
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Efficient application identification and the temporal
and spatial stability of classification schema

Wei Li a,*, Marco Canini b,1, Andrew W. Moore a, Raffaele Bolla b

a Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
b DIST, University of Genoa, Genoa, Italy

a r t i c l e i n f o

Article history
Available online 11 December 2008

Keywords:
Traffic classification
Application identification
Deep-packet inspection
Machine learning
Temporal decay
Spatial stability

a b s t r a c t

Motivated by the importance of accurate identification for a range of applications, this
paper compares and contrasts the effective and efficient classification of network-based
applications using behavioral observations of network-traffic and those using deep-packet
inspection.

Importantly, throughout our work we are able to make comparison with data possessing
an accurate, independently determined ground-truth that describes the actual applications
causing the network-traffic observed.

In a unique study in both the spatial-domain: comparing across different network-loca-
tions and in the temporal-domain: comparing across a number of years of data, we illus-
trate the decay in classification accuracy across a range of application–classification
mechanisms. Further, we document the accuracy of spatial classification without training
data possessing spatial diversity.

Finally, we illustrate the classification of UDP traffic. We use the same classification
approach for both stateful flows (TCP) and stateless flows based upon UDP. Importantly,
we demonstrate high levels of accuracy: greater than 92% for the worst circumstance
regardless of the application.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Network-security, accounting, traffic engineering, and
new class-of-service offerings – each is an example of a
network-service facility that is made possible by the accu-
rate identification of network-based traffic. Another exam-
ple of the need for accurate identification would be the
desire of some Internet Service Providers to cope with
the continual rise of peer-to-peer (P2P) usage by throttling
network-traffic identified as P2P file-downloading. The

challenges posed for organizations faced with the develop-
ment of new types of network usage focuses attention on
the use of application–identification and the need to do
so accurately.

In this paper, we explore the effective and efficient clas-
sification of network-based applications using only the ob-
served network-traffic. We conduct a four-way comparison
of application–identification methods: contrasting com-
mon industry-standard methods such as known port num-
bers and deep-packet inspection with Naïve Bayes and the
C4.5 decision tree method.

We conduct an assessment of our method using real
traffic collected over a number of years on two different
sites. This enables both assessment of the individual accu-
racy and, more usefully, the temporal and spatial stability
of our models. The temporal stability measures how accu-
rately traffic is being identified for each period, thereby
revealing how accurate a method will remain over time.

1389-1286/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2008.11.016

* Corresponding author. Tel.: +44 (0) 1223 763 500; fax: +44 (0) 12233
34678.

E-mail addresses: wei.li@cl.cam.ac.uk (W. Li), marco.canini@unige.it
(M. Canini), andrew.moore@cl.cam.ac.uk (A.W. Moore), raffaele.bolla@
unige.it (R. Bolla).

1 This work was done while the author was visiting the Computer
Laboratory, University of Cambridge.

Computer Networks 53 (2009) 790–809

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

Author's personal copy

The spatial stability describes how models will perform
across different sites. Both assessments serve to provide
insight into what is required to build models that will
remain accurate regardless of such time and location
heterogeneity.

1.1. Motivation

Traffic classification remains a fundamental problem in
the network community. As noted above, this supports
numerous network activities from network management,
monitoring and Quality-of-Service, to providing traffic
models and data for simulation, forecast and application-
specific investigations.

However, the continual growth in the diversity of appli-
cations, number of hosts and traffic volume on the Internet
has been a challenge for methods to classify network-traf-
fic according to the applications. The level of continuous
development is only predicted to continue to grow.

Despite a number of approaches on traffic classification
in the past, for example [1–6], the problem continues to be
a significant challenge. In large part this is because:

(1) Internet traffic is not easily classified using the stan-
dard International Assigned Number Authority
(IANA) port number list [7]. Emerging applications
and proxies often avoid the use of standard port
numbers.

(2) Further, port numbers and protocol signatures may
be insufficient to determine the actual application.
There is, in principle, no rigid bound between appli-
cations and the underlying protocols. For example,
applications such as MSN Messenger, BitTorrent
and Gnutella may explicitly use the HTTP protocol
and port 80; while Skype clients may operate servers
on ports 80 and 443.

(3) There is a growing proportion of encrypted or
encapsulated traffic. Examples include SOCKS prox-
ies, VPN and VPN-like solutions, tunneling and
applications that encapsulate data using a different
protocol (e.g., GetByMail [8]). Encapsulation will
change the patterns in the original protocol, while
packet encryption renders the payload-inspection
mechanisms unusable.

1.2. Classification of network-based applications

While relevant to all classification work, a discussion of
the precise nature of classification and the many applica-
tions of classification is beyond the scope of this paper.
However, we feel it appropriate to mention that the classi-
fication may take a variety of forms – often related to how
the class information is being used.

The uses of classification systems may also have differ-
ent requirements dependent upon different fidelity of re-
call (different numbers of classes) and different levels of
precision. An operation-console system may be tolerant
of a 10% error rate but a scheme for application-differential
billing may need a large number of classes and a high
precision.

A motivation of this work is the classification of net-
work application traffic into discrete application categories
in a real-time environment. Our specific underlying moti-
vations for such classification is to (a) monitor the applica-
tion-mix in the traffic using a low-overhead (payload-less)
mechanism, (b) enable application-specific handling of
traffic, and to (c) derive application-specific traffic models
and study the impact of each type of application on the
network.

Further, we focus on application categories instead of a
particular protocol or application. This is because: (a) a
protocol only implements the design of an application
but is not bounded by it. One can design a range of network
protocols that implement the same functionality. HTTP
protocol is an example of this where people use HTTP as
a transport service for many different purposes; and (b)
there is ample opportunity for change and adaptation in
the specific details of an application over time. There exists
considerable variety among both the different implemen-
tations of an application and variety across the different
protocol behaviors that may be used within an application.
However, it is our assertion that an application exhibits a
behavior or family of behaviors that are specific, and recog-
nizable, irrespective of the implementation specifics. It is
not desirable to be specific about each protocol or each
application since they may change in popularity, design
or simply disappear from use. Instead, we categorize each
application into a modest number of related classes, which
can cover all the Internet traffic according to the applica-
tion’s purpose (e.g., classify to CHAT rather than to
‘‘GoogleTalk”). We hope the classifiers and the models thus
abstracted from the traffic will capture the inherent nature
of the types of applications, and exhibit both a high level of
accuracy and a predictable level of stability over time.

In our classification scheme, the basic object is a flow
defined as a bi-directional session between two hosts un-
iquely identified by the IP five-tuple {protocol (UDP or
TCP), client-IP, server-IP, client-Port and server-Port}.
TCP, being connection-oriented, cleanly defines the begin-
ning and end of flow. A flow may be further delineated
based upon which end is server or client: observation of
the SYN packet is sufficient to determine this. For UDP
there is no specific demarcation for the start and end of a
flow. A timeout mechanism, like that of Cisco NetFlow, is
used to provide boundaries for flows based on the stateless
UDP protocol or for flows of TCP where explicit flow-start
or termination is not observed.

We define a number of mutual-exclusive application
categories, such as WEB-browsing, BULK transfer, MAIL
activities, etc. The first column of Table 4 reports the full
list of categories. This kind of taxonomy has been previ-
ously used in [7,9]. It has been updated following the rise
in popularity or emergence of new application types such
as Voice-over-IP (VoIP) and instant messaging. It is in-
tended that every network application would fall into
one of the categories. Our goal is to be able to label each
flow with the category of the application to which it be-
longs. The label will depend only upon the actual applica-
tion that generates the traffic: for example, a flow carrying
an advertisement used by Napster would be labeled as P2P,
even though it may use the HTTP protocol.

W. Li et al. / Computer Networks 53 (2009) 790–809 791

Author's personal copy

1.3. Contributions

This paper provides a number of unique contributions:

� We conduct a comparison among a number of classifica-
tion schemes. Significantly, we only use data where we
have already established the ground-truth: the actual
applications causing the network-traffic observed.

� We train accurate models from data with a high-confi-
dence ground-truth and an efficient, small, feature set
derived from the reduction of a large flow feature list
using a sophisticated feature selection mechanism.

� We demonstrate the use of sub-sampling using start-of-
flow to enable online classification; further, we demon-
strate that the resultant online classification method has
high accuracy.

� We carry out a unique temporal and spatial stability
study on the four classification methods using data col-
lected over a 4-year period and from two different sites.

� In contrast with much of the past work we examine the
use of multiple-application classifiers for both stateful
flows (TCP) and stateless flows based upon UDP.

� We document the computational complexity and mea-
sure the costs within the classification pipeline.

2. Network-traffic data

We examine network-data from two different sites.
These two sites are both research-centric but conduct re-
search in very different disciplines and are located in two
different countries. We refer to these two different sites
as Site A and Site B. Each of Site A and Site B have over a
thousand local users from a population of researchers,
administrators and technical support staff. From Site A,
we use 3-day-long data-sets taken on 3 weekdays in
2003, 2004, and 2006 (denoted as Day1, Day2, and Day3,
respectively). From Site B, we use one data-set recorded

on a weekday in late 2007 (denoted as SiteB). In both cases
the sites are connected to the Internet via a Gigabit Ether-
net link. Each data-set captures full-duplex traffic at the
site border to the Internet.

For this paper, we selected 10 non-overlapping, ran-
domly distributed periods, each approximately 30 min
long, from each of Day1 and Day2. We also randomly se-
lected two 30 min periods from Day3, and a 30 min period
from SiteB. Table 1 summarizes the data-sets volume
breakdown by IP protocol type.

Further, as the TCP protocol semantic allows for a pre-
cise definition of start and end of a flow, we concentrate
upon complete TCP flows: those for which both the SYN
handshake and FIN handshake packets are observed – thus
we avoid the bias from flows which have started before the
selected period. We recognize the incomplete flows have
included a number of long flows (e.g., FTP downloads)
however, we are confident the use of such censored data
has not overly impacted our comparisons due to the small
amount of total data by packet or byte that it represents.
We also observe that incomplete TCP flows are often com-
posed of various kinds of scans and unsuccessful connec-
tion attempts resulting in single SYN packets and no
payload data. This is a common phenomena in the Internet,
part of what may be referred to as the Internet Background
Radiation and is well described in [10].

Table 2 lists the durations and workload dimensions of
our data-sets for complete TCP traffic and UDP traffic.

TCP traffic constitutes the great majority of the traffic in
our data-sets, thus in the following we focus upon TCP traf-
fic to investigate the classification schemes. We show in
Section 4.6 the classification of UDP traffic using similar
techniques as those introduced for TCP.

2.1. Traffic features

A feature is a descriptive statistic to characterize an ob-
ject; and, ideally, each object exhibits different feature val-
ues depending on the category to which it belongs. Based
on the features, models can be established using machine
learning techniques.

The features of a flow that we use for classification are
completely derived from the packet headers: UDP, TCP and
IP. These features describe the general behavior of a flow,
for example, the size of transferred data in either direction,
the packet size and inter-arrival time distributions, entro-
py in the flow, and the first 10 components by FFT of pack-
et inter-arrival times. Features include some higher level
heuristics such as the data exchange behavior in forms of

Table 1
Data-set volume breakdown by IP protocol type.

Data-set Packets (%) Bytes (%)

TCP UDP Other TCP UDP Other

Day1 93.49 1.60 4.91 98.18 0.72 1.10
Day2 97.87 1.59 0.55 99.33 0.42 0.25
Day3 96.91 2.19 0.90 98.16 1.44 0.41
SiteB 91.22 8.24 0.54 97.94 1.97 0.09

Table 2
General workload dimensions of our data-sets.

Data-set Duration Flows Packets Bytes

TCP Day1 10 � 30 min 377 K 42 M 31 GB
Day2 10 � 30 min 175 K 35 M 28 GB
Day3 2 � 30 min 260 K 30 M 18 GB
SiteB 1 � 30 min 250 K 11 M 7.1 GB

UDP Day1 1 � 30 min 25 K 197 K 41 MB
Day3 1 � 30 min 46 K 592 K 242 MB
SiteB 1 � 30 min 774 K 1.6 M 180 MB

792 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

flow-idle, keep-alive, interactive, or transferring data from
one end to the other. The complete feature set is fully
described in [11], and a sample of features is listed in Table
3.

Fig. 1 shows how different types of service exhibit dif-
ferent behavior in two groups each of two features: (1) var-
iance of total bytes in packets (client to server) by the total
number of bytes sent in the initial window (client to ser-
ver), and (2) count of packets with PUSH flag set in the
TCP header (server to client) by minimum segment size
(client to server). There is a clear opportunity to discrimi-
nate between the flows of each application class using a
combination of these features.

Collecting each feature from live traffic is associated
with a computational cost equal or less than Oðn� log2nÞ,
and a memory footprint equal or less than OðnÞ, where n
is the number of packets in a flow used for extracting the
feature. The total cost of collecting K features is bounded
by OðK � n� log2nÞ.

In order to improve the classifier performance and to
reduce the computational cost of the classification work-
flow, we select a feature subset. The selection criterion
chooses features that are most relevant for the discrimina-
tion of application classes while having the minimum
redundancy with respect to each other. This feature-reduc-
tion process is fully described in the Section 3.5.

We apply a correlation-based filtering mechanism to
each of the 10 Day1 periods. We observe that the feature
subsets selected by the algorithm possess moderately good
stability, and we manually pick 12 features which appear
in at least one third of the feature subset. Table 3 gives a
list of the feature subset. The selection-criteria here is to
identify the best-possible feature set which is both stable
over time and independent of the location in the network.
The feature subset are almost entirely dependent upon the
actual applications on the end-hosts. Thus any classifica-
tion model is able to maintain its accuracy over time and
be applied in different network-locations.

Without using the IANA port list or any prior knowledge
of port-application mapping, we still use port numbers as
two of the features in the feature subset. As our classifiers
are built upon pre-classified data – for which we know the
ground-truth – the port number features used in the final
classifier will maintain the association (as actually ob-

served) between pre-classified application classes and port
numbers.

2.2. Ground-truth

Ground-truth information is fundamental when assess-
ing traffic classification mechanisms and to provide trust-
worthy results. Therefore, we have given significant
attention to obtaining accurate ground-truth for our com-
parison data-sets. Every flow in each data-set has been la-
beled with a corresponding application category. This is
done using a (human) supervised semi-automated, heuris-
tic-based, data verification process. The process is detailed
in [12] however, we provide an overview of the process in
this section. The use of a supervised, semi-automated, pro-
cedure does not replace the manual verification process
but supplements it – allowing identification of the
ground-truth without sacrificing confidence.

The procedures for the computation of ground-truth are
based upon a variety of sources of the information about
each flow. However, as detailed below, none of these
pieces of information are used in isolation – cross-valida-
tion forms a critical part in the establishment of ground-
truth. Without enumerating the derivative information:
multiple-flow behavior or host-rôles, base sources of data
include (in no particular order):

� packet payload contents,
� well-known port numbers,
� well-known host names and addresses (e.g., ftp.ker-

nel.org), and
� background information about particular users, hosts,

and specific application behavior, e.g., P2P-networks.

We observed that flows belonging to the same service
or application often share a subset of the IP five-tuple,
notably, the {DstIp,DstPort}, {SrcIp,DstIp}, and {SrcIp,Src-
Port} sub-tuples. Such an observation allows us to con-
sider2 that flows bearing the same sub-tuples may belong

Table 3
Properties of the subset of TCP features selected using a five-packet observation window. SU is the symmetrical uncertainty measurement, as fully described in
Section 3.5.

Abbreviation Description SU Memory
overhead

Computational
complexity

push_pkts_serv Count of all packets with push bit set in TCP header (server to client) 0.3165 O(1) O(n)
init_win_bytes_clnt The total number of bytes sent in initial window (client to server & server to

client)
0.2070 O(1) O(1)

init_win_bytes_serv 0.3422 O(1) O(1)
avg_seg_size_serv Average segment size: data bytes divided by # packets (server to client) 0.3390 O(1) O(n)
IP_bytes_med_clnt Median of total bytes in IP packet (client to server) 0.2011 O(n) Oðn� log2nÞ
act_data_pkt_clnt Count of packets with at least 1 byte of TCP data payload (client to server) 0.1722 O(1) O(n)
data_bytes_var_serv Variance of total bytes in packets (server to client) 0.2605 O(n) O(n)
min_seg_size_clnt Minimum segment size observed. (client to server) 0.2131 O(1) O(n)
RTT_samples_clnt Total numbers of RTT samples found (client to server), see also [11] 0.2434 O(1) O(n)
push_pkts_clnt Count of all packets with push bit set in TCP header (client to server) 0.2138 O(1) O(n)
serv_port Server port 0.8378 O(1) O(1)
clnt_port Client port 0.0760 O(1) O(1)

2 We re-iterate that this process relies on heavy human-supervision. For
example, human-supervision takes the form of verification/confirmation of
a sample of flows that such inferences are true and valid.

W. Li et al. / Computer Networks 53 (2009) 790–809 793

Author's personal copy

to the same service or application. With this, the traffic can
be classified at a high level of aggregation, which may signif-
icantly accelerate the process. The consistency between the
application label and the sub-tuples was validated using two
day-long traces which have been previously classified with
the methodology described in [7], and using several seg-
ments of new hand-classified data. The assumption holds
for most cases with the exception of (1) tunneled traffic
(e.g., VPN or SOCKS proxies), (2) multiple applications be-
tween a server and a client (e.g., a server operating both mail
and web services), and (3) HTTP traffic where the HTTP pro-
tocol is used to relay non-web traffic (e.g., BitTorrent signal-
ing traffic). Aside from a VPN subsystem where the
application was independently established, we did not ob-
serve other tunneled traffic in our data. However, in the fu-
ture such traffic that could be grouped into its own category.
For (2), we observe that the {SrcIp,DstIp} sub-tuple can com-
plement the {DstIp,DstPort} sub-tuple after the latter has
been used to identify standard services. We addressed (3)
by verifying (through manually derived signatures) all HTTP
requests and responses to find out what type of content they
carry and what kind of applications have been causing them.
This process was documented in [13].

A set of payload signatures (derived from l7-filter [14])
was used to provide an initial indication of an application
based upon its packet content. Extensive tests were carried
out to evaluate the signatures based on previously hand-
classified data against several segments of new data. These
results allowed us to tune the signature set making it capa-
ble of identifying 35 of the most popular protocols. Of
course, the signatures only provide one piece of evidence
that needs to be cross-validated within the process that
determines the ground-truth.

The verification process is accelerated by exploiting a
number of heuristic rules (e.g., tuple-based rules), and by
working upon larger traffic aggregations (e.g., services
rather than individual flows) whenever possible. However,
we followed the principle of making decisions only with
very high-confidence, e.g., when superior evidence from

two or more mutually independent information sources
are validated.

Firstly, we consider whether the signature matching re-
sults for a specific server:port appear to be strongly consis-
tent, in which case we can reasonably assume that we have
identified a particular service on that server:port. Several
criteria are used to quantitatively justify the consistency:
thresholds are specified to guarantee that at least a certain
percentage of flows as well as a minimum number of flows
have matched a specific signature. Additionally, only an
exclusive subset of signatures is allowed to have matched
the flows. This avoids situations where, for example, HTTP
caused by BitTorrent is labeled as web traffic. We applied
this heuristic widely and particularly for those applications
with a well-established signature.

Based on the assumption that flows between the same
IP addresses pair may be due to the same application, we
can verify such situations as FTP traffic between two hosts
or HTTPS traffic as in many cases a web server runs both
standard and secure HTTP services. We derived similar
heuristics for streaming and VoIP applications. For exam-
ple, RTSP appears within a TCP control channel while the
data are relayed on a unidirectional UDP stream. Also, a
VoIP application may use a SIP session and a bi-directional
UDP stream.

A great amount of information can be inferred from the
host names. We base further heuristics on accumulated
knowledge about particular popular services (e.g., Google,
MSN, eBay): for example, we may have a heuristic that
indicates HTTPS traffic to MSN servers is due to MSN mes-
senger clients instead of browsers.

Finally, we consider the behavioral characteristics of
hosts due to overlay networks (subject to additional verifi-
cation). This is particularly useful for the identification of
P2P traffic. Although a counter-example to this rule is that
SMTP traffic has a strong P2P-like behavior: SMTP servers
may act as both the recipients and the senders of emails.
The assumption is that if a host is an SMTP server, all the
flows generated from this host towards port 25 are mail

102 103100

101

102

103

104

Median of IP data bytes (server to client)Th
e

nu
m

be
r o

f b
yt

es
 in

 in
iti

al
 w

in
do

w
 (c

lie
nt

 to
 s

er
ve

r)

Web−browsing
Mail
Bulk (ftp)
Attack
Peer−2−Peer
Database
Multimedia
Services
Interactive

100 101 102 103 104 105 106100

101

102

103

104

Variance of total bytes in packets (client to server)To
ta

l n
um

be
r o

f b
yt

es
 s

en
t i

n
in

iti
al

 w
in

do
w

 (c
lie

nt
 to

 s
er

ve
r)

Web−browsing
Mail
Bulk (ftp)
Attack
Peer−2−Peer
Database
Multimedia
Services
Interactive

Fig. 1. Scattered plot of 5000 random selected samples from Day1.

794 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

traffic. In general, this heuristic is applicable for P2P traffic
as long as the information about the port number can be
utilized,3 and the assumption of the heuristic can be vali-
dated. We applied this heuristic to verify a large number
of eDonkey and BitTorrent flows on port 4662 and 6881,
respectively. Additionally, for P2P applications that use
random port numbers, we started from an initial set of
identified peers and identified new peers that are con-
tacted by previously known peers. For example, initial Sky-
pe participants were identified using the information of
centralized login servers, and new Skype nodes could be
inferred by considering the hosts reached by a number of
(e.g., at least three) known Skype peers.

We show the application category breakdown of TCP
traffic for each data-set in Table 4. As noted above, the
meta-classes described in this table aggregate a number
of specific applications – a full application breakdown is
provided in [12] – although WEB deserves special com-
ment. Throughout our work we refer to the application
class as meaning web-browsing alone. It is worth reiterat-
ing that this class of traffic does not refer to data moved via
HTTP, nor to non-browser applications (such as a webmail
server providing data to Outlook – such data would be
classified as MAIL).

3. Classification methodologies

Several methods exist for classifying network-traffic
and all of them fall into two broad classes: deterministic
(hard) and probabilistic (soft) classification. As the name
suggests, deterministic classification assigns data points
to one of several mutually exclusive traffic classes. This is
done by considering some metric that defines the distance
between data points and by defining the class boundaries.
On the other hand, probabilistic classification method clas-
sifies data by assigning it a per-class membership-proba-
bility. The per-class membership-probability may be

based on an artificial allocation of probabilities or be based
upon a priori experience. For example after trying to clas-
sify a flow using this method, it could be observed that
with a probability of 0.8 this flow belongs to the MAIL
class, with probability 0.1 to WEB class and with probabil-
ity 0.1 to BULK class. Class assignment is done by consider-
ing the class with the largest probability. In the example,
the flow will then be considered a member of the MAIL
class.

In this paper, we document four methods for network-
traffic classification. Two methods: port number and L7, a
classifier based upon deep-packet inspection, are both
deterministic. Two alternatives: Naïve Bayes and the use
of a C4.5 are probabilistic in nature.

We primarily focus on using C4.5 to capitalize on the
following properties of the decision tree algorithm:

(1) Sufficient accuracy. It is suggested in [6] that C4.5 is
among the most accurate methods for the problem
of traffic classification. Further, we find it the most
accurate one in a range of most popular supervised
learning algorithms, using our particular feature
set and observation window setup.

(2) Extremely low computational cost for classification.
Its classification process only involves several condi-
tional statements, which is the simplest form that a
classifier can be. This property ideally supports time
and resource-critical tasks such as real-time applica-
tion operations.

Alongside the two probabilistic classification schemes,
we also utilize a feature-reduction mechanism: the Fast
Correlation-Based Filter. This mechanism allows us to sig-
nificantly reduce the computational cost in collecting the
features and also helps to overcome the overfitting prob-
lem in each of the probabilistic schemes.

We also note that our traffic classification work relies
upon the aggregation of packets into flows based upon
the IP five-tuples. We are aware of sophisticated data
structure and algorithm work such as [15]. Further, work
in [16] shows that minimal hardware can permit tractable

Table 4
Composition of TCP traffic in our data-sets. Applications shown are examples only. ‘‘–” denotes no traffic present.

Class By flows (%)/packets (%)/bytes (%) Applications

Day1 Day2 Day3 SiteB

WEB 84.558/22.529/29.438 80.198/16.383/17.623 84.077/27.381/25.456 85.557/70.876/69.456 Web browsers, web applications
MAIL 8.682/6.777/7.904 9.384/1.884/1.763 1.530/0.867/0.811 4.377/7.506/6.683 IMAP, POP, SMTP
BULK 3.800/69.483/60.569 6.146/80.850/79.372 2.058/67.201/69.881 0.223/8.310/11.905 FTP, wget
ATTACK 0.787/0.084/0.132 0.562/0.016/0.002 0.013/0.002/0.001 1.614/0.578/0.075 Port scans, worms, viruses, sql

injections
CHAT –/ –/ – –/ –/ – 0.025/0.013/0.004 0.204/0.195/0.059 MSN Messenger, Yahoo IM, Jabber
P2P 0.589/0.331/0.567 1.572/0.548/0.777 8.571/0.745/0.433 7.188/10.455/9.735 Napster, Kazaa, Gnutella, eDonkey,

BitTorrent
DATABASE 0.862/0.387/0.703 1.483/0.253/0.400 3.531/3.589/3.196 –/ –/ – MySQL, dbase, Oracle
MULTIMEDIA 0.137/0.112/0.196 0.002/0.000/0.000 0.007/0.105/0.145 0.004/0.165/0.232 Windows Media Player, Real, iTunes
VOIP –/ –/ – –/ –/ – 0.036/0.018/0.002 0.420/0.483/0.169 Skype
SERVICES 0.555/0.135/0.194 0.633/0.026/0.009 0.027/0.003/0.000 0.187/0.078/0.041 X11, DNS, IDENT, LDAP, NTP
INTERACTIVE 0.027/0.156/0.285 0.021/0.040/0.053 0.124/0.076/0.071 0.128/1.261/1.552 SSH, TELNET, VNC, GotoMyPC
GAMES 0.002/0.006/0.013 –/ –/ – –/ –/ – 0.060/0.027/0.007 Microsoft Direct Play
GRID –/ –/ – –/ –/ – –/ –/ – 0.037/0.066/0.084 Grid computing

3 We observed that many P2P nodes still use the well-known port
numbers.

W. Li et al. / Computer Networks 53 (2009) 790–809 795

Author's personal copy

implementation for handling 10 Gigabit/s live traffic.
While not within the scope of this paper, such approaches
combined with our methodology would effectively yield a
line-rate, real-time traffic classification solution.

3.1. Port number

The port-based method relies on the use of well-known
ports: the server port number may be used to identify traf-
fic associated with a particular application.

This method sees common use as state of the art in
many operational environments and requires access only
to the part in the packet header that contains the port
numbers.

As illustrated in Fig. 2, one should note that the server
port number is not equivalent to the destination port num-
ber of the packets. They coincide only for packets sent in
the client to server direction. For example, the destination
port number is 80 for a packet directed to a Web server,
while the source port number is 80 for a packet sent from
a Web server. However, port-based classification uses the
server port number which is determined by observing
the first packet of a flow in the client to server direction.

In this paper, we use a list of well-known ports derived
from the official port assignments established by IANA. In
particular, we consider only the official ports for port num-
bers 61023. In this subset only 35 distinct ports appear in
our traffic traces, and for just 16 of them the traffic is actu-
ally using the protocol associated to the official port
assignment.

3.2. Deep-packet inspection

The deep-packet inspection (DPI) method examines
whether a flow carries a well-known signature or follows
well-known protocol semantics. Such operations are
accompanied by higher complexity and may require access
to more than a single packet’s payload. According to Moore
and Papagiannaki [7], specific flows may be classified pos-
itively from their first packet (with payload data) alone.
Nonetheless, other flows may need to be examined in more
detail and a positive identification may only be feasible
once up to 1 KByte of payload data has been observed.

Signatures can be obtained from protocol specifications.
This is relatively easy for open and published protocols.
However, proprietary protocols are often neither open
nor published, thus signatures must be derived from re-
verse engineering of the protocols (e.g. [17]). Such a pro-

cess is arguably going to produce signatures that do not
fully capture the underlying protocol semantics, yielding
inaccurate estimates of the traffic associated with those
protocols.

Aside from the need for payload access, a major draw-
back of the payload-inspection method is that it cannot
handle traffic with encrypted payloads. This has become
increasingly problematic as common and increasingly pop-
ular applications turn to the use of encryption to evade
detection by deep-packet inspection techniques.

To classify the traffic in our traces we use the identifica-
tion mechanisms of the open source DPI tool l7-filter [14].
Because this tool is not intended as an offline, trace pro-
cessing tool (it is intended to be deployed as part of the Li-
nux iptables firewall for traffic shaping purposes), we use a
user-space version of this tool [18]. We refer to this offline
version as L7. This classifier re-assembles the data content
of a flow and identifies the application via pattern match-
ing using regular expressions. A flow is marked as identi-
fied as soon as a known pattern is found in at least one
of its directions. Only the first 10 packets of each flow
are considered.

3.3. Naïve Bayes with kernel estimation

In order to describe Naïve Bayesian classification it is
useful to consider a data sample x ¼ ðx1; . . . ; xnÞ. This is a
realization of X ¼ fX1; . . . ;Xng such that each random var-
iable Xi is described by m attributes fA1; . . . ;Amg (referred
to as features) that can take numeric or discrete values.
Xi ¼ ðAðiÞ1 ; ;AðiÞm Þ

T is then a random vector. As an exam-
ple, for Internet traffic, AðiÞj may represent the mean inter-
arrival time of packets in the flow i.

Assume now that there are k known classes of interest.
Let C ¼ fc1; . . . ; ckg represent the set of all known classes.
For each observed instance xi in x, there is a known map-
ping C : x! C representing the membership of instance
xi to a particular class of interest. The notation CðxiÞ ¼ cj

stands for ‘‘the instance xi belongs to the class cj”.
Bayesian statistical conclusions about the class cj of an

unobserved flow y are based on probability conditional
on observing the flow y. This is called the posterior proba-
bility and is denoted by pðcjjyÞ. The Bayes rule gives a way
of calculating this value:

pðcjjyÞ ¼
pðcjÞf ðyjcjÞP
cj

pðcjÞf ðyjcjÞ
; ð1Þ

where pðcjÞ denotes the probability of obtaining class cj

independently of the observed data (prior distribution),
f ðyjcjÞ is the distribution function (or the probability of y
given cj) and the denominator acts as a normalizing
constant.

The goal of the supervised Bayes classification problem
is to estimate f ðyjcjÞ, j ¼ 1; . . . ; k given some training set x.
To do that, Naïve Bayes makes certain assumptions on
f ð�jcjÞ such as the independence of Ais as well as the stan-
dard Gaussian behavior of them. The problem is then re-
duced to simply estimating the parameters of the
Gaussian distribution and the prior probabilities of cjs. In
fact, Naïve Bayes is also capable of dealing with discrete

SOURCE DESTINATION

CLIENT SERVER

ADDRESS
PORT

CLIENT IP SERVER IP
CLIENT PORT SERVER PORT

SOURCE DESTINATION
ADDRESS
PORT

CLIENT IPSERVER IP
CLIENT PORTSERVER PORT

Fig. 2. Relationship between client and server and source and destination
port numbers.

796 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

random features, which could represent the state of some
flag of a flow, by treating them independently and using
the frequencies of occurrences to estimate f ð�jcjÞ,
j ¼ 1; . . . ; k.

3.4. C4.5 Decision tree

C4.5 is well-known as a discriminative decision tree
algorithm where the classification will be definitive (to as-
sign each data point one of the mutual-exclusive classes).

Input to C4.5 consists of a collection of training cases,
each having a tuple of values for a fixed set of features
F ¼ F1; F2; . . . ; Fk and a class. A feature Fa can be described
as continuous or discrete according to whether its values
are numeric or nominal. The class C is discrete and has val-
ues C1;C2; . . . ;Cx.

The goal is to learn, from the training cases, a function

DOMðA1Þ � DOMðA2Þ � � � � � DOMðAkÞ ! DOMðCÞ;

that maps from the feature values to a predicted class.
As such the decision tree is a recursive structure where:

� a leaf node is labeled with a class value, or
� a test node that has two or more outcomes, each linked

to a subtree.

To classify an object using C4.5, imagine the object to be
classified is initially at the top (root) of the tree. The object
will go iteratively into a subtree as below, until it reaches a
leaf node:

� if it is at a leaf node, the label associated with that leaf
becomes the predicted class;

� if it is at a test node, when the outcome of the test is
determined, it is moved to the top of the subtree for that
outcome.

When training a model, the C4.5 learner uses informa-
tion gain ratio to decide which feature goes into a test
node. The information gain ratio is defined as the normal-
ized information gain (2), which is based on the entropy (5)
of the random variables. It measures the correlation be-
tween two random variables: a feature and a class label
in this case.

Given discrete random variables X and Y:

GAINRATIOðXjYÞ ¼ HðXÞ � HðXjYÞ
HðXÞ ; ð2Þ

IGðXjYÞ ¼ HðXÞ � HðXjYÞ; ð3Þ

where

HðXjYÞ ¼ �
X

j

pðyjÞ
X

i

pðxijyjÞlog2pðxijyjÞ; ð4Þ

and

HðXÞ ¼ �
X

xi

pðxiÞlog2pðxiÞ; ð5Þ

where pðxiÞ ¼ P½X ¼ xi�, pðyjÞ ¼ P½Y ¼ yj� and pðxjjxjÞ ¼
P½X ¼ xijY ¼ yj�.

In principle, the learner iteratively looks for the best
feature to partition the data points in a node. The one with

highest information gain ratio will be used to make the
decision in the node. The division continues until the node
becomes a leaf node, or the number of training data points
in the node is smaller than a given number.

Moreover, C4.5 has incorporated a large number of
improvements such as error-reduced pruning, avoiding
over-fitting, and dealing with missing values. We refer
the reader to Quinlan [19] for further information.

3.5. Feature-space reduction

We use the Fast Correlation-Based Filter (FCBF) of Yu
and Liu [20] along with a variation of a wrapper method
in determining the value of the threshold (described later
in this section). The FCBF filter method performs very
well in improving the performance of Naïve Bayes when
contrasted with other related techniques [20].

The correlation measure used in FCBF is based on the
symmetrical uncertainty. Using Eqs. (3) and (5), symmetri-
cal uncertainty is defined in the following way:

SUðX; YÞ ¼ 2
IGðXjYÞ

HðXÞ þ HðYÞ

� �
: ð6Þ

Symmetrical uncertainty takes values in [0,1], where the
value 1 means that the knowledge of either X or Y can in-
duce the other, while 0 suggests that features X and Y are
wholly independent. At this point, Eq. (6) has only been de-
fined for nominal feature values,4 therefore FCBF will dis-
cretize continuous features before the core analysis [20].

The FCBF algorithm selects good features via a two
stage process by identifying:

� the relevance of a feature, and
� the redundancy of a feature with respect to other

features.

To describe these concepts mathematically, let C denote
the random variable of traffic classes taking values in C.
Further, let SUi;c and SUi;j denote the value of the symmet-
ric uncertainty between Ai and C and between Ai and Aj,
respectively. A feature Ai is believed to be relevant if
SUi;c P d, where d is some threshold value to be deter-
mined by the user.

Identification of redundancy is often done by comput-
ing the pairwise cross-correlations between features. How-
ever, Yu and Liu [20] note that this method is quite
computationally expensive and so the solution they pro-
pose considers SU values, because symmetrical uncertainty
captures pairwise cross-correlation information. As a re-
sult, FCBF works in the following way. Initially, SUj;c ,
1 6 j 6 m are calculated and features are ordered in
descending order according to the values of SU. A set S is
created, containing Ajs that satisfy SUj;c P d. Then, the fea-
ture with the largest SUj;c (call it Ap) is compared to SUj;q,
where Aq 2 S n Ap. If SUj;q P SUp;c , the feature Aq is consid-
ered redundant and is therefore removed from S. The pro-
cedure is repeated for all Ap’s in S. The complexity of this
algorithm is Oðnm log mÞ.

4 Although it is possible to define it for continuous random variables, the
estimation of probabilities is then much harder.

W. Li et al. / Computer Networks 53 (2009) 790–809 797

Author's personal copy

At last, the question arises as to how to determine the
optimal value of the threshold d. To overcome this diffi-
culty, we use a wrapper method based upon the Naïve
Bayes algorithm, i.e. computational results of the Naïve
Bayes algorithm will be used to estimate the optimal value
of the threshold. This approach has the goal of maximizing
some measure of accuracy (e.g., percentage of correctly
classified flows). The advantage of this approach is that it
is less computationally expensive than the ‘‘forward selec-
tion” or ‘‘backward elimination”, since only m cases are
needed to be checked compared to 2m � 1. In addition, this
method significantly improves the predictive capability of
Naïve Bayes technique, and may also improve the accuracy
of other machine learning mechanisms.

The following procedure is used to identify the best
number of features to be used for a particular training set:

(1) All features are ranked in order of importance as cal-
culated by the FCBF method.

(2) We now wish to identify the most valuable features;
to do this an independent set of test data is chosen
and it is used to evaluate the performance of Naïve
Bayes classifier trained on different number of
features.

(3) We train Naïve Bayes on the training set with n,
where n 2 1 . . . m (recall m is the total number of fea-
tures) and evaluate the resulting classifier on the
test set.

(4) Finally, we select the optimum value for n such that
it provides maximum classification accuracy while
minimizing the total number of features required.

This algorithm uses both filter and wrapper methods to
determine the optimal set of features [21].

4. Results and discussion

Using information collected from the first several pack-
ets of the flow, we aim at building real-time classification
models. These models are trained offline due to the need
of hand-classified ground-truth data. The testing phase
however, can be automated and involves the following
three-phase pipeline:

(1) grouping packets into flows,
(2) calculating features from the flows, and
(3) classifying the flows using the features and labeling

the flows.

Apart from accuracy, there are two further objectives in
the design of such a classification system:

Latency. Firstly, for certain tasks such as application-spe-
cific routing, monitoring or anomaly detection,
it is desirable for the latency prior to identifying
a flow be as low as possible.

Overhead. Both the memory footprint in aggregating the
packets and the computational complexity in
calculating features increase proportionally
with the number of packets in each flow object.

Thus it behooves an architect to minimize the
quantity of link-data required. Collecting all
packets of live traffic on a high-speed link will
quickly exhaust the memory space for any com-
modity hardware. However, by keeping fewer
packets of a flow in the memory, the system
will be able to exchange a small error for a
higher throughput, thereby enabling the classi-
fication systems’ operation on a high-speed
link.

4.1. Observation window

Theoretically, a flow classifier will be more accurate
when given more relevant information collected from each
flow. However, the latency and computational overheads
in collecting features will increase in proportion to the
observation window size. This observation window may
be bounded in time, in the total number of packets, or both.

To provide a reasonable trade between accuracy, la-
tency and throughput, one can choose to limit the number
of packets at the beginning of a flow from which to collect
the set of features. Formally, we define an observation
window as a fixed window of a given number of packets
from the first packet in a flow (i.e., a SYN packet). For
example, the feature ‘‘average payload bytes” is calculated
using the sum of payload bytes in these packets divided by
the number of packets seen in the observation window.

To demonstrate how one might attend the accuracy/la-
tency/throughput trade-off and to evaluate the perfor-
mance of such a classification mechanism, we use a
subset of 12 features and the C4.5 algorithm to identify
an appropriate observation window size. When collecting
features we also use a 15 s timeout alongside the limit on
the number of packets, that is, the observation window ter-
minates when either the number of packets sums to the
window size or the timeout occurs.

The classifier accuracy for different observation window
sizes varying from 4 to 10 is shown in Fig. 3. For these re-
sults and in common throughout this work, we perform
our C4.5 and Naïve Bayes evaluations using the Weka
[22] toolkit.

4 5 6 7 8 9 10
99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

Packet limit of the observation window (packets)

C
or

re
ct

ly
 c

la
ss

ifi
ed

 fl
ow

s
%

Day1
Day2
Day3

Fig. 3. Relationship between accuracy and packet-limit using C4.5.

798 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

For all data-sets, the accuracy achieves a high value
with a window size of five packets. The accuracy is compa-
rable to the accuracy of using complete flows or larger
observation windows. This indicates that the behavior
shown in the first five packets contains rich information
to classify the flows.

The idea of early flow ‘‘fingerprinting” is also used by
Bernaille et al. [1] where they use a feature set composed
of the sizes and directions of the first four data packets of
each flow. In comparison, our method collects more infor-
mation from fewer packets: our five observed packets in-
clude the three start-of-flow packets common at the
beginning of each TCP flow. This results in lower overheads
and lower latency for our methods. We choose a window
size of five packets for the results presented in the rest of
this paper.

4.2. Methodology

In Section 4, we show both a range of results and com-
parisons. These comprise:

(1) a 4-way accuracy comparison between the classifi-
cation methods (Table 5),

(2) per-class accuracy on Day1, Day2, Day3, and SiteB,
for C4.5 algorithm (Table 6),

(3) a 4-way general accuracy comparison between the
temporal decay property of classification methods
(Figs. 4–6),

(4) per-class temporal decay between Day1-Day2,
Day1-Day3, and Day2-Day3, for C4.5 algorithm
(Table 7),

(5) a 4-way comparison between the spatial stability of
classification methods with cross-site (Table 8) and
multi-site (Table 10) training on Day3 and SiteB
data-sets, along with per-class accuracy for C4.5
algorithm (Tables 9 and 11),

(6) a 4-way accuracy comparison on UDP traffic (Table
14), with detailed per-class results (Table 15) and
temporal and spatial stability (Tables 16 and 17),
and

(7) a comparison of training and testing time between
C4.5, Naïve Bayes and L7 methods (Table 18).

To evaluate the accuracy of the classifier on the same
day and same site (Section 4.3), for each flow we randomly
place it into one of two data-sets (for example, with a prob-
ability of 0.5 to create comparable-sized data-sets). One
data-set serves as training set and the other data-set as
testing set. We can repeat the division of data-sets using
a different seed for the random-number generator This al-
lows a repeating of the process as many times as required,

Table 5
Overall accuracy comparison across four classification methods.

Data-set C4.5 Naïve Bayes IANA ports L7 signature set (2008) L7 signature set (2003)

Day1 % flows 99.807 ± 0.021 96.663 ± 0.064 95.29 88.93 72.27
% packets 99.711 ± 0.026 82.050 ± 0.093 34.25 30.18 27.13
% bytes 99.714 ± 0.025 83.911 ± 0.091 31.72 27.66 25.89

Day2 % flows 99.895 ± 0.012 95.845 ± 0.066 91.79 87.63 70.63
% packets 99.886 ± 0.013 86.152 ± 0.089 23.96 23.39 21.24
% bytes 99.884 ± 0.013 86.341 ± 0.088 16.21 16.31 15.39

Day3 % flows 99.937 ± 0.010 98.301 ± 0.049 84.66 78.03 60.14
% packets 99.843 ± 0.016 80.930 ± 0.095 21.07 19.94 17.93
% bytes 99.842 ± 0.016 80.203 ± 0.107 17.55 16.51 16.22

SiteB % flows 99.665 ± 0.021 97.630 ± 0.055 89.67 94.28 56.08
% packets 99.441 ± 0.029 94.570 ± 0.068 79.39 86.61 57.87
% bytes 99.422 ± 0.033 93.700 ± 0.077 77.53 84.59 61.13

Table 6
Per-class accuracy for online classification using C4.5.

Class Day1 Day2 Day3 SiteB

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

WEB 99.878 99.945 99.985 99.989 99.955 99.992 99.771 99.962
MAIL 99.954 99.982 99.642 99.648 99.899 99.899 99.862 99.871
BULK 99.003 99.654 99.861 99.880 99.627 99.794 97.830 97.478
ATTACK 95.845 81.668 94.147 94.529 60.000 8.571 99.950 99.751
CHAT – – – – 95.313 92.424 96.056 81.818
P2P 96.456 96.595 99.201 98.914 99.892 99.861 99.204 99.154
DATABASE 99.892 99.463 99.808 99.693 99.967 99.978 – –
MULTIMEDIA 97.206 98.185 0.0 0.0 100.0 94.737 100.0 72.727
VOIP – – – – 88.095 79.570 90.523 87.920
SERVICES 100.0 99.502 99.641 99.910 100.0 45.714 71.823 27.957
INTERACTIVE 100.0 100.0 97.222 97.222 100.0 99.071 97.792 97.792
GAMES 100.0 40.000 – – – – 100.0 100.0
GRID – – – – – – 96.875 100.0

W. Li et al. / Computer Networks 53 (2009) 790–809 799

Author's personal copy

for example, in the computation of standard deviation or
confidence intervals.

The accuracy figures represent an average of each
experiment conducted where each experiment accuracy
figure is the total number of correctly identified flows di-
vided by the total number of flows within that particular
data-set.

To evaluate the temporal stability (Section 4.4), we train
the model using the Day1 (2003) and Day2 (2004) data-
sets, and test the model on each of Day2 and Day3 data-
sets. Recall that Day2 and Day3 were collected in 2004
and 2006, respectively.

To evaluate the spatial stability (Section 4.5), we first
train the model using a subset of each of the Day3 and Si-
teB data-sets. We then validate each model against the
remaining data-set from that site.

To create a multi-site model we combine one half of
each of the Day3 and SiteB data-sets to use as a training
set producing the multi-site model. We evaluate this mod-
el on the remaining half of each data-set. Using the same
(random) mechanism as above, this process is repeated
to obtain standard deviation and confidence intervals. In
this way the results show the overall accuracy for both
halves for Day3 and SiteB, respectively. This represents
the spatial stability of the multi-site model on specific, dif-
ferent data-sets.

It is important to note that in each case, there is no
overlap between the training set and the testing set – we
do not test the accuracy on the same data as was used to

train the model. Further, each of the experiments is re-
peated multiple times using multiple different random-
number seeds to divide data-sets into different training
sets and testing sets. In each case we present the overall
accuracy along with confidence intervals where these are
significant.

The following metrics are used to quantify the accuracy
of classification models:

� Overall Accuracy – the percentage of correctly classified
instances over the total number of instances,

� Precision – the number of class members classified cor-
rectly over the total number of instances classified as
class members for a given class, and

� Recall – the number of class members classified correctly
over the total number of class members for a given class.

4.3. Classification accuracy (same site, same day)

In this subsection, we present results contrasting the
overall accuracy across four classification methods: C4.5,
Naïve Bayes, IANA port numbers and L7 signatures. The re-
sults are shown in Table 5. Note that C4.5 and Naïve Bayes
classifiers are using the features computed with the five-
packet observation window; instead, for ideal effective-
ness, L7 classifier is searching the payload content for
known signatures in up to the first 10 data packets of a
flow.

Day1:2003 Day2:2004 Day3:2006
60

65

70

75

80

85

90

95

100

Dataset: Year

C
or

re
ct

ly
 C

la
ss

ifi
ed

 F
lo

w
s

%

C4.5
Naive Bayes+Kernel Est.
Port Numbers
L7 Signature Set (2008)
L7 Signature Set (2003)

Fig. 4. A 4-way accuracy comparison of correctly classified flows for Day1
vs. Day2 and Day1 vs. Day3.

Day1:2003 Day2:2004 Day3:2006
10

20

30

40

50

60

70

80

90

100

Dataset: Year

C
or

re
ct

ly
 C

la
ss

ifi
ed

 P
ac

ke
ts

 %

C4.5
Naive Bayes+Kernel Est.
Port Numbers
L7 Signature Set (2008)
L7 Signature Set (2003)

Day1:2003 Day2:2004 Day3:2006
10

20

30

40

50

60

70

80

90

100

Dataset: Year

C
or

re
ct

ly
 C

la
ss

ifi
ed

 B
yt

es
 %

C4.5
Naive Bayes+Kernel Est.
Port Numbers
L7 Signature Set (2008)
L7 Signature Set (2003)

Fig. 5. A 4-way accuracy comparison of correctly classified packets and bytes for Day1 vs. Day2 and Day1 vs. Day3.

Day2: 2004 Day3: 2006
70

75

80

85

90

95

100

C
or

re
ct

ly
 C

la
ss

ifi
ed

 T
ra

ffi
c

%

Dataset: Year

C4.5: by flows
C4.5: by packets
C4.5: by bytes
Naive Bayes: by flows
Naive Bayes: by packets
Naive Bayes: by bytes

Fig. 6. Accuracy comparison of correctly classified flows, packets and
bytes for Day2 vs. Day2 compared with Day2 vs. Day3.

800 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

It is well-known that the port-based classifier is likely
to lead to inaccurate estimates of the amount of traffic car-
ried by different applications given that certain protocols,
such as HTTP, are frequently used to relay other types of
traffic, e.g., MSN Messenger over HTTP, whereas other pro-
tocols make use of parallel connections which use dynam-
ically assigned port numbers, e.g., FTP transfers in PASV
mode. In addition, emerging services typically avoid the
use of well-known ports, e.g., some P2P applications, while
other popular applications deliberately use well know
ports to masquerade their traffic through firewalls, e.g.,
Skype. These have led to only 31% of byte accuracy in
Day1 and further 16% and 17% byte accuracy in Day2 and
Day3, respectively.

The general performance of payload signature matching
is even worse because (a) even the most up-to-date signa-
ture set is by far not enough to cover all the applications,
(b) some of the signatures do not match sufficiently well
while (c) others are significantly over-matching.

Compared to conventional port-based and signature-
based classifiers, the overall accuracy of our method is
much higher in terms of flows, packets and bytes. To fully
describe its performance, Table 6 details the per-class per-
formance for each application class. The accuracy is high
(>99%) for the major application classes. However, because
the classifier tends to converge towards the highest overall
accuracy, classes containing a small number of members
may present a lower accuracy as the class distribution of
the training data-set is not uniform.

Also, some of the classes are presumably more difficult
than others. The ATTACK class comprises of a variety of
malicious activities targeting different vulnerabilities. This
complex variety leads to a number of false predictions to
and from other classes, e.g., some of them are classified
as WEB in Day1 and Day3, while in Day2 some MAIL flows
are classified as ATTACK. However, the results show that
these models may still achieve either good precision or
good recall for ATTACK class within Day1, Day2 and SiteB.

Ideally, the accuracy obtained by two-fold cross-valida-
tion in the same data-set can be an indication of accuracy
for classifying the traffic of the same day or in a short per-
iod after the model is built.

We are also interested in seeing how the classifier de-
cays over time, which is presented in the next subsection;
and how the classifier performs on a totally different net-
work or across various networks, which is presented in
Section 4.5.

Table 7
Per-class accuracy temporal stability for online classification uing C4.5.

Class Day1 vs. Day2 Day1 vs. Day3 Day2 vs. Day3

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

WEB 99.917 99.868 99.851 99.713 99.941 99.866
MAIL 94.362 100.0 99.606 88.914 100.0 87.934
BULK 83.545 99.259 35.101 92.543 86.623 97.178
ATTACK 0.0 0.0 0.0 0.0 0.0 0.0
CHAT – – 0.0 0.0 0.0 0.0
P2P 92.690 97.791 96.219 99.578 98.471 98.856
DATABASE 96.893 19.148 51.741 4.531 100.0 99.967
MULTIMEDIA 0.0 0.0 0.0 0.0 0.0 0.0
VOIP – – 0.0 0.0 0.0 0.0
SERVICES 99.541 97.570 43.750 30.000 4.636 30.000
INTERACTIVE 97.222 97.222 100.0 8.050 100.0 8.050

Table 8
Accuracy of models trained from one site and applied to each other site, between Day3 (2006, Site A) and SiteB (2007, Site B).

Model:data-set C4.5 Naïve Bayes IANA ports L7 signature set (2008)

Day3:SiteB % flows 94.466 ± 0.095 89.821 ± 0.122 89.67 94.28
% packets 93.294 ± 0.103 84.417 ± 0.263 79.39 86.61
% bytes 94.035 ± 0.094 84.725 ± 0.394 77.53 84.59

SiteB:Day3 % flows 95.790 ± 0.080 84.454 ± 0.149 84.66 78.03
% packets 94.967 ± 0.086 73.226 ± 0.337 21.07 19.94
% bytes 95.345 ± 0.082 73.162 ± 0.340 17.55 16.51

Table 9
Per-class accuracy of C4.5 models trained from one site and applied to each
other site.

Class Day3:SiteB SiteB:Day3

Precision (%) Recall (%) Precision (%) Recall (%)

WEB 98.586 99.748 99.917 99.526
MAIL 99.697 99.981 91.270 99.346
BULK 11.307 91.172 37.421 98.206
ATTACK 0.000 0.000 0.000 0.000
CHAT 50.629 63.636 91.379 80.303
P2P 88.610 58.355 98.172 99.520
DATABASE – – 0.000 0.000
MULTIMEDIA 0.578 90.909 100.000 94.737
VOIP 33.019 26.845 3.022 11.828
SERVICES 0.079 0.430 0.333 1.429
INTERACTIVE 52.917 80.126 17.266 7.430
GAME 0.000 0.000 – –
GRID 0.000 0.000 – –

W. Li et al. / Computer Networks 53 (2009) 790–809 801

Author's personal copy

4.4. Temporal decay of model accuracy

In Section 3, we note that each classification scheme in-
volves the creation of a model that provides an identifica-
tion of each network-based application. Such models may
be the table of port numbers relating to (groups of) appli-
cations, the signature set for specific applications, or the
probabilistic priors grouping flow features as used by ma-
chine learning algorithms. In each case a model will define
how traffic is classified.

With changing applications and network-host behavior,
the accuracy of such a model for traffic classification will
change over time, as we illustrate in the following for sev-
eral different methods.

We study the temporal decay of the model accuracy by
applying the models created from Day1 and Day2 data-sets
to classify the Day2, Day3 and Day3, respectively. The gap
between Day1 and Day2 is 1 year (2003–2004), in which
the variety of application and composition of traffic did
not change significantly; whereas between Day2 and
Day3 it is roughly 2 years (2004–2006) when there is a rise
on the number of different applications (e.g., more kinds of
P2P clients, web applications, instant messengers and
Voice-over-IP clients). The composition of traffic also chan-
ged accordingly.

Figs. 4 and 5 show a 4-way comparison of the decay of
the overall accuracy from 2003, 2004 to 2006 for correctly
classified flows, and packets and bytes, respectively. We
used the same IANA port number list as before, but added
an old version of L7 signature set (September 2003) along-
side the most up-to-date L7 signature set. The two signa-
ture sets would represent the decay of signature-based
mechanisms under different assumptions. Besides those,
we show the results using C4.5 and Naïve Bayes models
built upon the Day1 data-set to classify Day2 and Day3
traffic.

It is shown that while conventional classifiers such as
port-based and signature-based degrade by around 5% of
flow accuracy each year, the C4.5 classifier has only a decay
of less than 2% each year in all three measures of flows,
packets and bytes. The standard deviation in the results
is relatively small. For example, the standard deviation of
C4.5 Day1 vs. Day3 is 0.079 and Naïve Bayes Day1 vs.
Day3 is 0.130. These values are invisible in the resolution
of the figure therefore the error bar is not shown.

Further, Fig. 6 shows a comparison Day2 vs. Day2 and
then Day2 vs. Day3. From this we can see the decay of
C4.5 and Naïve Bayes classifiers, between 2004 and 2006.
Results are given in terms of flows, packets and bytes.

The error bar is not shown due to the same reason as de-
scribed above. It is clear that there is significant decay in
the quality of classification provided by the Naïve Bayes
– still better than the L7 and port methods (Fig. 4) but sig-
nificant nonetheless. In contrast the C4.5 loses less than 3%
of accuracy for all metrics.

Finally, Table 7 presents the precision and recall values
of the results using C4.5.

Most of the classes are very accurate from 2003 to 2004,
and many classes are still very accurate from 2003 to 2006
and from 2004 to 2006, e.g., WEB, MAIL, BULK and P2P.

We also observe that in certain cases the precision is sig-
nificantly higher than recall. This indicates that some new
types of applications of this class may have emerged during
this period. These applications are difficult to be recognized
by the model trained using an earlier data-set. For example,
a reason for the recall of MAIL class losing 11% accuracy is
that more mail servers tunnel IMAP communications
through SSL in Day2 and Day3. Moreover, we can see that
different database management system servers on the site
increased between year 2003 and 2004: the recall is low
for Day1 vs. Day2 and Day1 vs. Day3, while nearly all the
database flows are correctly identified in Day2 vs. Day3.
Similarly, it also failed to identify the network monitoring
applications built upon HTTP (they are categorized into
SERVICES) and several remote control applications in the
INTERACTIVE class, such as PCAnywhere and GotoMyPC
that appeared between 2004 and 2006. The CHAT and VOIP
traffic are not successfully classified because these classes
do not even exist in the training sets. This observation also
raises an interesting problem of how to identify a whole
new class of traffic which is previously unobserved. Fur-
ther, poor temporal stability is shown for ATTACK as the
malicious traffic is of totally different types in the training
and testing data-sets.

4.5. Spatial stability of model accuracy

Our spatial stability study comprises two experiments:
the first is using the model trained on one site to measure
the accuracy on another site; the second is building a model
on the traffic from both sites and test on them separately.

In the first experiment, we measure the accuracy of a
model being applied to classify the traffic in a totally differ-
ent network where no prior information is available. In the
second experiment we are measuring the effectiveness of a
generic model across different, specific networks. Both
experiments serve to illustrate the spatial property of the
classification methodology.

Table 10
Accuracy of the dual-site model trained on half of the two data-sets and tested on the other half of each data-set.

Data-set C4.5 Naïve Bayes IANA ports L7 signature set (2008)

Day3 % flows 99.919 ± 0.008 97.986 ± 0.052 84.66 78.03
% packets 99.631 ± 0.025 79.281 ± 0.309 21.07 19.94
% bytes 99.627 ± 0.027 78.515 ± 0.319 17.55 16.51

SiteB % flows 99.662 ± 0.032 97.884 ± 0.053 89.67 94.28
% packets 99.558 ± 0.035 94.683 ± 0.312 79.39 86.61
% bytes 99.600 ± 0.033 93.906 ± 0.456 77.53 84.59

802 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

4.5.1. Training on one site and testing on another
The accuracy shown here is for models trained on Day3

and SiteB, respectively, and applied to test the accuracy on
the other data-set. Table 8 compares the model accuracy
with L7 and port numbers. The results under ‘‘Day3:SiteB”
is using Day3 as training set and SiteB as testing set; the re-
sults under ‘‘SiteB:Day3” is using SiteB as training set and
Day3 as testing set.

Since the majority of traffic at SiteB is web-browsing
traffic and the HTTP signature works relatively well, the
L7-signatures yield good results. However, in all cases the
result using C4.5 is advantageous compared with other
methodologies. Notably, the Day3 C4.5 model shows better
results in terms of flows, packets and bytes on SiteB which
is from a totally different network 19 months later.

Table 9 reports the results for each application class
using C4.5. Several major classes, namely WEB, MAIL, BULK
and MULTIMEDIA have shown outstanding recall values on
both directions; this means the model is very effective for
most traditional services. However, we notice that there
are drops in some other traffic classes:

� ATTACK: because of the difference in both location and
time, the attack traffic in the two data-sets are totally
of different types, which caused that none of the models
can identify the ATTACK traffic in the other data-set.5

� P2P: the identification is highly accurate from SiteB to
Day3, but it drops to 58% when using Day3 model to test
on SiteB. As a matter of fact, we have only found nine
internal hosts in Day3 running a P2P application (Gnu-
tella, eDonkey or Azureus). However in SiteB data-set
there were 30 internal hosts and the variety of the cli-
ents are larger (eDonkey, BitTorrent, DirectConnect, Jol-
tid, Gnutella and Pando) and are probably of newer
versions. Further to our knowledge, a major part of Site
A is running a firewall that severely throttles P2P traffic.
Such throttling produced a lot of failed attempts for con-
nection, which may lead to some skewness in the model.

� DATABASE and GRID: there is no networked database
traffic in SiteB data-set, which caused the failure in iden-
tifying them in Day3 data-set. Similarly, there is no Grid
computing traffic in Day3 data-set which caused the
failure in identifying them in SiteB data-set.

� VOIP: neither of the two data-sets have many samples of
Skype flows in TCP. Also, the result is not ideal due to the
different Skype versions (version 2 in Day3 data-set and
version 3 in SiteB data-set).

� SERVICES: this class comprises of only a small amount of
flows, and in Day3 data-set many of them is network
monitoring traffic over HTTP. This leads to a number of
false negatives and false positives on both ways.

� INTERACTIVE: this class incorporates ssh connections
and also several remote access software, e.g. Got-
oMyPC/expertcity. While ssh is easier to identify from
packet stream behavior, the INTERACTIVE traffic in the
two traces are significantly different in their behavior.

4.5.2. Multi-site training
Now we evaluate the model trained with combined

data from two different sites. In this experiment, a half of
each data-set is randomly selected and combined together
as the training set to train the model. Then the model is
tested on the other half of each data-set.

Table 10 shows the overall accuracy comparison and
Table 11 shows detailed per-class accuracy on each data-
set. The resultant accuracy only slightly decreases in com-
parison to models trained specifically for a given site. This
indicates that there is very little conflict when combining
the data-sets in order to train a model for multiple sites;
and the features, as we discussed before, are faithfully rep-
resenting the behavior of the applications rather than spe-
cific networks or different situations in the network
communication.

Most of the classes are very accurate except for a few
classes which only have a very small number of flows. This
is because the classifier tends to converge toward higher
overall accuracy during training, and the number of sam-
ples in these classes might be insufficient to build a good
model. There are methods to trade-off between the accu-
racy of a certain class with the overall accuracy, and we re-
fer readers to related machine learning literature.

4.6. UDP classification accuracy and stability

Although in recent years the UDP traffic has not in-
creased too much in the proportion of total traffic volume,
we have seen a significantly increased variety of applica-
tions over UDP, such as VoIP communications, multimedia
applications, P2P file-downloading and networked games.
Accordingly there is an increasing need to understand
and technically support such variety of applications.

For this study, we selected three 30 min traces of UDP
traffic from Day1, Day3 and SiteB, respectively (as detailed
in Section 2). All the three traces are collected at around
10:30 AM of a weekday.

Since the UDP flows do not maintain a state machine as
in TCP, we use an inactivity time-out. We elect to use the
default inactivity time-out of Cisco Netflow to aggregate
the flows, with the time-out value set to be 60 s. We

Table 11
Per-class accuracy of C4.5 dual-site model trained on half of the two data-
sets and tested on the other half of each data-set.

Class Day3 SiteB

Precision (%) Recall (%) Precision (%) Recall (%)

WEB 99.964 99.982 99.746 99.968
MAIL 99.924 99.949 99.963 99.862
BULK 99.663 99.495 96.654 98.919
ATTACK 29.411 14.285 99.626 99.825
CHAT 94.736 81.818 97.852 81.028
P2P 99.668 99.887 99.314 98.964
DATABASE 99.923 99.934 – –
MULTIMEDIA 100.0 94.736 90.909 90.909
VOIP 80.303 56.989 89.509 89.166
SERVICES 71.428 50.000 72.992 21.505
INTERACTIVE 99.047 96.594 97.763 96.530
GAME – – 99.337 100.0
GRID – – 95.876 100.0

5 In Day3 data-set the ATTACK class contains a small number of flows by
SQL injection over HTTP while in SiteB data-set it contains traffic generated
by botnets and a MS-RPC worm.

W. Li et al. / Computer Networks 53 (2009) 790–809 803

Author's personal copy

acknowledge this may not be the ideal value for all types of
traffic and would suggest that a multiple time-resolution
approach: using several different time-out values, would
make interesting future work.

The ground-truth in the UDP data-sets is derived in a
similar way as in the TCP data-sets. The actual application
breakdown in the UDP data-sets is shown in Table 12, com-
prising of six major classes.6

Following the approach described in Section 4.2, a ma-
chine learning approach is applied to classify the UDP traf-
fic. Like the TCP traffic, we use an observation window that
limits us to the first five packets.

As the UDP header contains different information from
the TCP header, it is necessary to select a different feature
set for UDP. Therefore, a complete set of features similar to
the TCP feature set (with the TCP-specific ones removed

and a few others changed) are collected and then, applying
the FCBF-based approach described in Section 3.5, we se-
lect an optimal subset of features. The resultant feature
set contains nine features and is shown in Table 13 below.

Table 14 compares the overall classification accuracy
across the classification methodologies: C4.5 and Naïve
Bayes using five-packet observation window, IANA port
numbers and L7 signatures, using the same criteria as in
previous Table 5. It shows that C4.5 achieves very good
accuracy and works far better than IANA port numbers
and L7-signatures.

Table 15 shows the precision and recall results for each
class in each data-set. Most of classes approach 100% recall
and precision, except two minor classes in SiteB with only
few instances, which are probably too small to be effec-
tively modeled.

We further evaluate the temporal and spatial perfor-
mance of the UDP classifier and the results are shown in
Table 16.

Table 12
Composition of UDP traffic in our data-sets. Applications shown are only examples for demonstration. ‘‘–” denotes non-existing traffic.

Class By flows (%)/packets (%)/bytes (%) Applications

Day1 Day3 SiteB

ATTACK 10.554/1.510/0.987 14.933/1.158/1.843 42.433/20.305/15.963 Port scans, ms-sql worms
SERVICES 88.889/76.807/62.740 57.073/25.167/14.084 11.968/26.532/26.339 DNS, LDAP, NTP, SNMP, middleware
P2P 0.036/0.022/0.007 13.861/28.109/23.862 7.062/7.560/7.280 Kazaa, Gnutella, eDonkey, BitTorrent
MULTIMEDIA 0.522/21.661/36.266 1.268/42.521/59.498 0.000/0.396/2.287 Windows Media Player, Realmedia
VOIP –/ –/ – 12.865/3.045/0.712 38.536/44.482/45.297 Skype
GAME –/ –/ – –/ –/ – 0.001/0.726/2.830 Second Life

Table 13
Properties of the subset of UDP features selected using five-packet observation window. SU is the symmetrical uncertainty measurement, as fully described in
Section 3.5.

Abbreviation Description SU Memory
overhead

Computational
complexity

num_pkts Number of packets seen on both directions 0.3333 O(1) O(n)
min_pbyte_clnt Minimum payload bytes seen (client to server) 0.3897 O(1) O(n)
min_pbyte_serv Minimum payload bytes seen (server to client) 0.4114 O(1) O(n)
max_pbyte_clnt Maximum payload bytes seen (client to server) 0.4032 O(1) O(n)
max_pbyte_serv Maximum payload bytes seen (server to client) 0.3803 O(1) O(n)
ini_pbyte_clnt Payload bytes sent from client to server before the first packet coming

back
0.3353 O(1) O(n)

max_csct_pkts_clnt Maximum number of consecutive packets (client to server) 0.3064 O(1) O(n)
serv_port Server port 0.6424 O(1) O(1)
clnt_port Client port 0.3676 O(1) O(1)

Table 14
Overall accuracy comparison across four classification mechanisms.

Data-set C4.5 Naïve Bayes IANA ports L7 signature set (2008)

Day1 % flows 99.956 ± 0.011 86.879 ± 0.208 88.91 73.43
% packets 99.969 ± 0.010 88.567 ± 0.163 79.44 72.55
% bytes 99.977 ± 0.010 90.529 ± 0.157 64.38 59.58

Day3 % flows 99.627 ± 0.034 97.812 ± 0.077 56.44 65.97
% packets 98.745 ± 0.043 94.389 ± 0.101 18.54 20.03
% bytes 94.750 ± 0.069 95.121 ± 0.098 5.28 5.66

SiteB % flows 99.889 ± 0.019 97.964 ± 0.075 10.50 53.15
% packets 99.052 ± 0.036 96.224 ± 0.101 22.96 71.30
% bytes 98.937 ± 0.037 92.250 ± 0.100 23.35 72.34

6 In theory there may also be instant messengers traffic (CHAT class) over
UDP, but it is not found in these traces.

804 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

The temporal study indicates that the diversity and
variety of applications over UDP have significantly in-
creased between Day1 and Day3. The traditional services:
DNS, NTP, SNMP and Windows Media Player traffic are cor-
rectly identified. However, the new types of attacks, P2P
filedownloading and VoIP applications are not able to be
identified using the previous model.

Despite the fact that the Day3 and SiteB UDP data-sets
are highly different in the traffic composition and the
application-set, most of the classes are correctly identified.
The result for the P2P class is lower than SERVICES and
VOIP due to the different application variety on each
data-set and the impact from firewall policies in Day3.
Also, there are only two multimedia flows in SiteB which
is insufficient to build the model to classify the MULTIME-
DIA traffic in Day3.

Finally, a multi-site model is trained using combined
UDP data from two different sites. A half of each data-set

is randomly selected and combined together as the train-
ing set to train the model. Then the model is tested on
the other half of each data-set. As shown in Table 17,

Again the result is much better than applying the model
from one site to the other. A very small decrease is seen in
comparison to models trained specifically for a given site.
However, the overall accuracy is still very good, and the re-
call value of some classes such as VOIP and MULTIMEDIA
in SiteB data-set have even improved, probably because
the additional training samples from Day3 complemented
those from SiteB.

4.7. Complexity and memory footprint

The cost in the online classification pipeline can be bro-
ken down into three parts. Suppose we drop the later pack-
ets of a flow after classification of the flow. Then if we
denote M as total flows currently in the memory and n as

Table 15
Per-class accuracy for UDP classifier using C4.5.

Class Day1 Day3 SiteB

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

ATTACK 99.772 99.924 99.782 100.0 99.994 100.000
SERVICES 99.996 99.964 99.905 99.958 99.930 99.923
P2P 100.0 88.889 99.115 98.601 99.147 99.332
MULTIMEDIA 97.015 100.0 97.789 98.797 0.0 0.0
VOIP – – 98.950 98.916 99.896 99.859
GAME – – – – 0.0 0.0

Table 16
Per-class and general accuracy for temporal and spatial evaluation of the UDP models trained with C4.5.

Class Temporal Spatial

Day1 vs. Day3 Day3:SiteB SiteB:Day3

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

ATTACK 36.493 22.053 99.986 96.516 99.965 81.465
SERVICES 72.221 99.862 95.366 96.577 99.200 99.501
P2P 24.625 1.289 67.106 63.018 68.973 86.469
MULTIMEDIA 10.204 92.955 0.256 50.000 0.0 0.0
VOIP 0.0 0.0 91.225 95.252 84.958 87.519
GAME – – 0.0 0.0 – –

Overall flows (%) 61.428 ± 0.358 92.149 ± 0.157 93.670 ± 0.144
Overall packets (%) 70.086 ± 0.298 52.955 ± 0.375 92.553 ± 0.148
Overall bytes (%) 65.275 ± 0.334 36.772 ± 0.434 89.725 ± 0.161

Table 17
Per-class and general accuracy of the dual-site model trained on half of the two UDP data-sets and tested on the other half of each data-set.

Class Day3 SiteB

Precision (%) Recall (%) Precision (%) Recall (%)

ATTACK 99.971 100.0 99.989 99.995
SERVICES 99.939 99.958 99.912 99.917
P2P 98.449 97.768 99.221 99.270
MULTIMEDIA 99.648 97.251 7.143 50.000
VOIP 97.767 98.611 99.884 99.864
GAME – – 0.0 0.0

Overall flows (%) 99.453 ± 0.043 99.884 ± 0.019
Overall packets (%) 98.150 ± 0.324 98.937 ± 0.101
Overall bytes (%) 97.815 ± 0.500 95.888 ± 0.572

W. Li et al. / Computer Networks 53 (2009) 790–809 805

Author's personal copy

the number of packets in the observation window, then the
total computational overhead would comprise all the fol-
lowing (also note that roughly M has a linear relationship
with n):

(1) For capturing packet headers and aggregating pack-
ets into flows, there will be a memory footprint of
OðMÞ to store M flows in the memory and computa-
tional complexity of at least Oðlog2MÞ for each
packet captured to find the flow it belongs to.
Assuming M is proportional to n, for each flow, the
complexity in aggregating the packets is roughly
Oðn� log2nÞ.

(2) For feature collection and calculation of each flow,
different features in the complete set would cause a
memory footprint varied from Oð1Þ to OðnÞ and com-
putational complexity varied from Oð1Þ to
Oðn� log2nÞ. Roughly, the total cost of feature collec-
tion of one flow would have a super-linear relation-
ship with the number of features in the feature set.

(3) Presuming C4.5 is being used as the classifier, for
classification of each flow, the computational com-
plexity in the classifier is equal to the average depth
of the decision tree, which is similar to the complex-
ity of simple port-based rule-sets.

Clearly, we know from the cost breakdown above, as the
complexity of the classifier is O(1), the bottleneck in this
pipeline may be in reassembling the flows and calculating
the features, instead of the calculations in the classifier.
However, the total cost of classifying a flow can be
bounded within Oðn� log2nþ n� KÞ where n is the num-
ber of packets in the observation window and K is the
number of features collected. Such cost is considerably
lower than a flow-based string signature matching system
when n and K are both small.

Besides the complexity analysis, empirical results on
the CPU time required for training and testing are provided
below.

4.7.1. CPU time results
The experiments are run on a Dell Poweredge 2850

equipped with 2 Intel Xeon 3.5 GHz CPU and 4 GB of
RAM. L7 signature matching and feature collection are
implemented in C++, whereas the training and testing of
the machine learning models are performed using the
Weka toolkit.

The CPU times are evaluated using data-sets on three
different scales: (1) one-tenth of a 30-min trace (2476
flows), (2) one 30-min trace (23,810 flows), and (3) ten
30-min traces (377,000 flows).

Three different classification methods: C4.5, Naïve
Bayes and L7 are separately executed on these data-sets.
The time in offline training, online feature collection and
classification are measured separately for each of the ma-
chine learning approaches, whereas for L7 we measure
the time spent in classification alone. For each result of ma-
chine learning methods, we classify each data-set using the
model trained from a data-set of the same time scale. Each
experiment is repeated 10 times. Table 18 lists the CPU
times normalized by the number of flows in the data as
the size of the trace varies, along with the standard devia-
tions. The time for aggregating packets into flows is in-
cluded in ‘‘online feature collection/classification”.

The offline training time is less relevant to the online
classifier performance: it shows how long it takes for the
model to be built up using a certain data-set size.

The feature collection time for machine learning algo-
rithms, and the classification time for L7 are both nearly
constant when normalized. However, the feature collection
time is about one-third of the time spent in signature
matching by L7 (both implementations are not optimized).
The classification time using C4.5 is very low: 13 ls per
flow for the largest data-set. Recall that the average com-
putation needed in a C4.5 decision tree is the average
depth of the tree. As the size of the training set increases,
the average tree-depth in all our models remains between
4 and 5, due to the effective pruning process of this algo-
rithm. And so the normalized classification time should re-
main constant.7 In contrast, the normalized classification
time is not constant for Naïve Bayes with kernel estimation
as the CPU time grows from 610 ls per flow (1/10 data-set)
to 4276 ls per flow (10 data-sets). It is determined that
training on larger data-sets results in a higher complexity
of the model.

5. Related work

The challenge in classifying the Internet traffic has
aroused an ever-widening interest – whether among users
concerned about their data, network-operators and nations
keen to embargo certain applications [23], or for research-
ers wanting to further their understanding [24]. There has
been a rich literature that drafted a range of proposals and
conducted a number of preliminary experiments to ad-
dress this interest.

Table 18
Comparison of training and testing times between C4.5, Na Bayes and L7 schemes.

Data-set size C4.5 Naïve Bayes L7

Offline training time (ls) 1/10 186.06 ± 25.66 103.74 ± 20.49 –
1 130.20 ± 8.19 24.65 ± 1.97 –
10 337.71 ± 2.88 32.28 ± 0.53 –

Online feature collection/classification (ls) 1/10 673 ± 49/67.79 ± 11.09 673 ± 49/610.25 ± 40.43 1666 ± 70
1 692 ± 101/19.36 ± 1.05 692 ± 101/1331.8 ± 13.76 1540 ± 198
10 540 ± 8/13.73 ± 0.34 540 ± 8/4276.7 ± 375.76 1814 ± 63

7 However, there is a non-negligible model-loading time in our exper-
iments, which leads to higher normalized values for smaller data-sets. The
normalized value for the largest data-set is closest to the actual cost in the
classification.

806 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

The work in [7] quantitatively addressed the problem
for conventional classification methods based on port
numbers to effectively deal with current Internet traffic.
It also described a content-based work to obtain the
ground-truth application information for each flow in the
traffic.

Traditionally another type of solution came from the
intrusion detection community, examples of this include
Snort [25] and Bro [26]. Each of these systems can identify
the application layer protocols through the use of content
signatures or connection patterns. The L7-filter, the deep-
packet inspection filter described in [14], is a signature
matching system able to identify the application layer pro-
tocols so as to enable per-application traffic management
within the scope of the Linux iptables system.

There have been a number of previous works on sta-
tistical characterization and classification of different
application traffic. Fundamental to these are papers to
characterize a network flow using a different variety of
features to describe its behavior [27,11]. Their contribu-
tion provides an exploration of the different features of
application traffic. Such rich sets of features allow us to
consider the ability to perform behavior-based classifica-
tion by providing the input parameters for traffic classifi-
cation for a range of classification approaches as well as
inputs to application-specific modeling and simulation.

Meanwhile, several ground-breaking approaches
emerged for classification of current Internet traffic. Rou-
ghan et al. [9] proposed a method, representing a traffic
flow with some features (referred to as ‘‘descriptors”) such
as packet size and connection duration. They applied two
supervised learning techniques (k-NN and LDA) to define
the relationship between different values of these descrip-
tors and different Class-of-Service (CoS) categories. How-
ever, in common with a number of authors of the time,
Roughan et al. created ground-truth data using IANA port
numbers as a criteria, i.e., 80 = HTTP, 25 = SMTP, 22 = SSH.
Alongside this overloading of the port information there is
an assumption about the conventional protocol-application
mapping such as HTTP = web browser, a mapping which is
now demonstrated as wrong. In Section 2, we summarize
the process by which we calculate ground-truth informa-
tion; by making heavy use of manual verification our pro-
cess breaks that protocol-application mapping and places
no direct reliance on port number information.

Another interesting approach by Li et al. [28] used a sig-
nificant number of machines to create a known, albeit arti-
ficial ground-truth. We acknowledge the great effort of the
authors however, their approach can only serve to compli-
ment the capture of spatial heterogeneity among different
networks and sites, as we have done in this paper.

In a precursor of this paper, Moore and Zuev in [5] pre-
sented a statistical approach to classify the traffic into dif-
ferent types of services. A Naïve Bayes classifier, combined
with kernel estimation and a correlation-based filtering
algorithm, was used to solve the classification problem
on offline TCP traces. The resulting accuracy of up to 96%
demonstrated the discriminative power of a combination
of 12 flow-behavior features with a classical machine
learning algorithm. Li and Moore [29] extend this with
the application of the C4.5 algorithm and the use of an

‘‘observation window”: to limit the total number of re-
quired packets from the beginning of each flow. These
extensions allowed them to build an increased accuracy
while also enabling online (real-time) classification. In
contrast with the earlier work of Moore and Zuev, we have
also focused upon algorithms that return high accuracy
and lend themselves to use in real-time.

Williams et al. [6] carried out a comparison of five
widely utilized machine learning algorithms for the task
of traffic classification. Among these algorithms, Ada-
Boost+C4.5 was demonstrated with the highest accuracy.
Intended only as a guidebook for algorithms, their feature
set is relatively unsophisticated, containing only packet
lengths, total bytes, total packets, inter-arrival times, flow
duration and protocol. While a small feature set has
computation and storage advantages we demonstrate in
Section 4 that by considering a much wider range of fea-
tures, and then minimizing the feature set on the basis of
quality of information, computation and storage advanta-
ges can be maintained while accuracy and effectiveness
is improved.

Bernaille et al. [1] presented an approach to identify
applications using start-of-flow information. The authors
utilized the packet size and direction of the first four data
packets in each flow as the features with which they
trained Gaussian and Hidden Markov Models, respectively.
These models achieved 98.7% overall accuracy when as-
sisted by an expanded port number list, and 93.7% overall
accuracy using simple prediction heuristics. The authors
have further extended their work for the identification of
encrypted traffic in [30].

There have been a number of works that attempted the
same problem with different machine learning algorithms
and feature set such as unsupervised clustering [4,31] and
maximum likelihood with the first order Markov chain for
the state space of TCP control packet of a TCP connection
[3]. A recent statistical-fingerprinting mechanism was pro-
posed by the authors of Crotti et al. [2]. This work includes
the description of features (described as application-fin-
gerprints) and included the size of the IP packets, the in-
ter-arrival time and the order of the packets seen on the
link. While useful in some circumstances, without extra
work, such mechanism are not best suited to the classifica-
tion of the majority of Internet applications. In contrast, in
Section 3, we present results from a group of general-pur-
pose classification systems.

Differing from the per-flow classification approaches,
other work utilizes information retrieved from a higher le-
vel of traffic aggregation – the end-host. Karagiannis et al.
[32] combined information from multiple levels such as
the interaction between hosts on the host level, protocol
usage and per-flow average packet size on the flow level.
The results show an ability of classifying 80–90% of the
traffic with 95% accuracy. In [33] the authors present a re-
lated mechanism to profile user-activity and the behaviors
of the end-hosts, as well as an analysis of the dynamic
characteristics of host behaviors.

Notably there is also a lot of work focused on specific
kinds of traffic or applications of interest. For example,
Bonfiglio et al. [17] showed an interesting approach specif-
ically intended to identify Skype traffic by recognizing spe-

W. Li et al. / Computer Networks 53 (2009) 790–809 807

Author's personal copy

cial characteristics of Skype and Voice-over-IP traffic.
While a number of papers have been published focussing
on the identification of P2P applications: Karagiannis
et al. [34] effectively identified P2P traffic using several
sources of information taken from the IP-tuple connection
graph. Further, Constantinou and Mavrommatis [35] pro-
posed a way to identify P2P activities through the observa-
tion of the connection graph property and the client–server
property of an end-host.

6. Conclusion

Motivated by the importance of accurate identification
for a range of applications, we have explored the effective
and efficient classification of network-based applications
using only the observed network-traffic.

We presented results of a comparison of a number of
classification schemes. Significantly, we only used data
for which we have established the ground-truth: the actual
applications causing the network-traffic observed. Despite
the burden of computing accurate ground-truth, we sum-
marize a method we have used to accurately assess many
hundreds of Gigabytes of raw data.

We demonstrated the accurate training of models from
data with a high-confidence ground-truth and the use of an
efficient, small, feature set derived from the reduction of a
large flow feature list using a sophisticated feature selec-
tion mechanism. In combination with a small feature list,
we further show the return of good results with the use
of sub-sampling based upon a limited observation
window. We conclude the combination of an observa-
tion-window and the machine learning method (C4.5) is
transformative: enabling this approach to make a real im-
pact in online, real-time, classification applications.

We have documented a unique study in both the tem-
poral and spatial domains: comparing classification perfor-
mance across several years at one location and across
several locations. These results are unequivocal in demon-
strating the effectiveness of C4.5 mechanisms, the brittle-
ness of packet-content methods and the need for samples
of traffic from multiple sites to provide accurate multi-site
classification.

We demonstrated the computational complexity and
measured the costs within the classification pipeline, not-
ing the non-linear trade-offs incurred by some methods,
the limitations of deep-packet inspection, and the need
for observation-window based mechanisms.

Finally, while some past publications had investigated
UDP traffic classification within the scope of a single
application, in contrast with them, we illustrate the classi-
fication of UDP (and TCP) traffic using an application-
independent classifier. We use the same classification
approach for both stateful flows (TCP) and stateless flows
based upon UDP. Importantly, we demonstrate high levels
of accuracy: greater than 92% for the worst circumstance
regardless of the application.

Data. While anonymity needs and legal obligations limit
an out-right release of our raw data-sets; we make avail-
able to the community anonymized data files as well as

software at http://www.cl.cam.ac.uk/research/srg/netos/
brasil/.

Acknowledgements

This work is supported by the Engineering and Physical
Sciences Research Council through grant GR/T10510/02.
We thank the numerous network-operations groups who
have supported this research, they include JaNet, Dante,
KAREN, AT&T and GARR; this work would have been
impossible with their support and assistance. We thank
the anonymous reviewers for their many helpful com-
ments and suggestions, we also thank Jon Crowcroft, Dam-
ien Fay, Martin Zadnik and Ralphe Neill for their helpful
comments on drafts of this work.

References

[1] L. Bernaille, R. Teixeira, K. Salamatian, Early application
identification, in: Proceedings of the 2006 ACM Conference on
Emerging Network Experiment and Technology (CoNEXT’06),
December 2006.

[2] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, Luca Salgarelli,
Traffic classification through simple statistical fingerprinting,
SIGCOMM Computer Communication Review, January 2007.

[3] H. Dahmouni, S. Vaton, D. Rosse, A Markovian signature-based
approach to IP traffic classification, in: Proceedings of the 2006
SIGCOMM Workshop on Mining Network Data (MineNet’07), June
2007.

[4] J. Erman, M. Arlitt, A. Mahanti, Traffic classification using clustering
algorithms, in: Proceedings of the 2006 SIGCOMM Workshop on
Mining Network Data (MineNet’06), September 2006.

[5] Andrew W. Moore, Denis Zuev, Internet traffic classification using
Bayesian analysis techniques, in: Proceedings of the 2005 ACM
SIGMETRICS, 2005, pp. 50–60.

[6] N. Williams, S. Zander, G. Armitage, A preliminary performance
comparison of five machine learning algorithms for practical IP
traffic flow classification, SIGCOMM Computer Communication
Review, October 2006.

[7] A.W. Moore, D. Papagiannaki, Toward the accurate identification of
network applications, in: Proceedings of the Sixth Passive and Active
Measurement Workshop (PAM’05), LNCS, vol. 3431, Springer-Verlag,
March 2005.

[8] Getbymail: Remote Access & File Sharing by Mail. <http://
www.getbymail.com/>.

[9] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, Class-of-Service
Mapping for QoS: a statistical signature-based approach to IP traffic
classification, in: Proceedings of the 2004 ACM SIGCOMM Internet
Measurement Conference (IMC’04), October 2004.

[10] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, L. Peterson,
Characteristics of internet background radiation, in: Proceedings of
the 2004 ACM SIGCOMM Internet Measurement Conference
(IMC’04), October 2004.

[11] A.W. Moore, D. Zuev, M Crogan, Discriminators for use in flow-based
classification, Technical Report RR-05-13, Department of Computer
Science, Queen Mary, University of London, September 2005.

[12] Marco Canini, Wei Li, Andrew W. Moore, Raffaele Bolla, GTVS:
boosting the collection of application traffic ground truth, Technical
Note, University of Cambridge.

[13] Wei Li, Andrew W. Moore, Marco Canini, Classifying HTTP traffic in
the new age, in: ACM SIGCOMM 2008, Poster, August 2008.

[14] Application Layer Packet Classifier for Linux. <http://l7-
filter.sourceforge.net/>.

[15] C. Estan, K. Keys, D. Moore, G. Varghese, Building a better NetFlow,
in: Proceedings of the 2004 ACM SIGCOMM, August 2004.

[16] Marco Canini, Damien Fay, David J. Miller, Andrew W. Moore,
Raffaele Bolla, Per flow packet sampling for high-speed network
monitoring, in: Proceedings of the first International Conference on
Communication Systems and Networks (COMSNETS), January 2009.

[17] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, Revealing Skype
traffic: when randomness plays with you, in: Proceedings of the
2007 ACM SIGCOMM, August 2007.

808 W. Li et al. / Computer Networks 53 (2009) 790–809

Author's personal copy

[18] Raffaele Bolla, Marco Canini, Riccardo Rapuzzi, Michele Sciuto, On
the double-faced nature of P2P traffic, in: Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP’08), 2008, pp. 524–530.

[19] J.R. Quinlan, C4.5: Program for Machine Learning, Morgan Kaufman,
1993.

[20] Lei Yu, Huan Liu, Feature selection for high-dimensional data: a fast
correlation-based filter solution, in: Proceedings of the 20th
International Conference on Machine Learning (ICML’03), 2003.

[21] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley and
Sons Inc., 2001.

[22] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, second ed., Morgan Kaufmann Publishers, 2005.

[23] Thomas Karagiannis, Andre Broido, Nevil Brownlee, Kimberly C.
Claffy, Michalis Faloutsos, Is P2P dying or just hiding? in:
Proceedings of the 2004 IEEE GLOBECOM: Global Internet and
Next Generation Networks, November 2004.

[24] David A. Patterson, David D. Clark, Anna Karlin, Jim Kurose, Edward
D. Lazowska, David Liddle, Derek McAuley, Vern Paxson, Stefan
Savage, Ellen W. Zegura, Looking Over the Fence at Networks: A
Neighbor’s View of Networking Research, Computer Science and
Telecommunications Board, National Academy of Sciences,
Washington, DC, 2001.

[25] Martin Roesch, Snort – lightweight intrusion detection for networks,
in: Proceedings of the 13th USENIX Conference on System
Administration (LISA’99), 1999.

[26] Vern Paxson, Bro: a system for detecting network intruders in real-
time, Computer Networks 31 (23–24) (1999) 2435–2463.

[27] A. De Montigny-Leboeuf, Flow attributes for use in traffic
characterization, Technical Report, Communications Research
Centre Canada, December 2005.

[28] Li Jun, Zhang Shunyi, Lu Yanqing, Zhang Zailong, Internet traffic
classification using machine learning, in: Proceedings of Second
International Conference on Communications and Networking in
China (CHINACOM’07), August 2007, pp. 239–243.

[29] Wei Li, Andrew W. Moore, A machine learning approach for efficient
traffic classification, in: Proceedings of the 2007 IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’07), October 2007.

[30] L. Bernaille, R. Teixeira, Early recognition of encrypted applications,
in: Proceedings of the Eighth Passive and Active Measurement
Conference (PAM’07), April 2007.

[31] K. Gopalratnam, S. Basu, J. Dunagan, H. Wang, Automatically
extracting fields from unknown network protocols, in: Proceedings
of the First Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques (SysML’06), June 2006.

[32] Thomas Karagiannis, Konstantina Papagiannaki, Michalis Faloutsos,
Blinc: multilevel traffic classification in the dark, in: Proceedings of
the ACM SIGCOMM 2005, 2005, pp. 229–240.

[33] Thomas Karagiannis, Konstantina Papagiannaki, Nina Taft, Michalis
Faloutsos, Profiling the end host, in: Proceedings of the Eighth
Passive and Active Measurement Conference (PAM’07), April 2007.

[34] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, Kimberley C.
Claffy, Transport layer identification of P2P traffic, in: Proceedings of
the 2004 ACM SIGCOMM Internet Measurement Conference
(IMC’04), October 2004.

[35] F. Constantinou, P. Mavrommatis, Identifying known and unknown
peer-to-peer traffic, in: Proceedings of the Fifth IEEE International
Symposium on Network Computing and Applications (NCA’06),
2006.

Wei Li is a Ph.D. student in Computer Labo-
ratory, University of Cambridge. Before that,
he received the Master degree from University
College London. His research is specialized in
behavior-based real-time application and
service identification. He interests span
machine learning, data mining, network
monitoring and studying the use of the
Internet.

Marco Canini was born in Genoa in 1980. In
2005, he received the ‘‘laurea” degree in
Computer Engineering from the University of
Genoa, Italy. Since January 2006, he is a Ph.D.
student at the Department of Communica-
tions, Computer and Systems Science (DIST) of
the University of Genoa. His main research
interests include methods for Internet traffic
classification according to the causing appli-
cation, design of network monitoring appli-
cations, design of network-traffic generators,
peer-to-peer traffic monitoring, and graphical

visualization of networking data. During his Ph.D., he took internships
with Intel Research and Google. He was invited as a visitor to the Uni-
versity of Cambridge, Computer Laboratory.

Andrew W. Moore is a University Lecturer in
the Computer Laboratory, University of Cam-
bridge. Prior to joining the Computer Labora-
tory, he had been a Fellow at Queen Mary,
University of London, an Intel Research Fellow
and a foundation researcher at the Cambridge
Marconi Research Laboratory. He took a Ph.D.
with the Computer Laboratory in 2001 and
prior to 1995 worked for some number of
years in Australia. He took his first and Mas-
ter’s degrees from Monash University in
Melbourne. His research interests include the

characterization and accurate reproduction of Internet traffic – a specific
topic being the application of machine learning methods to the charac-
terisation of network applications. Recent work has focused upon the
effective use of such methods given a constrained feature-set. His inter-
ests also encompass photonic communications and switching systems.
Specific recent work is examining the use of photonic switch devices as a
low-power alternative to the PCI-interconnect architecture.

Raffaele Bolla received the ‘‘laurea” degree in
Electronic Engineering in 1989 and the Ph.D.
degree in Telecommunications in 1994 from
the University of Genoa, Genoa, Italy. Since
September 2004, he has been Associate Pro-
fessor of Telematics at the University of
Genoa, where he is with the Department of
Communications, Computer and Systems Sci-
ence (DIST). He has been PI in a number of
relevant research projects and contracts in the
telecommunications field. He has co-authored
over 130 scientific publications in interna-

tional journals and international conference proceedings. His current
research interests are in: (i) resource allocation, routing and control of IP
QoS (Quality of Service) networks, (ii) modeling and design of TCP/IP
networks, (iii) P2P overlay network-traffic measurement and modeling,
(iv) advanced platforms for software routers, (v) performance and traffic
monitoring in IP networks, and (vi) advanced mobility management in
heterogeneous wireless networks.

W. Li et al. / Computer Networks 53 (2009) 790–809 809

