equal to the variation of the
output of hk

o(x) when xi varies between the upper and lower
bound. This behavior satisfies definition 2, and thus the final
explanation uses the weights w̄i representing the importance
of feature xi.

The weights used above assume that xi is uniformly dis-
tributed in the range [ai, bi]. In practice, many problems use
inputs following a non-uniform distribution in an unbounded
or semi-bounded range. For the remainder of this subsection,
we assume that the distribution of x is unknown, but we have
samples of it (such as data points from the testing set). We can
assume that given enough samples, the mean X̄i of the samples
of xi follows the normal distribution N(µi, σ

2
i ). We know that

X̄i lies in [µi − kσi, µi + kσi] with very high probability for
k ≥ 3. Thus, we compute the weight without outliers by using
the probabilistic bounds ai = µi − kσi and bi = µi + kσi.
The normalized weights are w̄i = wi(bi−ai) = wi(2kσi). The
coefficient 2k is shared between all features and can be ignored
without loss of accuracy. The final weights are w̄i = wiσi.

B. Model queries

We define a model query as a specific type of expla-
nation for which the analysis region R is dependent upon
specific query parameters, such as constraints on input values,
constraints on output values, and comparison between the
model outputs. Restricting the analysis region solely based
on input values is straightforward to encode in the MILP
search. Therefore, we focus on cases where the analysis region
depends on some value of the model output.



Finding highest value outputs. A typical use case for output
constraints is explaining classifiers. It is common to encode
the n-class decision as n output neurons in the last layer
such that the neuron with the highest value is selected as
the decision; thus, generating explanations for a region where
a particular class is selected requires expressing constraints
between the output neurons. As such, we seek to satisfy a
model query in which each guard expression is tied to a
pair (linear transformation, model output), which restricts the
analysis to regions where the analyzed output is highest.

To search for query explanations, we extend the MILP
encoding with additional auxiliary variables rab and Ra to
express the rank of each output neuron, for the top class
a and any b ∈ [1, n]. Given n output neurons with linear
models hk

1 , . . . , h
k
n, the auxiliary variables are encoded with

the constraints:
rab = 1 ⇔ hk

a(x) ≥ hk
b (x) Ra = 1 ⇔

∑n
i=1 rai = n (5)

Recall from §III-D that we use the indicator variables to
“block” solutions and guarantee that the solver returns exactly
one solution per valid assignment of activation states zk. By
adding Ra to the set of blocking variables, the solver returns
solutions for the pair of (zk, a). The soundness of the solver
guarantees that for each extracted solution, there exists some
input value x that generates the activation state zk and for
which hk

a(x) has the highest value among all outputs. We re-
strict the validity region extracted in §III-D so that Ak contains
only the values x for which hk

a(x) has the highest value, i.e.,
hk
a(x) ≥ hk

i (x) for i ∈ {1, n}\a. This yields n−1 constraints,
which are added to the previously extracted guard expression
ek(x): eka(x) = ∧n

i=1,i̸=a(h
k
a(x)− hk

i (x) ≥ 0) ∧ ek(x).
Comparison between outputs. Another type of query is
to extract, given an output a with the highest value, the
weights representing how much each feature “favors” this
output against the others, such that the feature with the largest
weight is the one which, for a positive change, will most
increase the gap between the highest output and the others.
In contrast, the feature with the lowest weight is the one for
which positive changes will decrease said gap.

We compute the weights as in §IV-A, using as linear model
hk
ab(x) = hk

a(x) − hk
b (x). We tie the guard expression for

this model to a triplet (linear transformation, highest output,
second-highest output).

The MILP encoding is extended through another auxiliary
variable R′

b which is defined as R′
b = 1 ⇔

∑n
i=0 rbi = n− 1,

i.e., R′
b is one only when hk

b (x) is the second highest output.
We can extend the computation of activation states presented
above to find all triplets (zk, a, b) by including both Ra

and R′
b to the set of blocking variables. We extend the guard

expression such that:
eka,b(x) = ∧n

i=0,i/∈{a,b}(h
k
b (x)− hk

i (x) ≥ 0) ∧ eka(x) (6)
Each area will automatically satisfy the constraint that a is
the highest output and b is the second-highest. To return the
explanation for top class a and any second-highest output, we
simply run the solver once for each possible value of b.

1) Softmax normalization of outputs: The approach for
comparing model outputs described in §IV-B assumes that ev-

ery layer of the NN is piecewise linear. In practice, classifiers
commonly use a softmax function to normalize the values of
the last layer. However, the softmax function σ(z)i =

ezi∑n
j=1 ezj

is non-linear, thus a NN using softmax normalization is not
a piecewise linear function and is not a composition of affine
transformations.

Nonetheless, if the softmax function is only used in the
model’s last layer, it is still possible to generate model queries.
We observe that σ(·) is strictly increasing, meaning that we
can use the property x > y ⇒ σ(x) > σ(y) to find which
of the output neurons has the highest value. Thus, we encode
the value of each neuron in the layer immediately before the
softmax normalization, which is a linear function, and use
them to order all outputs according to their value using the
method described before.

C. Use cases

Our continuous exact explanations as introduced above go
beyond traditional post-hoc explanations: they support a range
of NN troubleshooting tasks for continuous regions of the
input space instead of individual data points (c.f. Figure 1).
We depict below several use cases that are interesting based
on our own experience.
Mapping the model outputs over continuous regions. Con-
tinuous exact explanations can map regions of the input space
to a particular behavior of the model output. For example, we
can find the exact set of all inputs that lead to a particular
decision being selected for classification models.
Detecting irregular behavior. We can identify when the
behavior of the model is changing rapidly in a region, for
example, because very small changes in the inputs lead to
large and unexpected changes in the outputs. Conversely, we
can also identify if the model has wide regions where the
output shape is smooth.
Identifying the most important features. Explanations can
reveal which features are most important for a particular output
to occur. This helps validate that the model uses information
known to be important, or does not use some protected feature.
Predicting direction of changes. For models with multiple
outputs, in addition to feature importance, we can also deter-
mine the direction in which the output will move. An example
is determining, for a classifier, which output is most favored
by a variation in some input feature. We can also identify the
tipping point where an increase in feature value stops being
favorable to a particular choice and becomes detrimental.

V. DISCUSSION

A. Scope of applicability

Our approach guarantees the completeness and exactness of
explanations. This comes at the expense of general applicabil-
ity for large NNs, due to the limited scalability of MILP encod-
ing. We also assume that features are intelligible, a necessary
property for post-hoc explanations to be useful. These charac-
teristics remain common for practical applications of NNs for
classification or decision-making tasks: e.g., [19, 20, 21, 22]
use between 2 and 12 layers and intelligible features.



Our approach is not applicable to computer vision or lan-
guage models. And while our approach aids in troubleshoot-
ing, it serves the needs of explainability, which is orthogonal
to verification and certification of NNs [9, 23].

The time to generate explanations is mainly constrained by
the MILP size and the performance of the solver. By using an
off-the-shelf solver, we inherit all of its advanced optimiza-
tions; but there is no upper bound on solving time [24]. This
issue can only be overcome through approximation, which
goes contrary to the purpose of this paper. All examples NNs
provided in this paper take between seconds to a few minutes
to solve, which we believe attests to the practicality of our
approach in the analyzed case studies (§VI). Our examples
show that models with similar complexity significantly vary in
explanation time, and the model size is not a good indicator.

B. Analysis regions

The analysis region R can be any subregion of the input
space, in which the solver will generate explanations. The user
defines this region by specifying a set of i linear constraints
on the input x ∈ Rm where xj is the j-th input feature as
follows: R :=

∧
i(ci(x) ≥ 0), with ci(x) in the form: a0 +

a1x1 + . . . + amxm. As discussed in §IV-B, R can be used,
for instance, to encode queries with input constraints or to
indicate the ranges of input features.

We present strategies for selecting the analysis region of
an explanation, either to accelerate the process to meet time
constraints, or because the search space is too large and
impractical for interpretability. We use these strategies in §VI.
2D representations. An explanation’s validity region is always
a non-empty subset of the analysis region; generally, the
dimensions of the validity region and the analysis region are
equal. At the same time, ML models typically have many input
features, representing high-dimensional inputs. This creates a
challenge where the extracted high-dimensional explanations
cannot be accurately represented visually or easily understood
by data scientists, reducing the use of extracted information.
To mitigate this issue, a strategy is to restrict the analysis
region to only two input variables, representing a cut in
two dimensions of the input space. This yields explanations
that can be represented visually and helps with interpreting
correlations between any 2 features and model’s outputs.
Cloud of points. The points of interest for model explanations
do not always fill the entire input space uniformly. For
example, the model could receive many queries generated by
end-users for values concentrated around some hotspot, or a
monitoring process might have identified points in which the
model selected an undesirable output. Generating explanations
in that region can both explain the model behavior, and detect
new, undiscovered points of interest in the vicinity. We achieve
this by defining the analysis region as a convex envelope or
bounded hypercube containing all points in the cloud.
Individual points. While we offer the ability to explain every
instance in continuous regions, some queries might not need
this versatility and only require information about individ-
ual points. In this case, continuous exact explanations still

have several benefits over single-point post-hoc explanations:
they guarantee that the extracted model represents the actual
weights of the model for those points without approximations,
and can provide the validity region for that linear model.

VI. CASE STUDIES

The advantages of continuous exact explanations over exist-
ing post-hoc explanations techniques are two-fold. First, owing
to their exactness and completeness properties, they inherently
improve confidence in post-hoc explanations for single data
points (c.f. Figure 1). Second, thanks to their continuous
nature, they open up new possibilities in understanding a NN’s
behavior by analyzing the function learned by the NN.

Ultimately, the most tangible benefits of explainable NNs
lie in the hands of the users, who will be able to use the expla-
nations to make informed decisions on the trustworthiness of
the models, use domain expertise to find and correct flaws, or
learn about the system and data features by applying human
understanding to the behavior that the model learned.

We now present various case studies to showcase some of
the possibilities of how humans can discover new information
through continuous exact explanations via visual inspection.

A. Which inputs lead to a particular output?

A main activity involved in interpreting or troubleshooting
NNs is to make sense of how the inputs are mapped to their
outputs. This question is one of the most basic and informative
that one can ask, and yet finding the answer is challenging.
Evaluating the NN on a specific input reveals the output, yet,
due to the nonlinearity of NNs, we remain oblivious to how
even slightly different inputs will be handled. Using post-
hoc explanations is impractical: it would require many input
samples to attempt to scrutinize the NN’s decision bound-
aries, and the results would anyway remain an approximation
without guarantees of accuracy. Similarly, other techniques,
which attempt to answer this question directly, either cannot
guarantee an answer for every point in the analysis region
(lack of completeness) or overapproximate the output (lack of
exactness) [23, 25].

Answering this question using continuous exact explana-
tions, however, is straightforward: using model queries to
generate explanations only for desired outputs yields the
mapping of the outputs for the entire input space.

Figure 3 shows a visual representation of this analysis
for Pensieve [19], a nontrivial multi-class decision-making
problem for bitrate selection in adaptive video streaming
applications. This model is trained to select the optimal video
bit rate in the context of adaptive video streaming. The model
takes 25 inputs: the previously selected bit rate, the measured
network throughput (over 8 past decisions), the measured
network latency (over 8 past decisions), the duration of video
stored in the buffer, the number of remaining video chunks,
and the size of available chunks for the next decision (for each
of the 6 bitrates).

The Pensieve NN has 6 outputs, each representing one out of
6 bitrates to choose from: 300, 750, 1200, 1850, 2850, 4300
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Fig. 3: Bitrate decision for Pensieve over a continuous range for
the two most important features.

Kbps. The model is trained to maximize the video quality
while minimizing the rebuffering time and the changes in
video quality. This model contains two hidden layers. The
first one is a convolution layer with 768 nodes; the second
is a fully-connected layer with 128 nodes. Both hidden layers
use RELU activations. The output layer contains 6 nodes with
Softmax normalization (the node with the highest value is
selected as the chosen bit rate).

We select a 2D analysis region by using the constraints
xi = Ki for some constant value Ki (we use the dataset
average of each feature), for all but two features. In this case,
we simplify the explanation to 2D for easy visualization, but
this could also be used to find all points mapping to some
output in higher dimensions.

The results are shown in figure 3. Each of the areas
(bordered by black lines) shows the validity region for one
linear model Ak; the color represents the highest-valued output
neuron in that area. The red area shows the output X300Kbps,
the green area shows X750Kbps and the yellow area shows
X1850Kbps. From this figure, we can visually confirm that the
orientation of the decision boundary matches our expectations:
the selected bitrate will increase when the amount of data in
the buffer or the achieved throughput increase. We also observe
that the boundary is monotonous and there is no point where
the conditions are more favorable but the selected bitrate is
lower. Finally, while Pensieve has six possible outputs (300,
750, 1200, 1850, 2850, and 4300 Kbps), we can also see that
the model transitions from 750Kbps to 1850Kbps and that
there is no input between the two regions where the model
would select 1200Kbps.

Related questions can be answered with this type of expla-
nation: see whether the boundary is smooth when transitioning
from one output to the next, check that there is no enclaved
region where one output is abnormal compared to surrounding
ones, or find whether a particular output is ever emitted.

B. Validating NN against prior expectations

In the presence of pre-existing information about how the
model should behave, such as a collection of test points and
domain expertise, we want to check if the model’s behavior
matches these prior expectations. This leads to the question: is

the NN able to capture the target function and does it weigh
features based on their (presumed) relative importance?

A domain expert could use post-hoc explanations to extract
the weights of features for known points [2, 3]. However, ex-
plaining the model in this way is limited to local validation: it
remains impossible to know if the behavior is also consistent in
the broad vicinity of those points. Another possible approach
would be to use verifiers, rather than explainers [9, 10, 26].
This approach assumes that all the expected behavior can and
will be expressed as verifiable properties, which is imprac-
tical and incompatible with experts’ intuition. Rather than a
replacement, explanations may complement verification and
provide an avenue for discovering new properties.

Continuous exact explanations not only help validate the
model behavior in a continuous region chosen by the domain
expert, but also help answer new questions, such as how the
importance of a feature in one region varies compared to a
neighboring region, or how broad is the area for which a
particular behavior was learned.

To show how we can answer this type of question, we
trained a NN with a target Piecewise function for which the
feature importance is known (in each quadrant, only a subset
of the inputs is used). For the use case in section VI-B, we
trained a network with a known, piecewise function, which
is divided into multiple areas such that each area only uses
a subset of the inputs and ignores the rest. We then extract
the continuous exact explanations for the trained model and
compare them to the parameters of the original function. The
approximator is a NN with two fully-connected hidden layers
of 32 neurons each, with RELU activations. The NN takes
five parameters in the interval [0, 1] as input and returns an
estimation of the function value. We train the network with a
piecewise function f : [0, 1]5 → [0, 1] defined as

f(x1, x2, x3, x4, x5) =

x1 < 0.5 ∧ x2 < 0.5 ⇒ |cos(π · (x1 + x3))|
x1 ≥ 0.5 ∧ x2 < 0.5 ⇒ (ex2·x4 − 1)/(e− 1)

x1 < 0.5 ∧ x2 ≥ 0.5 ⇒ x5

x1 ≥ 0.5 ∧ x2 ≥ 0.5 ⇒ (x2 + x3 + x4)/3

Each quadrant uses only a subset of the inputs (Table I); all
other features are ignored (have no correlation on the output).

We then compare the true function with the one that was
learned by the NN, ranking the input features according to
their weights, shown in Figure 4. For the analysis region of
this example, we set the range of (x1, x2) as the full original
range [0, 1] and set the other variables to x3 = x4 = x5 = 0.5.

For each explanation, we extract the weights of all features,
then assign ranks such that the feature with the highest weight
has the lowest rank (because the weight are continuous and this
is not a classification problem, the weights are never identical).
Assuming perfect accuracy (that is, if the NN has perfectly
captured the importance of features in the original function),
for an input in a quadrant where ms features are significant,
the rank of each relevant feature will be ≤ ms and the rank
of ignored features will be > ms.



Quadrant x1* x2* x3 x4 x5

Top-left ✓
Top-right ✓ ✓ ✓
Bottom-left ✓ ✓
Bottom-right ✓ ✓

TABLE I: Significant features in each quadrant of the function.

As we can see in Figure 4, the rank of features generally
matches the ones used in the training function. However, this
behavior is not captured perfectly: in several subregions (some
of which have been marked with blue stars), a feature that
does not correlate with the output is assigned a higher weight
than one that does, i.e., the function learned by the NN for
those points does not match the training data; this behavior is
to be expected without specialized algorithms. Detecting such
instances is critical in improving or retraining the model.

C. Comparison to LIME and SHAP

Continuous exact explanations can explain large areas, but
potentially take time to do so. Thus, in applications where
exactness is optional, we question whether it would be more
efficient to simply run single-point post-hoc explainers mul-
tiple times. We apply this technique to compare continuous
exact explanations against LIME [2] and SHAP [3]. We stress
that it is difficult to quantify the cost of losing exactness, which
can vary significantly between different models.

1) Points as approximation in a continuous region: We first
contrast the visual representation of weights of a feature in
a continuous region versus repeated sampling. Section VI-B
describes how continuous explanations can produce a visual
representation of the importance of features in a decision; we
approximate the same result through single-point explanations
by sampling multiple random points in the search space, as
shown in Figure 5. The number of samples is tuned so that
LIME and SHAP use the same amount of time as continuous
exact explanation.

The number of sample points for single-point explainers
is not fixed; instead, we use the time required to extract
explanations with the continuous exact method as the time
budget, then repeatedly sample the visualization space for
explanation points. Such a method depends on the model being
explained: a model that is too complex will take longer to
compute continuous explanations, whereas single-point expla-
nations will reach a ceiling in the clarity of their explanation
with a lower time budget; while a model that is too simple
will overly bias the result in favor of continuous explanations.

2) Prediction stability: Methods relying on sampling will
inevitably have variance in their output when run multiple
times; thus, we compare in Figure 6 the results obtained by
extracting continuous exact explanations for a single point
versus running LIME and SHAP multiple times. Error is
measured as the squared distance to the mean importance score
found by the respective method. Continuous exact explanations
do not have any variance and always return the exact weights.

*Because their value defines the quadrant, x1 and x2 correlate with the
output near the quadrant boundaries.

D. Explanations in higher dimensions

While visual feedback is easier to obtain in two dimensions,
it is insufficient to understand the behavior of a NN that has
a larger number of features, as only two can clearly be shown
on the axes. An alternative solution is shown in Figure 7, in
which we can represent the analysis region according to only
two features, while extracting for each validity region (four of
them being shown) the weight of all 11 features.

E. Aiding with feature selection

Training an ML model typically requires feature engineer-
ing, transforming input features to improve the performance
and reduce the complexity of the model. Although such a step
is not always necessary for NN models, it nonetheless provides
better performance and more cost-efficient models [27]. One
common approach is feature selection, in which the input
features that do not affect the output are discarded. This is
typically achieved by observing the correlation between the
features and the desired output.

However, as shown in §VI-B, the function learned by the
NN does not always perfectly capture trends in the underlying
data (this can be especially true in NNs with few layers). Using
explanations, it becomes possible to select the features that are
most useful for the NN in reaching its decision, rather than
from the data. To use this approach, it is important to correctly
estimate the importance of features; because the weights
computed by single point methods are not representative of
the neighboring region, they are unreliable to judge the global
feature importance for the NN.

On the other hand, continuous explanations reveal not
only the weight of features but also the area for which the
explanation is valid. We use this property to compute the
total weight of features, defined as the sum of weights in
each explanation scaled proportionally to the volume of the
validity region. We demonstrate this idea by training two NN
classification models on the Credit [28] and Wine Quality [29]
datasets under a varying number of features.

Note that we report the model accuracy for the entire dataset
distribution, even though the weights are only computed in
the analysis region. This approach guarantees that we fairly
report the loss in model accuracy, but might not be reflective
of real use-case scenarios (i.e., the accuracy of the model in the
analysis region might be the metric of interest for some appli-
cations). We scale the weights for each explanation according
to the size of their validity region; i.e., given the validity
region Ak and an explanation with weights {wk

0 , . . . , w
k
n}, the

total weight of feature i is
∑

k V (Ak)·wk
i∑

k V (Ak)
, where V (Ak) is the

volume of the validity region.
Column “All” shows the model accuracy when all the input

features of the original model are used. When used three
selection criteria to reduce the number of features used: the
first criteria is to select a fixed number of features equal to
half of the original features (rounded up); the second and third
criteria only select features whose weight is greater than 10%
(resp. 50%) of the highest weight among all features.
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Fig. 4: Weight of individual features (here x3 and x4) in the model, ranked against the remaining features. Regions of a darker
color show where the explained feature is more important than the others.
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Fig. 5: Importance of feature x3 in the piecewise model, ranked against the remaining features, using continuous explanations and
single-point approximations. Explanations were computed with equal time budget.
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Fig. 7: Left: 2D validity regions of the adversarial COMPAS
model. Right: Weights of all 11 features in marked regions.

Model All features Top 50% w ≥ 0.1ŵ w ≥ 0.5ŵ

Credit
Selected features 24 12 1 1
Testing accuracy 0.740 0.684 0.680 0.680
Training accuracy 0.706 0.816 0.706 0.706

WineQ
Selected features 11 6 5 1
Testing MSE 0.437 0.500 0.487 0.635
Training MSE 0.268 0.290 0.388 0.606

TABLE II: Model performance for explanation-based feature
selection, with different selection thresholds. ŵ is the weight of
the most important feature.

Table II shows the results. We contrast the model per-
formance (on training and testing metrics) in the case all
features are used versus using top 50% or a variable number of
features, prioritizing those with the highest total weight. This
methodology identifies the most salient features, i.e., features
to which much of the model performance can be attributed.

VII. RELATED WORK

Continuous interpretation methods [6, 8, 30] explain pre-
trained piecewise linear NNs by their linear components by
observing the state and parameters of the hidden layers. Our
improvements include adding completeness, i.e., extracting
possible activation states in the analysis region and rejecting
infeasible ones; extending this approach to arbitrary piecewise
linear layers; computing feature weights for individual or
pairs of outputs; and refining the analysis region with output
properties. A similar technique computes the reachable output
region [25, 31]. This approach can scale well to large output
spaces, but sacrifices some of the information from neuron
activation, causing overapproximation.

Local post-hoc explanations provide explanations for
black-box models around a single query point through different
methods such as local approximation [2, 3], post-hoc feature
selection around the query point [4, 32, 33] or counter-factual
examples [34]. Compared to those approaches, we do not
handle black-box models; however, our proposed method is
exact and does not rely on sampling as the techniques above,
and explains continuous regions of the inputs rather than being
limited to single instances.

Model mimicking relies on building an inherently inter-
pretable model that closely approximates the one to be ex-
plained [11, 12]. However, this model usually differs from the
original in some ways, which might cause lower performance.
Our approach directly explains the original model.

VIII. CONCLUSION

We tackled the challenging problem of explaining NNs over
continuous inputs. We showed that encoding a piecewise linear
NN with formal constraints enables explanations over continu-
ous subregions of the input space, and using the parameters of
a trained model allows us to extract interpretable weights for
all input features and guarantees that explanations are exact.
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