
DPFL: Decentralized Personalized Federated Learning

Salma Kharrat Marco Canini Samuel Horvath
KAUST KAUST MBZUAI

Abstract

This work addresses the challenges of
data heterogeneity and communication con-
straints in decentralized federated learning
(FL). We introduce decentralized person-
alized FL (DPFL), a bi-level optimization
framework that enhances personalized FL by
leveraging combinatorial relationships among
clients, enabling fine-grained and targeted
collaborations. By employing a constrained
greedy algorithm, DPFL constructs a collab-
oration graph that guides clients in choosing
suitable collaborators, enabling personalized
model training tailored to local data while
respecting a fixed and predefined communi-
cation and resource budget. Our theoreti-
cal analysis demonstrates that the proposed
objective for constructing the collaboration
graph yields superior or equivalent perfor-
mance compared to any alternative collabo-
ration structures, including pure local train-
ing. Extensive experiments across diverse
datasets show that DPFL consistently out-
performs existing methods, effectively han-
dling non-IID data, reducing communica-
tion overhead, and improving resource ef-
ficiency in real-world decentralized FL sce-
narios. The code can be accessed at:
https://github.com/salmakh1/DPFL.

1 INTRODUCTION

The ongoing unprecedented growth in data captured
and stored on edge devices has led to a flurry of
research proposing collaborative learning paradigms
that do not necessitate transferring data to a cen-
tralized location, thereby enhancing data privacy.

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

One widely adopted approach is federated learning
(FL) (McMahan et al., 2017), where clients collabo-
ratively train a global model by sharing only model
parameters instead of raw data. In FL, training com-
monly occurs over several rounds, alternating between
local updates on client devices and global aggregation
of these updates at a centralized server.

Before the advent of FL, decentralized learning (Lian
et al., 2017, 2018; Jiang et al., 2017; Tang et al.,
2018; Vanhaesebrouck et al., 2017; Bellet et al., 2018)
was developed to address the limitations of centralized
systems, including the risk of a single point of fail-
ure (Beltrán et al., 2023). These decentralized meth-
ods enhance privacy (Cyffers and Bellet, 2022), im-
prove communication efficiency (Lian et al., 2017), and
increase system resilience (Neglia et al., 2019). Conse-
quently, they have led to the emergence of decentral-
ized FL approaches, enabling collaborative learning
across client devices without a centralized server, and
while keeping training data private (Vanhaesebrouck
et al., 2017; Koppel et al., 2017; Even et al., 2022).

A key challenge in both centralized and decentral-
ized FL is the presence of statistical heterogeneity,
whereby models are trained with clients’ data that
are not independent and identically distributed (non-
IID) (Kairouz et al., 2021). Addressing this issue,
personalized FL techniques (e.g., Deng et al. (2020);
Li et al. (2021); T Dinh et al. (2020); Hanzely and
Richtárik (2020); Collins et al. (2021)) have emerged
particularly for centralized settings, focusing on tailor-
ing models to the unique data distributions of individ-
ual clients rather than relying on a global model.

However, personalized decentralized FL remains a less-
studied problem due to its intrinsic dependence on a
decentralized collaboration graph, which defines par-
ticipant interactions. In non-IID settings, random col-
laborations can lead to suboptimal learning outcomes,
as unsuitable collaborators introduce noise into the
learning process. This presents a key challenge: con-
structing an effective collaboration graph to identify
suitable collaborators, as its quality significantly im-
pacts model performance.

https://github.com/salmakh1/DPFL

DPFL: Decentralized Personalized Federated Learning

Moreover, when building the collaboration graph,
practical approaches must consider data heterogeneity
alongside resource constraints, such as network band-
width, memory, and computational capacity. Previous
works, like Ye et al. (2023); Even et al. (2022), often
overlook these factors, focusing primarily on data dis-
tribution while neglecting resource limitations. Conse-
quently, we encounter a more challenging problem that
requires the mitigation of data heterogeneity while ad-
hering to application-imposed resource limitations.

To address these challenges, we introduce DPFL, a
novel bi-level optimization framework that simulta-
neously optimizes clients’ models and the collabora-
tion graph while considering communication and re-
source constraints. We promote targeted collabora-
tion, where clients collaborate only with others that
provide positive returns, quantified through a reward
function. Our proposed algorithm leverages the combi-
natorial effect of clients’ collaborations while restrict-
ing the number of collaborators and models each client
handles, respecting both communication and storage
requirements. In our formulation, each client’s ag-
gregated model is determined by the inward edges of
the collaboration graph, connecting it to its selected
collaborators. Crucially, our method infers benefi-
cial collaborators without requiring prior knowledge of
clients’ data distributions. Unlike prior methods (e.g.,
Ye et al. (2023); Li et al. (2022a,b)), our approach al-
lows for a directed collaboration graph, where collab-
orations are not necessarily reciprocal—client A may
benefit from collaborating with client B, but not vice
versa. This directed nature introduces greater flexi-
bility (Zhang and You, 2019; Nedić et al., 2018) and
robustness (Tsianos et al., 2012; Lian et al., 2018), en-
abling more efficient collaboration strategies.

Contributions.

• We introduce a novel decentralized personalized
FL problem, formulated as a constrained dis-
crete combinatorial objective within a bi-level op-
timization framework that integrates graph gen-
eration and model personalization under resource
and communication constraints.

• We propose the DPFL algorithm, which alter-
nates between personalized model learning and
graph optimization, accounting for combinato-
rial effects beyond pairwise selection and enabling
asymmetric graph solutions for improved collabo-
rator selection and resource efficiency.

• We provide a formal analysis of the bi-level opti-
mization problem, including its combinatorial as-
pects, and the complexities of the employed ap-
proximations. Extensive experiments on diverse
datasets compare DPFL against 12 benchmarks,
demonstrating its superior performance.

2 METHODOLOGY

We introduce a novel formulation for the optimization
problem in personalized FL. First, we provide the un-
derlying intuition behind the problem and present the
comprehensive problem formulation in § 2.1. Next, we
propose decomposing the problem and employing an
alternating minimization approach § 2.2.

2.1 Optimization problem

Generalization in FL aims to fit a single global model
with parameters w to the non-IID data held by indi-
vidual clients (McMahan et al., 2017). This optimiza-
tion problem can be represented as follows:

min
w∈Rd

{
FD(w) ≜

N∑
k=1

pkFk(w)

}
, (1)

where N is the number of devices, D is a global dis-
tribution, pk ≥ 0 is the weight of the k-th device s.t.∑N

k=1 pk = 1. It is common to select pk proportional
to device k’s dataset size. Suppose the k-th device
holds data drawn from the distribution Dk. The local
objective Fk(·) is defined as: Fk(w) ≜ Exk∼Dk

ℓ (w;xk)
where ℓ(·; ·) is some loss function.

In personalized FL, the objective shifts from seeking
a single global model to the pursuit of local models
tailored to each client. These local models are designed
to perform well on unseen data samples drawn from
the same distribution as the client’s local training data.
Consequently, the original objective function in Eq. (1)
becomes the following:

min
w={wi∈Rd}N

i=1

{
F (w) ≜

N∑
k=1

pkFk (wk)

}
. (2)

Considering significant heterogeneity in the data dis-
tributions among the clients, an intuitive solution to
the problem outlined in Eq. (2) is that each client in-
dependently trains its local model using its local data,
obviating the necessity for collaboration with other
clients. However, this holds only if each client has
access to an infinite number of IID samples from its
local distribution Dk or the local distributions are sig-
nificantly different.

We focus on collaborative learning in real-world set-
tings, where data access and heterogeneity are ma-
jor challenges. Clients in such scenarios operate with
a finite number of local samples. While we advo-
cate for inter-client collaboration, and while collab-
oration is encouraged, it must enhance rather than
compromise personalized model performance. Collab-
oration needs to be designed to enhance personalized

Salma Kharrat, Marco Canini, Samuel Horvath

model performance within this complex data land-
scape while respecting the imposed communication
and resource constraints, particularly in decentralized
settings where coupled all-to-all communication is pro-
hibitive. Therefore, accounting for the application-
imposed resource budget becomes crucial.

We reformulate our objective to address these chal-
lenges and optimize model performance in this dy-
namic environment. Thus, we propose the following
problem formulation:

min
w,C

{
F (w, C) ≜

N∑
k=1

pkFk (wk, Ck)

}
, (3)

where C = {Ci ∈ 2[N]\{i}; |Ci| ≤ Bc}Ni=1 and w =
{wi ∈ Rd}Ni=1 . In this optimization problem (Eq. (3)),
our objective is to minimize the function F (w, C),
where w = {w1, . . . ,wN} represents a set of param-
eters and C = {C1, . . . , CN} denotes collaboration as-
signments. Ci ∪ {i} contains j, if client i receives up-
dates from client j. In our algorithm design, we en-
force ∀k ∈ [N] : |Ci| ≤ Bc, where Bc represents the
resource budget imposed by communication and re-
source constraints (hence, it is not a hyperparameter).
The function Fk (wk, Ck) is defined as the average loss
over a dataset Dk for client k, expressed as:

Fk(wk, Ck) ≜ Exk∼Dk
ℓ (wk, Ck;xk) .

Here, ℓ (wk, Ck, xk) represents the loss function ap-
plied to the parameters wk, collaboration assignments
Ck, and data point xk. We can rewrite it as follows:
ℓ (wk, Ck;xk) = ℓ(ŵk;xk) where the crucial element
in this formulation is ŵk, computed as the average of
individual parameters wi within the collaboration set
Ck for client k:

ŵk ≜
1∑

i∈C̃k
pi

∑
i∈C̃k

piwi; where C̃k ≜ Ck ∪ {k}. (4)

2.2 Alternating minimization

Solving Eq. (3) involves simultaneously optimizing for
both w and C. To simplify this complex problem, we
propose an alternating minimization approach. In the
first sub-problem, we use a given collaboration graph
C⋆ to update local parameters wk, while in the second
sub-problem, we focus on identifying the best set of
collaborators Ck given w.

The first sub-problem can be written as:

min
w={wi∈Rd}N

i=1

{
F (w, C⋆) ≜

N∑
k=1

pkFk (wk, C⋆k)

}
. (5)

We propose to solve Eq. (5) in a decentralized manner,
where each client first performs τ local updates of their

local parameters wk based on their local data. This is
followed by the aggregation step, in which each client
updates their local solution wk as defined in Eq. (4).

For finding the collaboration graph, given fixedw⋆, the
collaboration assignment Ck for each client k ∈ [N] is
found as a solution to the following problem:

min
Ck∈Ωk

FV
k

 1∑
i∈Ck∪{k} pi

∑
i∈Ck∪{k}

piw
⋆
i

 , (6)

where FV
k (·) represents the validation loss of client k

and Ωk ⊆ 2[N]\{k} such that |Ωk| ≤ Bc is a set of
clients that client k can potentially collaborate with
other than itself. Based on this framework, we are
now ready to describe our approach in detail.

3 PROPOSED METHOD

We introduce DPFL, which incorporates the identifi-
cation of beneficial collaborators alongside FL train-
ing. To achieve this, we define a combinatorial ob-
jective function on the discrete space of client com-
binations in Eq. (6) and introduce constrained greedy
algorithms denoted as GGC (§ 3.2) and BGGC (§ 3.3).
These algorithms approximate a solution for the com-
binatorial objectives by optimizing client combinations
to enhance decentralized personalized FL under strict
communication and resource constraints.

3.1 Decentralized Personalized FL (DPFL)

We present DPFL, a decentralized personalized FL
framework where each client’s primary objective is to
identify collaborators that can enhance its model per-
sonalization while adhering to the imposed resource
budget, denoted as Bc. Algorithm 1 lists the pseu-
docode for DPFL.

As a preprocessing step (lines 1-5), we establish the
initial collaboration graph, Ωk, ensuring adherence to
the imposed budget constraint Bc. This process starts
by initializing each local model as w, followed by con-
ducting τinit local training epochs. Subsequently, after
each client acquires its initial solution winit

k , it pro-
ceeds to determine its collaboration set, Ωk using the
BGGC algorithm(§ 3.3, Algorithm 3 in Appendix C).

With the initial graph in place, the main training loop
begins, spanning T−1 communication rounds (lines 6-
13). During each round, clients perform local training
for τtrain epochs and download the local models wi

from all clients in their respective collaboration sets
Ωk where Ωk contains at most Bc clients (lines 8-9).
Upon receiving these models, each client identifies the
optimal subset of collaborators for the current round,
which minimizes local validation loss using the GGC

DPFL: Decentralized Personalized Federated Learning

Algorithm 1 Decentralized Personalized FL (DPFL)

Require: T , w, N , m, Bc, τinit, τtrain, LocalOpt
1: for device k ∈ [N] in parallel do {Preprocess}
2: winit

k ← LocalOpt(w, τinit)
3: Ωk ← BGGC(k, [N],m,Bc) {Explained in § 3.3}
4: wk ← 1∑

i∈Ωk∪k pi

∑
i∈Ωk∪k piw

init
i

5: end for
6: for t = 1, · · · , T − 1 do {Training Loop}
7: for device k ∈ [N] in parallel do
8: wk ← LocalOpt(wk, τtrain)
9: send wk, ∀ j s.t. k ∈ Ωj and receive wj , ∀j ∈ Ωk,
10: Ck ← GGC(k,Ωk,m,Bc) {Explained in § 3.2}
11: wk ← 1∑

i∈Ck∪k pi

∑
i∈Ck∪k piwi

12: end for
13: end for

algorithm (line 10) (§ 3.2, Algorithm 2 in Appendix B).
The resulting collaborator set Ck for client k satisfies
|Ck| ≤ |Ωk| and Ck ⊆ Ωk.

Notably, the graph Ωk, constructed in the preprocess-
ing step via BGGC, remains static throughout the pro-
cess, while the collaboration set Ck may change each
round based on the GGC evaluation. This dynamic
allows clients to skip certain collaborators in certain
rounds (e.g., due to noisy updates) while still consid-
ering them in future rounds. In our experiments, we
utilize local SGD as the optimizer, but DPFL is agnos-
tic and, therefore, compatible with any local optimizer.
A simplified example of the framework is presented in
Appendix F. Additionally, a discussion of the compu-
tational and communication complexities of DPFL is
provided in Appendix G.

Remark 1. For simplicity, our algorithm considers
a uniform resource and communication budget Bc for
all clients, while in practice, clients may have varying
resource capabilities, i.e., Bi

c for client i. We note
that our approach can be easily extended to consider
personalized budgets for each client in lines 3 and 10.

3.2 Greedy Graph Construction (GGC)

Our primary goal is to solve Eq. (6). In this combina-
torial objective, client k seeks a set Ck wherein collab-
oration with its elements results in a positive return.
In our context, this positive return is quantified by a
reward function representing the negative of the vali-
dation loss of each client. This approach diverges from
prior works, such as Ye et al. (2023), which typically
focused on pairs of clients, neglecting the significance
of group synergy. For instance, two clients, A and
B, collaborating alone might not be ideal, but adding
client C to the collaboration set could significantly al-
ter the outcome. In such a scenario, the collaborative
efforts of clients A, B, and C contribute to a decrease
in the overall loss experienced by client A. We illus-

trate this in Appendix A, highlighting how reliance
on pairwise comparisons can overlook the benefits of
group collaboration in improving client outcomes.

Finding the optimal set Ck for each client k requires ex-
tensive computational exploration. Furthermore, no-
tice that our objective function in Eq. (6) is not mono-
tonic,1 i.e., adding clients to the set Ck does not al-
ways result in a better reward. To address this, we
adapt the non-monotone combinatorial bandit algo-
rithm of Fourati et al. (2023), proposing a greedy
graph construction (GGC), detailed in Algorithm 2 in
Appendix B, which efficiently selects the set Ck.

The complexity of the employed algorithm is O(|Ωk|),
which is at most O(Bc). The discrete combinato-
rial problem we address is NP-hard, even with well-
behaved (submodular) objectives (Buchbinder et al.,
2015). However, making greedy decisions based on
adding or removing elements has yielded optimal so-
lutions in linear time (Buchbinder et al., 2015).

While our objective is to minimize the local valida-
tion loss of clients as defined in Eq. (6), following the
literature on combinatorial maximization, it is more
common to maximize a reward function. Thus, we
define our reward function as follows:

R(S) ≜ −FV
k

 1∑
i∈S∪{k} pi

∑
i∈S∪{k}

piwi

 , (7)

Given the defined reward, GGC operates through a
series of iterations, each involving a decision-making
process for adding or removing clients from two sets,
X and Y. The set X represents the set of collaborators
and initially contains client k which is the client run-
ning GGC, and Y contains clients in Ωk∪{k}. In each
step, the algorithm computes two variables, a and b,
representing the expected marginal gains from adding
and removing a specific client j ∈ S, respectively, and
defined as follows:

a = max(R(X ∪ {j})−R(X), 0)
b = max(R(Y \ {j})−R(Y), 0).

Following GGC, client k adds client j to the collabo-
rator set X with a probability p = a

a+b , where a rep-
resents the marginal gain from adding j and b repre-
sents the marginal gain from removing j. A client is
more likely to be added if a ≥ b. If the marginal gain
from adding is positive and from removing is negative,
p = 1 ensures the client is added. Conversely, if the
gain from removing is positive and from adding is neg-
ative, p = 0 leads to removal. When both a and b are
zero, p = 1 is set by default. This process continues
until all clients in Ωk are considered.

1A set function f : 2Ω → R is monotone if for any
A ⊆ B ⊆ Ω we have f(A) ≤ f(B).

Salma Kharrat, Marco Canini, Samuel Horvath

GGC complexity: The overall complexity of GGC
(Algorithm 2) is O(Bc), which reduces to constant
complexity O(1) since during training Bc is constant.
GGC operates by iterating over the received clients as
input. It computes two variables a and b, requiring a
constant number of forward passes over the network,
which translates to O(1) complexity. Subsequently, it
decides whether to add or remove a client, an operation
also achieved in O(1). Therefore, the algorithm’s com-
plexity essentially reduces to looping over a fixed-size
list of collaborators, resulting in O(Bc) during train-
ing, which does not increase with a growing number of
clients as Bc is a predefined constant.

3.3 Batched GGC (BGGC)

As outlined in § 2.2, each client k can only collaborate
with a set of clients Ωk, which is restricted in size (i.e.,
|Ωk| ≤ Bc) to maintain communication and resource
efficiency. Moreover, as depicted in Algorithm 1, the
initial graph construction is conducted as a preprocess-
ing step where each client trains a model locally for a
sufficient number of epochs using the same model ini-
tialization parameters, resulting in the client’s local
solution denoted as winit

k (lines 1-2). Then in line 3,
each client k determine its set of beneficial collabora-
tors Ωk by minimizing the following optimization:

min
S⊆[N]\k

FV
k

(
1∑

i∈S∪k pi

∑
i∈S∪k

piw
init
i

)
s.t. |S| ≤ Bc.

(8)
Although our proposed Algorithm 2 in § 3.2 efficiently
approximates the solution to our objective Eq. (8)
while demonstrating resilience to noisy rewards (c.f.
Corollary 2 in (Fourati et al., 2023)), this method re-
lies on reward computations to the objective in Eq. (8),
necessitating model updates from potential collabo-
rators. This poses a significant challenge when ap-
plying GGC to the initial graph generation of Ωk,
as the number of required models from clients in S
may surpass our budget constraint Bc, dictated by
practical limitations such as network bandwidth, com-
pute resources, and storage. To address this chal-
lenge, we propose an enhancement to the GGC al-
gorithm called BGGC (Batched Greedy Graph Con-
struction) by streamlining reward computations into
efficient batches of communication and computation,
each requiring only O(Bc) resources. Details of this
approach are outlined in Algorithm 3; see Appendix C.
Note that BGGC is necessary only during the prepro-
cessing step. During the training loop (lines 6-12 in
Algorithm 1), the reward computations of GGC will
require, at most, Bc models from Ωk, which falls within
the imposed budget constraint.

Consistent with decentralized scenarios (Marfoq et al.,

2020; Han et al., 2022; Ranathunga et al., 2022), we
consider a cross-silo scenario, as establishing a collabo-
ration graph or links between devices in a cross-device
setting is often prohibitively complex due to device
heterogeneity and connectivity issues. By focusing
on the cross-silo setting, we can manage a reasonable
number of devices, potentially scaling to thousands.

BGGC algorithm complexity. The overall com-
putation complexity of BGGC is O(N). However, the
communication and resource complexity is only O(Bc)
for each of the ⌈N/Bc⌉ steps.
Theorem 1. Assuming seeded randomness, executing
algorithms GGC and BGGC with the same seed pro-
duces identical results for a given client k, clients set
S, and budget Bc.

The proof of Theorem 1 is reported in Appendix D.

Practical implications of GGC vs. BGGC.
While Theorem 1 establishes that GGC and BGGC
yield the same outcomes under identical conditions,
they employ different methodologies during execu-
tion. Executing GGC during preprocessing may vi-
olate the budget constraint, as it requires access to
all clients’ weights for reward computation. BGGC
addresses this by adhering to communication and re-
source constraints but incurs an additional communi-
cation phase. In contrast, during training, GGC avoids
this extra phase, as each client naturally considers a
subset Ωk, where Ωk ≤ Bc, thus staying within the
budget. This makes GGC more efficient during train-
ing by reducing communication while still respecting
the budget constraint.

3.4 Properties of DPFL

To establish the effectiveness of our proposed frame-
work, we analyze the properties of the collaboration
graph derived from solving Eq. (3), offering insights
into its advantages over existing alternatives.

Proposition 1. The collaboration graph resulting
from solving Eq. (3) yields superior or the same re-
sults compared to any collaboration graph C ∈ {Ci ∈
2[N]\i; |Ci| ≤ Bc}Ni=1 that imposes additional restric-
tions on the collaboration structure, where N is the
total number of clients.

The proof of Proposition 1 is in Appendix E.

Corollary 1. It follows from Proposition 1 that our
targeted collaboration graph outperforms pure local
training (no one collaborates with anyone), any ran-
dom graph within C, and any graph with further im-
posed symmetry.

Remark 2. In line with previous works (Shalev-
Shwartz et al., 2009; Feldman and Vondrak, 2019),

DPFL: Decentralized Personalized Federated Learning

Test Accuracy

V
a
ri
a
n
c
e

Test Accuracy

Figure 1: Variance between local models using Dir(0.1)
(left) and Patho(3) (right) data splits on CIFAR10.

we assume that the validation loss effectively approx-
imates the objective function Fk(wk). Hence, Eq. (6)
serves as a reliable proxy for Eq. (3). Additionally, we
use Algorithm 2, which offers approximation guaran-
tees even with noisy reward functions, as demonstrated
in (Fourati et al., 2023, Corollary 2). Therefore, it en-
sures that the returned set is no worse than the empty
set with probability 1. Consequently, applying this al-
gorithm for graph generation in DPFL is expected to
yield a strong solution to Eq. (3).

4 EVALUATION

We present key experimental settings and results, with
additional details in Appendix H. We use standard
datasets from personalized FL literature (Li et al.,
2021; Collins et al., 2021; Marfoq et al., 2022). For CI-
FAR10 and CINIC10, we consider two heterogeneous
distributions: (1) a pathological split, Patho(3), where
each client receives data from three categories (Zhang
et al., 2023; McMahan et al., 2017; Colin et al., 2016),
and (2) a Dirichlet distribution (Yurochkin et al., 2019;
Wang et al., 2020) drawing from qc ∼ Dirk(0.1) for
each category c and allocating samples to clients ac-
cordingly. For FEMNIST, we use the natural non-IID
split from Leaf (Caldas et al., 2018), assigning each
writer as a client and increasing heterogeneity by omit-
ting some classes per client. We train for 100 rounds
on CIFAR10/FEMNIST and 50 on CINIC10, repeat-
ing experiments over three seeds (32, 42, 52) and re-
porting the average local test accuracy and standard
deviation. For all methods, the best per-client model
based on validation performance is used for testing.

4.1 Quality of personalization results

Table 1 presents the average test accuracy of DPFL
under four budget constraints, compared to other per-
sonalized FL and baseline methods. For DPFL, we
vary the budget constraint with 20% (Bc = 0.2N),
10% (Bc = 0.1N), and 5% (Bc = 0.05N) of the total
number of clients, respectively; we also consider the
case without a constraint (Bc = inf).

Our method significantly outperforms other person-
alized methods regarding average test accuracy. We
achieve better results than local training by 3 and 5
percentage points (pp), outperform FedAvg by 37 and
33 pp, and surpass other personalized methods by ap-
proximately 1 to 6 and 2 to 10 pp on CIFAR10 us-
ing Dir(0.1) and Patho(3), respectively. Moreover,
on FEMNIST, we improve upon local training and Fe-
dAvg by 7 pp. and surpass other personalized methods
by approximately 2.8 to 6.5 pp. Finally, on CINIC10,
our method demonstrates superior performance, sur-
passing local training by 3 pp in both Dir(0.1) and
Patho(3). Additionally, DPFL outperforms FedAvg
by a notable margin of 43 and 41 pp, while surpassing
other personalized methods by approximately 1 to 5
and 2 to 7 pp using Dir(0.1) and Patho(3), respec-
tively.

Variance between local models. As our objective
is personalization, apart from the overall improvement
in average accuracy among clients, it is crucial to as-
sess whether improvements are distributed across most
models rather than confined to just a few clients. To
evaluate this, we analyze the variance between local
models, where lower variance signifies greater parity in
their performance. Fig. 1 shows results for CIFAR10
with a Patho(3) distribution. The x-axis represents
average test accuracy, and the y-axis represents vari-
ance between clients’ models. DPFL is consistently
in the right-bottom corner, showing higher overall ac-
curacy and lower variance than other methods. Ad-
ditionally, Appendix I.1 confirms these findings for
FEMNIST (Fig. 5), CINIC10 (Fig. 6), and CIFAR10
with a Dir(0.1) distribution (Fig. 7).

4.2 Visualization of collaboration graph

We analyze the initial collaboration graph and its evo-
lution after some rounds. For clarity, we illustrate two
cases with budget Bc = 10 and Bc = 5 (other budget
constraints are in Appendix I.2). Fig. 2 depicts the
collaboration graph (plotted as the adjacency matrix)
in three states, from left to right: constructed as a pre-
processing step (line 5 of Algorithm 1), in round 50,
and in round 99. The diagonal indicates that every
client always “collaborates” with itself. To illustrate
the graph evolution, the round 50 and 99 plots display
collaborative links in two colors: in red are the clients
selected for collaboration in that round; in blue are the
clients identified during the preprocessing step but are
currently not chosen. The union of red and blue clients
corresponds to the initial collaboration graph.

The figures highlight that the initial collaboration
graph is denser compared to the actually used clients
for aggregation in round 99. This is expected since the
initial graph is constructed as a preprocessing step,

Salma Kharrat, Marco Canini, Samuel Horvath

CIFAR10 CINIC10 FEMNIST
Dir(0.1) Patho(3) Dir(0.1) Patho(3) Natural Split

Local Only 80.38 ± 1.62 78.32 ± 0.49 78.59 ± 1.00 77.53 ± 0.47 87.27 ± 0.27
FedAvg (McMahan et al., 2017) 47.22 ± 1.20 50.93 ± 1.97 38.48 ± 0.37 39.27 ± 1.29 87.41 ± 0.72
FedAvg+FT 82.84 ± 0.88 81.89 ± 0.92 80.31 ± 0.33 79.18 ± 0.46 91.56 ± 0.29
FedProx (Lian et al., 2018) 48.83 ± 1.88 51.14 ± 0.79 38.16 ± 0.82 38.53 ± 0.54 88.14 ± 0.39
FedProx+FT (Lian et al., 2018) 78.86 ± 0.51 73.61 ± 1.29 76.59 ± 1.19 73.04 ± 1.08 93.58 ± 0.29
APFL (Smith et al., 2017) 82.56 ± 0.38 80.96 ± 0.71 80.02 ± 1.07 78.21 ± 0.39 90.80 ± 0.37
PerFedAvg (Fallah et al., 2020a) 82.38 ± 1.43 81.17 ± 0.52 78.88 ± 1.25 78.90 ± 0.37 91.69 ± 0.40
Ditto (Li et al., 2021) 83.10 ± 0.70 81.19 ± 0.63 80.33 ± 1.27 79.52 ± 0.31 90.83 ± 0.46
FedRep (Collins et al., 2021) 80.81 ± 1.09 78.61 ± 1.67 79.56 ± 1.12 78.46 ± 0.69 90.04 ± 0.28
kNN-Per (Marfoq et al., 2022) 82.45 ± 0.69 81.04 ± 0.40 80.42 ± 1.07 79.54 ± 0.32 91.29 ± 0.40
PACFL (Vahidian et al., 2023) 79.88 ± 0.69 78.30 ± 0.54 78.63 ± 1.10 77.83 ± 0.31 90.39 ± 0.64
pFedGraph (Ye et al., 2023) 80.48 ± 0.75 78.34 ± 1.04 78.73 ± 1.04 77.58 ± 0.16 87.70 ± 0.13
DPFL (Bc = inf) 84.39 ± 0.43 83.04 ± 0.98 81.49± 1.32 80.32± 0.51 94.25 ± 0.18
DPFL (Bc = 0.2N) 84.01 ± 0.44 82.83 ± 0.91 81.24± 1.30 80.51± 0.39 94.31 ± 0.06
DPFL (Bc = 0.1N) 83.86 ± 0.46 82.52 ± 0.78 81.32± 1.20 80.24± 0.35 94.09 ± 0.14
DPFL (Bc = 0.05N) 82.91 ± 0.81 82.17 ± 0.54 80.91± 1.31 80.11± 0.30 93.82 ± 0.17

Table 1: Comparison of accuracy across benchmarks is illustrated as acc ± std, where acc represents the average test
accuracies of all clients’ models, and std denotes the standard deviation over three repetitions.

Decentralized SGD DPFL (ours)
Bc = 0.2N 78.04 ± 1.55 84.01 ± 0.44
Bc = 0.1N 77.02 ± 1.41 83.86 ± 0.46
Bc = 0.01N 76.21 ± 1.87 82.91 ± 0.81

Table 2: Comparison of our method DPFL versus decen-
tralized SGD using CIFAR10.

and at this stage, model weights have not yet con-
verged. Therefore, broader collaboration can be bene-
ficial. However, as training progresses, it is natural
to expect each client to benefit primarily from col-
laborating with clients with similar data distributions,
thus leading to a sparser collaboration graph. Another
contributing factor is that, in the preprocessing step,
the decision to select a specific client for collaboration
is made from a pool of 100 clients, making it more
challenging than in later rounds where the decision is
drawn from the smaller pool Ωk for client k.

Finally, we analyze the graph sparsity. With Bc = 10,
the initial sparsity is 80% and increases to 88% at
round 99. With Bc = 5, the initial sparsity is 95%
and is 96% in round 99. We also measure the symme-
try of the collaboration graph across different budgets
(details in Appendix I.4); we observe around 80-88%
symmetry, which decreases as Bc decreases.

4.3 Behavior of DPFL under data flip attack

To analyze how DPFL behaves in the presence of dis-
tinct groups of clients, we select 40 clients (malicious)
out of 100 and flip their labels using the same per-
mutation; the remaining 60 clients (benign) use the
true labels (according to CIFAR10). It’s important
to note that our objective is to delineate the behavior
of DPFL, acknowledging that while it may exhibit ro-
bustness characteristics, the study of robustness falls
outside the scope of this paper.

(a) Bc = 10

(b) Bc = 5

Figure 2: Collaboration graph using CIFAR10.

We then conduct two experiments: the first where ma-
licious clients do not execute GGC (i.e., they only train
locally); the second in which they run GGC. In the first
case (see Fig. 3a), the collaboration graph initially con-
tains numerous edges involving malicious clients. This
is expected due to the inherent randomness in the
weights during the preprocessing step, which makes
it challenging to identify collaborators. However, as
the rounds progress, we observe that benign clients
increasingly avoid selecting malicious ones until, ulti-
mately, they cease choosing them altogether. Fig. 12
depicts this evolution every 10 rounds.

In the second case (see Fig. 3b), since malicious clients
execute GGC, they initially collaborate with benign
clients. Thus, their models become regularized to-
wards the benign ones. Despite this behavior, we ob-
serve that as the rounds progress, clients become al-
most segregated into two groups (red and blue), with

DPFL: Decentralized Personalized Federated Learning

(a) Malicious clients don’t execute GGC.

(b) Malicious clients execute GGC.

Figure 3: Collaboration graph when 40% of clients have
flipped labels (malicious), while 60% have original labels
(benign). For both scenarios, we show the initial collabo-
ration graph (left) and its evolution after 99 rounds (right).
Malicious clients appear in red; benign ones are in blue.

A
p
p
ro

x
im

a
ti
o
n

R
a
ti
o

Round

Figure 4: DPFL vs. FL over a randomly generated graph.

very few links between them serving as a form of reg-
ularization (full evolution in Fig. 13). On average,
benign clients have less than 10% connections with
malicious ones (see Fig. 14).

4.4 Comparing with decentralized SGD

Our approach differs from decentralized methods by
not assuming a predefined collaboration graph. In-
stead, we optimize the graph for better personaliza-
tion. Table 2 compares our method with decentralized
SGD (Liu et al., 2024) using the CIFAR10 dataset and
Dir(0.1). For decentralized SGD method the collabo-
ration graph is generated randomly as per Definition
1 in Liu et al. (2024).

4.5 Comparing with a random graph

To illustrate the relative importance of GGC, we
compare DPFL to a version of our method that re-

places GGC with a randomly-constructed collabora-
tion graph. Figure 4 shows that DPFL outperforms
the random graph by ≈4 pp, in three budget con-
straints. This experiment uses CIFAR10 with 100
clients and Dir(0.1) distribution.

4.6 Ablation studies

Sensitivity to τinit. Table 3 reports the results of us-
ing CIFAR10 with 100 clients and Patho(3) split and
varying the number of local epochs τinit. The results
show that the accuracies across different numbers of
local epochs are comparable. Performance on average
is slightly better with τinit = 10, but even the case
with τinit = 1 yields good results.

Periodicity of refreshing Ck. To improve efficiency,
we consider invoking GGC at line 10 in Algorithm 1
periodically every P rounds. Table 4 reports the ef-
fect of varying P while training on CIFAR10 using 100
clients and Dir(0.1). We observe that DPFL main-
tains good performance across various periodicities,
with a slight decrease as P increases. This demon-
strates the robustness of our method and the potential
for improved efficiency by performing it periodically.

Considering partial participation. To demon-
strate the effectiveness of our method, we conduct an
experiment in which initially, each client can communi-
cate with only 50% of other clients. During training,
we simulate random client dropouts by having each
client receive updates from only 80% of its collabo-
rators each round (20% dropout). We use CIFAR-10
dataset and Dir(0.1). All hyperparameters remain as
described in Appendix H.

This setup is easily achievable using the DPFL algo-
rithm. Clients periodically “check in” with their col-
laborators; if a client fails to check in during a round,
it does not contribute to the model update, and no
weights are exchanged with that client. The GGC se-
lection is agnostic to the number of available clients
and will always select the most suitable ones for col-
laboration. Thus, the algorithm can adapt to this set-
ting by providing a subset of online clients, Ω̂k ⊆ Ωk,
in Line 10, instead of all neighbors.

Table 5 shows that the performance using partial par-
ticipation (p.p.) decreases by about 1% compared to
full participation (f.p.). However, these results still
outperform all other methods reported in Table 1 (ex-
cept Bc = 0.01N), showing the efficiency of DPFL
while saving more communication and allowing clients
to drop out during training.

Rebuilding the graph at every round using
BGGC. Our algorithm begins with an initial pre-
processing step to establish the graph, followed by

Salma Kharrat, Marco Canini, Samuel Horvath

τinit

Bc inf 20 10 5

1 81.86± 1.00 82.33± 0.86 82.53± 0.72 82.30± 0.24
5 83.03± 0.73 82.53± 1.36 82.58± 0.97 80.90± 0.96

10 83.04± 0.98 82.83± 0.91 82.52± 0.78 82.17± 0.54

Table 3: Effect of local epochs performed in the prepro-
cessing step on the convergence of DPFL.

P
Bc inf 20 10 5

1 84.20 83.67 84.20 84.33
5 83.83 84.01 83.31 83.73
10 83.24 84.17 83.31 83.03
20 82.34 82.59 82.08 82.73

Table 4: Effect of the periodicity of invoking GGC on the
convergence of DPFL.

reevaluation of clients’ contributions in each communi-
cation round using the GGC Algorithm. This ensures
that the collaboration graph reflects the most benefi-
cial clients at each round. To test the preprocessing
step’s sufficiency, we run the BGGC algorithm in ev-
ery round on a fully connected network, which serves
as an upper bound to our method.

The results in Table 6 show improved performance of
the DPFL w/ repeated BGGC compared to the origi-
nal DPFL, but the gain is minimal (about 1 pp). This
suggests that the initial collaboration graph, contin-
uously adjusted each round, is robust and effective,
with performance not being highly sensitive to the ini-
tial graph.

5 RELATED WORK

Personalized FL approaches address data heterogene-
ity using various strategies. Some methods train
both global and personalized models and regularize
them with an l2 term (Li et al., 2021; T Dinh et al.,
2020). Others employ multi-task learning techniques
(Hanzely and Richtárik, 2020; Khodak et al., 2019;
Jiang et al., 2019; Mansour et al., 2020; Gasanov et al.,
2022; Hanzely et al., 2020; Marfoq et al., 2022), in-
terpolating between local and global models. Meta-
learning-based methods (Fallah et al., 2020b) seek a
common initial model that clients can easily adapt
to. Other techniques explore splitting model layers
(Collins et al., 2021; Liang et al., 2020) or using hy-
pernetworks for personalization (Shamsian et al., 2021;
Chen and Chao, 2021). Unlike these approaches, our
method eliminates communication overhead by avoid-
ing a global model and achieves fine-grained personal-
ization through dynamic collaborator selection.

In contrast to cosine similarity-based methods (Ye
et al., 2023; Li et al., 2022a,b), which focus on pairwise
collaborator selection and overlook group synergy; we

DPFL (p.p.) DPFL (f.p.)
Bc = inf 83.98 ± 0.55 84.39 ± 0.43
Bc = 0.2N 83.10 ± 1.03 84.01 ± 0.44
Bc = 0.1N 82.54 ± 0.85 83.86 ± 0.46
Bc = 0.01N 81.43 ± 0.26 82.91 ± 0.81

Table 5: Comparison of DPFL performance under partial
participation (p.p.) and full participation (f.p.).

DPFL w/ repeated BGGC DPFL
Bc = inf 85.46 ± 0.73 84.39 ± 0.43
Bc = 0.2N 84.58 ± 0.70 84.01 ± 0.44
Bc = 0.1N 83.89 ± 0.60 83.86 ± 0.46
Bc = 0.01N 83.83 ± 0.51 82.91 ± 0.81

Table 6: Performance comparison of DPFL and DPFL with
repeated BGGC (in every round).

introduce a novel utility function (Eq. (6)) that consid-
ers the collective benefit of collaborators. Additionally,
unlike methods that average all clients with weighted
schemes (Ye et al., 2023), which limits scalability in
constrained environments, our approach incorporates
a budget constraint for improved real-world applica-
bility. Furthermore, personalized decentralized meth-
ods (Vanhaesebrouck et al., 2017; Koppel et al., 2017;
Even et al., 2022) assume a fixed collaboration graph
and are often restricted to linear models, relying on
parameter tuning to control graph sparsity. In con-
trast, our approach provides an exact budget without
being constrained to linear models.

Moreover, clustering-based approaches (Vahidian
et al., 2023; Chen and Chao, 2021; Shamsian et al.,
2021; Wang et al., 2023) enhance personalization by
grouping clients based on data similarity. However,
they often require a predefined number of clusters or
similarity thresholds, which may vary across tasks.
Our method avoids such hyperparameters, offering
greater flexibility and finer-grained collaboration.

Finally, decentralized approaches such as Koloskova
et al. (2020); Liu et al. (2024) typically assume a given
communication graph; our work fundamentally differs
in its approach by dynamically constructing the graph
tailored to optimize personalized objectives.

6 CONCLUSION

We addressed the challenge of constructing a collabo-
ration graph in decentralized learning while consider-
ing data heterogeneity and adhering to imposed com-
munication and resource constraints. To achieve this,
we proposed a bi-level optimization problem and de-
vised a greedy algorithm to efficiently identify the col-
laboration graph. Experiments on various datasets
showed that our method outperforms state-of-the-art
baselines.

DPFL: Decentralized Personalized Federated Learning

Acknowledgments

This publication is based upon work supported by
the King Abdullah University of Science and Tech-
nology (KAUST) Office of Research Administration
(ORA) under Award No. ORA-CRG2021-4699. We
are thankful to the anonymous reviewers for their
thoughtful comments and suggestions that helped im-
proving our paper. For computer time, this research
used Ibex managed by the Supercomputing Core Lab-
oratory at KAUST.

References

Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and
Marc Tommasi. Personalized and private peer-to-
peer machine learning. In International Conference
on Artificial Intelligence and Statistics, pages 473–
481. PMLR, 2018.

Enrique Tomás Mart́ınez Beltrán, Mario Quiles
Pérez, Pedro Miguel Sánchez Sánchez, Sergio López
Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Mart́ınez Pérez, and Alberto Huertas Celdrán.
Decentralized federated learning: Fundamentals,
state of the art, frameworks, trends, and challenges.
IEEE Communications Surveys & Tutorials, 2023.

Niv Buchbinder, Moran Feldman, Joseph Seffi,
and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maxi-
mization. SIAM Journal on Computing, pages 1384–
1402, 2015.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter
Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Hong-You Chen and Wei-Lun Chao. On bridging
generic and personalized federated learning for im-
age classification. arXiv preprint arXiv:2107.00778,
2021.

Igor Colin, Aurélien Bellet, Joseph Salmon, and
Stéphan Clémençon. Gossip dual averaging for de-
centralized optimization of pairwise functions. In In-
ternational Conference on Machine Learning, pages
1388–1396. PMLR, 2016.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and
Sanjay Shakkottai. Exploiting shared representa-
tions for personalized federated learning. In Interna-
tional conference on machine learning, pages 2089–
2099. PMLR, 2021.

Edwige Cyffers and Aurélien Bellet. Privacy amplifi-
cation by decentralization. In International Confer-
ence on Artificial Intelligence and Statistics, pages
5334–5353. PMLR, 2022.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou,
and Amos J Storkey. Cinic-10 is not imagenet or
cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Yuyang Deng, Mohammad Mahdi Kamani, and
Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Mathieu Even, Laurent Massoulié, and Kévin Sca-
man. Sample optimality and all-for-all strategies
in personalized federated and collaborative learning.
arXiv preprint arXiv:2201.13097, 2022.

Alireza Fallah, Aryan Mokhtari, and Asuman
Ozdaglar. Personalized federated learning:
A meta-learning approach. arXiv preprint
arXiv:2002.07948, 2020a.

Alireza Fallah, Aryan Mokhtari, and Asuman
Ozdaglar. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-
learning approach. Advances in Neural Information
Processing Systems, pages 3557–3568, 2020b.

Vitaly Feldman and Jan Vondrak. High probabil-
ity generalization bounds for uniformly stable algo-
rithms with nearly optimal rate. In Conference on
Learning Theory, pages 1270–1279. PMLR, 2019.

Fares Fourati, Vaneet Aggarwal, Christopher Quinn,
and Mohamed-Slim Alouini. Randomized greedy
learning for non-monotone stochastic submodular
maximization under full-bandit feedback. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 7455–7471. PMLR, 2023.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, and
Peter Richtarik. Flix: A simple and communication-
efficient alternative to local methods in federated
learning. In Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics,
pages 11374–11421. PMLR, 2022.

Jialiang Han, Yudong Han, Gang Huang, and Yun
Ma. Defl: Decentralized weight aggregation
for cross-silo federated learning. arXiv preprint
arXiv:2208.00848, 2022.

Filip Hanzely and Peter Richtárik. Federated learn-
ing of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and
Peter Richtárik. Lower bounds and optimal algo-
rithms for personalized federated learning. Advances
in Neural Information Processing Systems, 33:2304–
2315, 2020.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and
Sreeram Kannan. Improving federated learning per-
sonalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488, 2019.

Salma Kharrat, Marco Canini, Samuel Horvath

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and
Soumik Sarkar. Collaborative deep learning in fixed
topology networks. Advances in Neural Information
Processing Systems, 30, 2017.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and
Trends® in Machine Learning, pages 1–210, 2021.

Mikhail Khodak, Maria-Florina F Balcan, and
Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. Advances in Neural Information
Processing Systems, 2019.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri,
Martin Jaggi, and Sebastian Stich. A unified the-
ory of decentralized sgd with changing topology and
local updates. In International Conference on Ma-
chine Learning, pages 5381–5393. PMLR, 2020.

Alec Koppel, Brian M Sadler, and Alejandro Ribeiro.
Proximity without consensus in online multiagent
optimization. IEEE Transactions on Signal Process-
ing, 65(12):3062–3077, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

Shuangtong Li, Tianyi Zhou, Xinmei Tian, and
Dacheng Tao. Learning to collaborate in decentral-
ized learning of personalized models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9766–9775, 2022a.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Vir-
ginia Smith. Ditto: Fair and robust federated
learning through personalization. In International
Conference on Machine Learning, pages 6357–6368.
PMLR, 2021.

Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yun-
feng Shao, Yinchuan Li, Zhimeng Zhang, Yongheng
Wang, and Chao Wu. Towards effective clustered
federated learning: A peer-to-peer framework with
adaptive neighbor matching. IEEE Transactions on
Big Data, 2022b.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algo-
rithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient
descent. Advances in neural information processing
systems, 30, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous decentralized parallel stochastic gradient
descent. In International Conference on Machine
Learning, pages 3043–3052. PMLR, 2018.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B
Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think
locally, act globally: Federated learning with lo-
cal and global representations. arXiv preprint
arXiv:2001.01523, 2020.

Yue Liu, Tao Lin, Anastasia Koloskova, and Sebas-
tian U Stich. Decentralized gradient tracking with
local steps. Optimization Methods and Software,
pages 1–28, 2024.

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches for per-
sonalization with applications to federated learning.
arXiv preprint arXiv:2002.10619, 2020.

Othmane Marfoq, Chuan Xu, Giovanni Neglia, and
Richard Vidal. Throughput-optimal topology design
for cross-silo federated learning. Advances in Neu-
ral Information Processing Systems, pages 19478–
19487, 2020.

Othmane Marfoq, Giovanni Neglia, Richard Vidal,
and Laetitia Kameni. Personalized federated learn-
ing through local memorization. In International
Conference on Machine Learning, pages 15070–
15092. PMLR, 2022.

Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017.

Angelia Nedić, Alex Olshevsky, and Michael G
Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization.
Proceedings of the IEEE, pages 953–976, 2018.

Giovanni Neglia, Gianmarco Calbi, Don Towsley, and
Gayane Vardoyan. The role of network topology for
distributed machine learning. In IEEE INFOCOM
2019-IEEE Conference on Computer Communica-
tions, pages 2350–2358. IEEE, 2019.

Tharindu Ranathunga, Alan McGibney, Susan Rea,
and Sourabh Bharti. Blockchain-based decentralized
model aggregation for cross-silo federated learning
in industry 4.0. IEEE Internet of Things Journal,
pages 4449–4461, 2022.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro,
and Karthik Sridharan. Stochastic convex optimiza-
tion. In Conference on Learning Theory (COLT),
2009.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal
Chechik. Personalized federated learning using hy-
pernetworks. In International Conference on Ma-
chine Learning, pages 9489–9502. PMLR, 2021.

DPFL: Decentralized Personalized Federated Learning

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi,
and Ameet S Talwalkar. Federated multi-task learn-
ing. Advances in neural information processing sys-
tems, 30, 2017.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Per-
sonalized federated learning with moreau envelopes.
Advances in Neural Information Processing Sys-
tems, pages 21394–21405, 2020.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and
Ji Liu. D2: Decentralized training over decentral-
ized data. In International Conference on Machine
Learning, pages 4848–4856. PMLR, 2018.

Konstantinos I Tsianos, Sean Lawlor, and Michael G
Rabbat. Consensus-based distributed optimization:
Practical issues and applications in large-scale ma-
chine learning. In 2012 50th annual allerton con-
ference on communication, control, and computing
(allerton), pages 1543–1550. IEEE, 2012.

Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyach-
eslav Kungurtsev, Chen Chen, Mubarak Shah, and
Bill Lin. Efficient distribution similarity identifica-
tion in clustered federated learning via principal an-
gles between client data subspaces. In Proceedings of
the AAAI conference on artificial intelligence, pages
10043–10052, 2023.

Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tom-
masi. Decentralized collaborative learning of per-
sonalized models over networks. In Artificial Intel-
ligence and Statistics, pages 509–517. PMLR, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. arXiv
preprint arXiv:2002.06440, 2020.

Jiaqi Wang, Xingyi Yang, Suhan Cui, Liwei Che,
Lingjuan Lyu, Dongkuan DK Xu, and Fenglong Ma.
Towards personalized federated learning via hetero-
geneous model reassembly. Advances in Neural In-
formation Processing Systems, pages 29515–29531,
2023.

Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and
Yanfeng Wang. Personalized federated learning with
inferred collaboration graphs. In International Con-
ference on Machine Learning, pages 39801–39817.
PMLR, 2023.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learn-
ing of neural networks. In International Conference
on Machine Learning, pages 7252–7261. PMLR,
2019.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song,
Zhengui Xue, Ruhui Ma, and Haibing Guan. Fedala:

Adaptive local aggregation for personalized feder-
ated learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 11237–11244,
2023.

Jiaqi Zhang and Keyou You. Fully asynchronous dis-
tributed optimization with linear convergence in di-
rected networks. arXiv preprint arXiv:1901.08215,
2019.

Salma Kharrat, Marco Canini, Samuel Horvath

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes, Section
2 and Section 3]

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes, Section
3 and Appendix B, C]

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Yes, supplementary material https://github.com/salmakh1/DPFL]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes, Section 3]

(b) Complete proofs of all theoretical results. [Yes, Appendix D]

(c) Clear explanations of any assumptions. [Yes, Section 3]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either
in the supplemental material or as a URL). [Yes, Appendix H and supplementary material
https://github.com/salmakh1/DPFL]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes, Appendix H]

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [Yes, experimental section main paper and Appendix
H]

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes, Appendix H]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes, Appendix H]

(b) The license information of the assets, if applicable. [Not Applicable]

(c) New assets either in the supplemental material or as a URL, if applicable. [Yes, supplementary material]

(d) Information about consent from data providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. [Not Applicable]

https://github.com/salmakh1/DPFL
https://github.com/salmakh1/DPFL

DPFL: Decentralized Personalized Federated Learning

A MOTIVATION OF OUR COMBINATORIAL PROPOSITION

In this section, we will show how our utility function based on group synergy by considering the combinatorial
effect of clienwts is more interesting than pairwise comparisons.

We conducted an experiment utilizing the CIFAR10 dataset. We allocated three clients as follows: Client 1 has
access to four classes (0, 4, 6, 8) with 50, 50, 50, and 50 data points per class, respectively. Client 2 is assigned
four classes (0, 6, 1, 3) with 300, 300, 200, and 200 data points per class, respectively. Lastly, client 3 has access
to four classes (4, 8, 5, 7) with 300, 300, 200, and 200 data points per class, respectively. In other words, clients
2 and 3 have two classes in common each with client 1. We then train three models using FedAvg-fine-tuned-
like training (E local steps and aggregation): one where clients 1 and 2 collaborate, one where clients 1 and 3
collaborate, and one where all three clients collaborate. Remarkably, our findings indicate that collaboration
between clients 1 and 2, or 1 and 3 alone, leads to a decrease in performance by approximately 11% in both
cases when compared to client 1 training a model independently on its own private dataset alone.

However, the collaborative effort involving clients 1, 2, and 3 collectively enhances accuracy by approximately
6%.

The effectiveness of GGC in building the collaboration graph could also be shown in the case of two clients each
of them contributed positively to client 1, however the collaboration of 1, 2, 3 leads to negative gain.

Moreover, we would like to clarify that these two cases are the extreme ones where the algorithms that compare
pairwise performance fail to address, however sometimes adding client 1 alone is good and adding client 2 alone
is good, but the marginal gain of adding them together is significantly higher, and this could play an important
role when we have communication constraints where we are restricted to collaborate only with a subset of clients
and choosing them wisely is important.

We believe that scenarios, where the synergy between a group of clients outweighs the pairwise comparison of
collaboration effectiveness, are common in real-world settings, particularly when dealing with highly heteroge-
neous data. In such cases, a specific client might adversely affect the training of another client. However, when
collaborating with a ”complementary client”, the combined effort can significantly enhance performance.

B GREEDY GRAPH CONSTRUCTION (GGC)

Algorithm 2 Greedy Graph Construction (GGC)

Require: client k, clients S
1: X ← {k},Y ← S ∪ {k},
2: for client j ∈ Shuffle(S) do
3: R(X)← −FV

k

(
1∑

i∈X pi

∑
i∈X piwi

)
4: R(X ∪ {j})← −FV

k

(
1∑

i∈X∪{j} pi

∑
i∈X∪{j} piwi

)
5: R(Y)← −FV

k

(
1∑

i∈Y pi

∑
i∈Y piwi

)
6: R(Y \ {j})← −FV

k

(
1∑

i∈Y\{k} pi

∑
i∈Y\{j} piwi

)
7: a← max(R(X ∪ {j})−R(X), 0)
8: b← max(R(Y \ {j})−R(Y), 0)
9: with probability p = a

a+b do
10: X ← X ∪ {j} and Y ← Y
11: else
12: Y ← Y \ {j} and X ← X
13: end for
14: if |X | = Bc then
15: break
16: end if
17: Return X

Additional explanation: We would like to note that as our objective function is not monotone, meaning

Salma Kharrat, Marco Canini, Samuel Horvath

that adding won’t always be the best choice, we necessitate the computation of both marginal gains of adding
and removing a client. To this end, four cases will appear, three of them will happen or do not happen with
probability 1.

• If the marginal gain of adding is positive (a is positive) and the marginal gain of removing is negative (b is
zero) then p = 1.

• If the marginal gain of adding is negative (a is zero) and the marginal gain of removing is positive (b is
positive) then p = 0 (does not happen with probability 1).

• If the marginal gain of adding is negative (a is zero) and the marginal gain of removing is negative (b is
zero) then p = 1.

• If the marginal gain of adding is positive (a is positive) and the marginal gain of removing is positive (b is
positive) only in this case we flip a biased coin that decides probability p based on the values of a and b for
either adding or removing that client. In our experiments, we noticed that this case happens less than 1%
of the time.

Furthermore, it has been shown in (Buchbinder et al., 2015) that if you remove the randomness in the agnostic
case i.e., when the marginal gains of adding and removing are both positive (a and b are positive) then the
algorithm guarantees decreases from achieving 1

2 of the optimal solution to the 1
3 of the optimal solution.

C EFFICIENT REWARD COMPUTATION

Looking at Algorithm 2, we notice that it requires reward computations to the function R(S), which is defined
in our objective according to Eq. (7). This reward computation requires access to wi in S, where |S| may
exceed our budget constraint Bc (see Eq. (8)). Therefore, to ensure that we do not violate our constraints
during the preprocessing step outlined in Algorithm 1, we propose amortizing the communication complexity
needed to evaluate the objective function. This involves dividing the necessary downloads into O(n

Bc
) steps.

Each step entails only O(Bc) computation, storage, and communication complexity, as opposed to a single step
with O(n) complexity, which breaches the budget constraint. To elaborate, during each communication step, a
client k receives at most Bc model updates and monitors the necessary averages for algorithmic decision-making,
without retaining all individual models.

To execute this, the process commences by preparing the call for variable b, requiring the average of all models
in Y, beginning with a full set of clients. We envisage ⌈ n

Bc
⌉ communication steps (line 2), where in each step, Bc

clients transmit their model updates (line 3). We compute the average, as depicted in lines 4-6 of Algorithm 3.
In line 5, wY denotes storing the weighted-sum of received models in batches. Upon completing these steps, wY

is computed. The second phase of communications initiates. Client k begins receiving batches of models without
replacement from Bc clients, storing their indices in Sb. Similar to GGC, client k computes the marginal gains
of adding and removing a client from Sb by computing a and b, respectively. A decision is then made based on
probability p in line 16. A crucial step is to keep track of the values of wX and wY and update them as in lines
17 and 19, for future use even for the next received batch of models Bc.

It’s important to note that this expanded window of communications is solely required for the preprocessing
step; for graph verification at line 10 of Algorithm 1, the algorithm takes as input |Ωk| ≤ Bc.

DPFL: Decentralized Personalized Federated Learning

Algorithm 3 Batched Greedy Graph Construction (BGGC)

Require: client k, clients S, budget Bc.
1: wY ← pkwk

2: for s in range(⌈ n
Bc
⌉) do

3: Client k receives a batch B of at most Bc models without replacement
4: for model ws ∈ B do
5: wY ← wY + ps ∗ws

6: end for
7: end for
8: X ← {k},Y ← S ∪ {k}, wX ← pkw

k,wY ← wY ,
9: S ← Shuffle(S)

10: for s in range(⌈ n
Bc
⌉) do

11: Client k receives a batch B of at most Bc models in order from S
without replacement and indices in Sb

12: for j in Sb do

13: R(X)← −FV
k

(
wX∑
i∈X pi

)
14: R(X ∪ {j})← −FV

k

(
wX+pjw

j

(pj+
∑

i∈X pi)

)
15: R(Y \ {j})← −FV

k

(
wY −pjw

j

(−pj+
∑

i∈Y pi)

)
16: R(Y)← −FV

k

(
wY∑
i∈Y pi

)
17: a← max(R(X ∪ {j})−R(X), 0) {marginal gain of adding a client}
18: b← max(R(Y \ {j})−R(Y), 0) {marginal gain of removing a client}
19: with probability p = a

a+b do

20: X ← X ∪ {j} ; Y ← Y ; wX ← wX + pjw
j

21: else
22: Y ← Y \ {j} ; X ← X ; wY ← wY − pjw

j

23: if |X | = Bc then
24: break
25: end if
26: end for
27: end for
28: Return X

D PROOF OF Theorem 1

Both algorithms, GGC and BGGC, for a given client k, for a given set of clients S, aim to find a set of collaborators

X ⊆ S ∪ k that maximizes the reward function R(X) ≜ −FV
k

(
1∑

i∈X pi

∑
i∈X piwi

)
. Both algorithms use the

marginal gains a and b computed from the reward function R(·) and add a client with the same probability
function p = a

a+b . Both BGGC and GGC initialize X as {k} and Y as S ∪ {k}. Both algorithms go through the
potential collaborators in S and decide to add or remove sequentially.

Assuming both GGC and BGGC apply some seeded sorting function to set S and follow the shuffled order, to
show that both methods yield exactly the same output with seeded randomness, it only needs to be verified
that the computed p is the same for GGC and BGGC for each client. This requires showing that the reward
computation yields exactly the same outcome.

In the following, we show that GGC and BGGC compute the same reward function of the four considered sets
in every decision round, which are X , X ∪ {k}, Y and Y \ {k}, leading to the same value for the probability
function p, hence the same decision.

Reward of Y computation

Salma Kharrat, Marco Canini, Samuel Horvath

GGC computes R(Y) as follows:

R(Y) = −FV
k

(
1∑

i∈Y pi

∑
i∈Y

piwi

)
, (9)

which implicitly assumes having access to all the weights of clients in Y, possibly requiring communication with
all these clients as well as the storage of their models.

In contrast, BGGC, does not assume the possibility of communicating or storing more models than the expected
budget, hence in its first loop (lines 2-6) iterates through batches of clients, summing their weighted models into
wY . This effectively pre-computes the sum for the entire client set Y = S ∪ {k}:

wY = pkwk +
∑

s∈⌈ n
Bc

⌉

∑
j∈Bs

pjwj = pkwk +
∑
j∈S

pjwj =
∑

j∈S∪{k}

pjwj =
∑
j∈Y

pjwj , (10)

where Bs denotes a batch of clients received in the s-th iteration. This weighted summation clearly ends up
summing all the weights of all the clients in S.

This summation is adaptive to the change in Y, as shown in line 23, where whenever a client j is removed, its
weighted weights (pjw

j) are removed from the weighted sum (wY −pjw
j). Therefore, wY always represents the

weighted sum of the model’s weights in the set Y. Hence, in every decision step, it is always the case that:

wY =
∑
j∈Y

pjwj . (11)

BGGC computes R(Y), in line 17, as follows:

R(Y) = −FV
k

(
wY∑
i∈Y pi

)
.

Replacing by wY recovers the same reward computation of GGC.

Reward of Y \ {k} computation

GGC computes R(Y \ {j}) as follows:

R(Y \ {j}) = −FV
k

 1∑
i∈Y\{j} pi

∑
i∈Y\{j}

piwi

 ,

which implicitly assumes having access to all the weights of clients in Y.

BGGC computes R(Y), in line 16, as follows:

R(Y \ {j}) = −FV
k

(
wY − pjw

j

−pj +
∑

i∈Y pi

)
= −FV

k

(
wY − pjw

j∑
i∈Y\{j} pi

)
.

Replacing by wY , using Eq. (11) recovers the same reward computation of GGC.

Reward of X computation

GGC computes R(X) as follows:

R(X) = −FV
k

(
1∑

i∈X pi

∑
i∈X

piwi

)
.

BGGC initializes X = {k} in the same way as GGC. Moreover, initialized wX ← pkw
k. Therefore, in the first

iteration, wX represents exactly the weighted weight of client k, representing the sum of that single element.

DPFL: Decentralized Personalized Federated Learning

This summation is adaptive to the change in X , as shown in line 21, where whenever a client j is added, its
weighted weights (pjw

j) are added to the weighted sum (wX + pjw
j). Therefore, wX always represents the

weighted sum of the model’s weights in the set X . Hence, in every decision step, it is always the case that:

wX =
∑
j∈X

pjwj . (12)

BGGC computes R(Y), in line 14, as follows:

R(X) = −FV
k

(
wX∑
i∈X pi

)
.

Replacing by wX recovers the same reward computation of GGC.

Reward of X ∪ {k} computation

GGC computes R(X ∪ {j}) as follows:

R(X ∪ {j}) = −FV
k

 1∑
i∈X∪{j} pi

∑
i∈X∪{j}

piwi

BGGC computes R(Y), in line 15, as follows:

R(X ∪ {j}) = −FV
k

(
wX + pjw

j

pj +
∑

i∈X pi

)
= −FV

k

(
wX + pjw

j∑
i∈X∪{j} pi

)

Replacing by wX using Eq. (12) recovers the same reward computation of GGC.

E PROOF OF Proposition 1

Assume there exists a collaboration graph Cc, which is optimal within a restricting subset P, i.e.,

Cc ∈ argmin
w={wi∈Rd}N

i=1

C={Ci∈2[N]\{i}; |Ci|≤Bc}N
i=1

C∈P

{
F (w, C) ≜

N∑
k=1

pkFk (wk, Ck)

}

Solving Eq. (3) yields a collaboration graph C⋆, where

C⋆ ∈ argmin
w={wi∈Rd}N

i=1

C={Ci∈2[N]\{i}; |Ci|≤Bc}N
i=1,

{
F (w, C) ≜

N∑
k=1

pkFk (wk, Ck)

}

Therefore, it follows that

min
w={wi∈Rd}N

i=1

F (w, C⋆) = min
w={wi∈Rd}N

i=1

C={Ci∈2[N]\{i}; |Ci|≤Bc}N
i=1,

{
F (w, C) ≜

N∑
k=1

pkFk (wk, Ck)

}

≤ min
w={wi∈Rd}N

i=1

C={Ci∈2[N]\{i}; |Ci|≤Bc}N
i=1

C∈P

{
F (w, C) ≜

N∑
k=1

pkFk (wk, Ck)

}

= min
w={wi∈Rd}N

i=1

F (w, Cc),

which concludes the proof.

Salma Kharrat, Marco Canini, Samuel Horvath

F EXPLANATION OF THE FRAMEWORK WITH A SIMPLE EXAMPLE

To clarify the formulation of the DPFL algorithm, we consider a simple example with 3 devices (clients) labeled
{k = 1, 2, 3}, each having its own local data. The goal is to optimize a personalized model for each device.

• Step 1: Local Optimization and Initial Collaboration Graphs:* Each device performs local updates for a
certain number of steps τinit using its own data. After the local update and communication of the updates,
each device computes its collaboration graph using BGGC which can result for example in: Ω1 = {1, 2}
(i.e., device 1 will collaborate with devices 2), Ω2 = {2, 3}, Ω3 = {3, 1}.

• Step 2: Training Loop

– Local Optimization: Each device performs local updates for τtrain steps using its data.

– Collaboration Assignment: After local optimization, each device reevaluates its collaboration
graph. For example: Device 1 might decide to collaborate only with itself, C1 = {1}, Device 2 might
select C2 = {2, 3}, Device 3 might select C3 = {3, 1}.

– Parameter Averaging: Each device updates its local model by averaging parameters from its col-
laborators (Ci for client i). For instance, if device 1 collaborates with device 2, it updates its model
as:

w2 =
1

p2 + p3
(p2w2 + p3w3)

where pi is proportional to the size of the data on the device i. This process is repeated for all devices.

• Step 3: Repeat for multiple rounds the process of local optimization, collaboration selection, and parameter
averaging repeats for T rounds, refining the models and evolving the collaboration graphs.

Greedy Collaboration Selection For the greedy algorithm. Consider the same 3 devices, where device
1 decides whom to collaborate with.

• Initialization: Device 1 starts with X = {1} and Y = {1, 2, 3}.

• Marginal Gain Calculation: Device 1 computes the marginal gain for adding or removing each collabo-
rator. For example, adding device 2 gives a gain of:

a = R({1, 2})−R({1}),

and removing device 2 gives:
b = R({1, 3})−R({1, 2, 3}).

• Selection: If the gain of adding device 2 is greater than removing it, device 1 will collaborate with device
2. If adding device 3 results in a smaller gain, device 1 will be excluded it from its collaboration set.

• Final Collaboration Set: Based on the marginal gains, device 1 will collaborate with device 2, resulting
in the final collaboration set C1 = {1, 2}.

G COMMUNICATION AND COMPUTATION COSTS OF DPFL AND
COMPARISION WITH OTHER METHODS

G.1 Communication Cost of DPFL

In DPFL, devices communicate with their collaborators, which are selected based on a greedy algorithm to
balance the tradeoff between personalization and global model aggregation. The key factors influencing the
communication cost are:

• Number of devices (N): The total number of devices participating in the learning process.

• Set of collaborators size |Ck|: Each device k communicates with a subset of collaborating devices Ck, where
|Ck| ≤ Bc is the number of devices in the collaboration set.

DPFL: Decentralized Personalized Federated Learning

• Model size (d): The number of model parameters (weights) that each device is updating and exchanging
during communication.

• Communication rounds (T): The number of iterations or rounds of communication.

In each round of communication, the cost for device k is proportional to the model size d and the number
of collaborators it communicates with. Specifically, if each device communicates with Bc collaborators, the
communication cost per round is at most Bcd. Over T iterations, the total communication cost becomes at
most TBcd, where Bc << N in real-world applications (i.e., each device typically communicates with only a
small subset of neighbors). Accounting for the preprocessing step, the total communication cost of our method is
O(TBcd+Nd). Therefore, for T > N , the total communication cost of our method is O(TBcd). For decentralized
federated learning with a fully connected network (e.g., extended FedAvg), the communication cost scales with
the total number of devices N and the model size d, yielding a cost of O(TNd). Thus, DPFL significantly
reduces the communication cost compared to extended centralized methods with fully connected networks, as it
avoids the need for all-to-all communication across devices.

G.2 Computation Cost of DPFL

The computational cost in DPFL is primarily determined by three factors: the greedy algorithm for neighborhood
selection, the local optimization process, and the aggregation of updates. Below, we break down the computation
cost for each component:

• Greedy Collaborators Selection: In DPFL, each device runs a greedy algorithm to select its collabo-
rators. This step involves computing the set of collaborators for each device, which requires 2 × Bc × F
FLOPs (2 follows from computing a and b as shown in lines 7 and 8 Algorithm 2), where Bc is the size of
the neighborhood and F denotes the FLOPs required for a forward pass of the model.

• Local Optimization: Each device performs local optimization (e.g., gradient descent) for E steps. The
computational cost for each local update involves both a forward and a backward pass of the model, requiring
F+B FLOPs per step, where F+B denotes the FLOPs required for a forward and backward pass. Therefore,
the total computation for local optimization over E steps is E × (F +B) FLOPs.

• Aggregation: The aggregation step in DPFL, where model updates are averaged across a device’s col-
laborations, requires Bc × d FLOPs, where d is the size of the model (i.e., the number of parameters).
Thus, the total computational cost for each device in DPFL per round is the sum of these three terms:
Total training FLOPs per round (DPFL) = 2×Bc × F + E × (F +B) +Bc × d

G.3 Comparison with Baseline Methods

• Decentralized FedAvg: In decentralized federated learning methods like FedAvg, each device performs
local optimization for E steps, requiring E× (F +B) FLOPs. The aggregation step on each device requires
N × d FLOPs, where N is the total number of devices. Thus, the total computational cost per device in
FedAvg is:

Total FLOPs (FedAvg) per round = E × (F + B) + N × d Compared to DPFL, FedAvg does not include
the additional greedy neighborhood selection step, but it does require communication with all N devices for
aggregation, which increases the computational burden.

• DITTO and APFL: These methods (used as baselines in the main table) require training two mod-
els per device for personalized federated learning. The computational cost per device in these methods
is therefore higher, as each device performs local optimization for two models. Specifically, for E lo-
cal steps, the total computational cost becomes 2 × E × (F + B) + N × d due to the need to train
two models and aggregate them. This makes DITTO and APFL more computationally expensive than
DPFL.Total FLOPs (DITTO/APFL) = 2× E × (F +B) +N × d

Salma Kharrat, Marco Canini, Samuel Horvath

H EXPERIMENTAL DETAILS

All the experiments reported in Tables 3, and 1 represent the average of three different repetitions across three
different seeds. For the experiment in Table 4, we report the results for seed equals to 42. In all experiments, we
preserve the best model based on the validation dataset, and the reported test results are obtained by performing
inference on this best validation model.

H.1 Datasets

In our experiments, we utilize various datasets following existing literature on personalized FL, as highlighted in
(Li et al., 2021; Collins et al., 2021; Marfoq et al., 2022). We conduct experiments with CIFAR10 (Krizhevsky
et al., 2009), Federated Extended MNIST (FEMNIST) (Caldas et al., 2018), and the CINIC10 dataset (Darlow
et al., 2018).

H.2 Data heterogeneity

We explore varying degrees of data heterogeneity, particularly employing two distinct distribution strategies for
the CIFAR10 and CINIC10 datasets. The first approach involves a pathological distribution split (Zhang et al.,
2023; McMahan et al., 2017; Colin et al., 2016), wherein each client exclusively receives data from three specified
categories. The second approach utilizes the Dirichlet distribution (Yurochkin et al., 2019; Wang et al., 2020),
where a distribution vector qc is drawn from Dirk(α) for each category c. Subsequently, the proportion qc,i

of data samples from category c is allocated to client i. Moreover, for the FEMNIST dataset, we consider the
natural Non-IID split provided in the Leaf framework (Caldas et al., 2018) where each writer corresponds to a
client and we add more degrees of heterogeneity by having each client missing some classes.

H.3 CIFAR10 benchmark

H.3.1 Distribution

CIFAR10 is a vision dataset comprising 50,000 training images and 10,000 testing images. We split the training
data into 20% of the validation dataset and 80% of the training dataset. Furthermore, we split the testing
data among clients in such a way the local test data follows the distribution of the training data. During the
training, we save the best local models on the validation dataset, and we make inferences afterward using the
local test data and the best saved model. To simulate real-world heterogeneity, we consider two types of data
heterogeneity. The first approach involves a pathological distribution split (Zhang et al., 2023; McMahan et al.,
2017; Colin et al., 2016), wherein each client exclusively receives data from three specified categories. In the
case of the CIFAR10 dataset, we use Patho(3) to denote that each client has access to only three classes out of
ten. The second approach utilizes the Dirichlet distribution (Yurochkin et al., 2019; Wang et al., 2020), where
a distribution vector qc is drawn from Dirk(α) for each category c. Subsequently, the proportion qc,i of data
samples from category c is allocated to client i. In CIFAR10 dataset we use Dir(0.1).

H.3.2 Model

The employed model is a simple CNN network comprising three convolutional layers and two fully connected
layers. The first convolutional layer has three input channels, six output channels, and a kernel size of 5. The
ReLU activation function and a 2D Maxpool Layer with a kernel size of 2 follow it. The second convolutional
layer transforms an input of six channels to sixteen channels with a kernel size of 5, followed by the ReLU
activation function. The first fully connected layer takes an input of size 400 and produces an output of size
120. The second layer produces an output of size 84, and the last layer has a size equal to the number of classes,
which is 10.

H.3.3 Hyperparameters

For the preprocessing step for each client, we train 10 local epochs (τinit = 10). During the training the number
of local epochs τtrain = 5, the number of rounds T = 100, however as the preprocessing step corresponds to 2
rounds of training, for fairness with other methods we use only 98 rounds instead of 100 for our method. The

DPFL: Decentralized Personalized Federated Learning

number of clients |St| = 100. The learning rate η = 0.01. For the training, we use SGD optimizer with 1e − 3
decay, 0.9 momentum, and batch size of 16.

H.4 FEMNIST benshmark

H.4.1 Distribution

We utilize the FEMNIST dataset within the LEAF framework (Caldas et al., 2018). This dataset consists of
training and testing sets accompanied by a client-data mapping file that partitions the data in a non-IID (non-
identically distributed) manner among the clients. The dataset exhibits inherent heterogeneity due to variations
in the writing styles of individual contributors. We first downloaded the full FEMNIST data from (Caldas et al.,
2018). Additionally, we employed a file obtained from (Li et al., 2021) to further increase the heterogeneity in
the dataset. The data files will be provided along with our code.

H.4.2 Model

The employed model is a simple CNN network comprising three convolutional layers and two fully connected
layers. The first convolutional layer has one input channel, 4 output channels, and a kernel size of 5. It is followed
by the ReLU activation function and a 2D Maxpool Layer with a kernel size of 2. The second convolutional
layer transforms an input of 4 channels to 12 channels with a kernel size of 5, followed by the ReLU activation
function. The first fully connected layer takes an input of size 192 and produces an output of size 120. The
second layer produces an output of size 100, and the last layer has a size equal to the number of classes, which
is 10.

H.4.3 Hyperparameters

For the preprocessing step for each client, we train 4 local epochs (τinit = 4). During the training the number
of local epochs τtrain = 2, the number of rounds T = 50, however as the preprocessing step corresponds to 2
rounds of training, for fairness with other methods we use only 48 rounds instead of 50 for our method. The
number of clients |St| = 100. The learning rate η = 0.001. For the training, we use SGD optimizer with 1e− 3
decay, 0.9 momentum, and batch size of 10.

H.5 CINIC10 benshmark

H.5.1 Distribution

CINIC10 serves as an extension to CIFAR10, encompassing 90,000 training images, 90,000 validation images,
and 90,000 test images. Initially, the training and validation sets are combined, and the data is then distributed
among clients in a heterogeneous manner. Subsequently, 20% of each partition is allocated for validation, with
the remaining portion designated for training. Similar to CIFAR10, we split the test data among clients in such
a way that it follows the train distribution for each client. The training data is distributed either following a
Dirichlet distribution Dir(0.1) or the pathological distribution Patho(3), where each client has access to only
three classes among the ten available. After assigning to each client which classes it will get, we distribute the
class data points among clients that share the same class, following a Dir(0.5) distribution. This additional step
adds more degrees of heterogeneity and simulates a real-world scenario more realistically.

H.5.2 Model

The same model used in CIFAR10 is employed.

H.5.3 Hyperparameters

For the preprocessing step for each client, we train 10 local epochs (τinit = 10). During the training the number
of local epochs τtrain = 5, the number of rounds T = 50, however as the preprocessing step corresponds to 2
rounds of training, for fairness with other methods we use only 48 rounds instead of 50 for our method. The
number of clients |St| = 200. The learning rate η = 0.01. For the training, we use SGD optimizer with 1e − 3
decay, 0.9 momentum, and batch size of 16.

Salma Kharrat, Marco Canini, Samuel Horvath

H.6 Baselines

We compared our method against eleven baselines:

• Local: local training for T rounds and we report the average local test accuracies of the clients in every
round.

• FedAvg (McMahan et al., 2017)

• FedAvg+FT: which is fedavg fine-tuning version, where we save best models on validation dataset when
training FedAvg, then starting from that model we perform 2 ∗ τ local epochs and report the average test
accuracies.

• FedProx (Lian et al., 2018): For FedProx we use λ = 0.1 for all datastes (CIFAR10, CINIC10 and FEMNIST)

• FedProx+FT (Lian et al., 2018): It is FedProx fine-tuning version, where we save the best models on the
validation dataset when training FedProx, then starting from that model we perform 2 ∗ τ local epochs and
report the average test accuracies.

• APFL (Smith et al., 2017): We chose the hyperparameter which they call τ in their paper to be τ = 1 which
means we synchronise the models every round.

• PerFedAvg (Fallah et al., 2020a): We use the hyperparameter α = 0.01 and it is fixed for all runs and all
datasets

• Ditto (Li et al., 2021): We set the hyperparameter λ that represents the tradeoff between local and global
models to 0.75, and keep it fixed for all datasets.

• FedRep (Collins et al., 2021)

• PACFL (Vahidian et al., 2023): We use the threshold for clustering to be 1, following their optimal value
in CIFAR10 and we use it for all other datasets.

• kNN-Per (Marfoq et al., 2022): we set the hyperparameter kknn to 10 and the interpolation hyperparameter
to 0.5

• pFedGraph (Ye et al., 2023)

H.7 Compute resources

We use an internal SLURM cluster for running our experiments. The experiments were done on an ASUS ESC
N4A-E11 server. The node has 4 A100 GPUs, an AMD EPYC 7003 series 64 core @ 3.5GHz CPU and 512GB
of RAM. We used one A100, with 2 cores, and required at most 100GB of memory for the experiments.

I ADDITIONAL EXPERIMENTS

I.1 Variance between accuracies of local models

As our objective is personalization, we believe that, apart from improving the overall average accuracy among
clients, it is crucial to assess whether improvements are distributed across most models rather than being confined
to just a few clients. To evaluate this, we examine the variance between local models. Lower variance indicates
that the accuracies of local models are closer. Therefore, we consider both accuracy and variance as important
metrics. In Figures 1, 5 and 6, the x-axis represents the average test accuracy, while the y-axis represents the
variance between clients’ models. For better visualization, in Fig. 1 we choose to report only methods that the
average test accuracy is higher than 80% and 78% for Dir(0.1) and Patho(3) respectively, while for Fig. 6 we
show the methods having higher than 78% and 77% for Dir(0.1) and Patho(3) respectively. Furthermore, in
Fig. 5 we were able to show all methods. All figures show that our method (DPFL) is situated in the right-bottom
corner across all variants of budget constraints. This positioning signifies that, compared to other methods, our
approach achieves superior average test accuracy and lower variance between local models.

DPFL: Decentralized Personalized Federated Learning

Average Test Accuracy
V
a
ri
n
a
ce

Figure 5: Comparison of our method with other personalized methods on the FEMNIST dataset in terms of variance
between local models.

Average Test Accuracy Average Test Accuracy

Figure 6: Comparison of our method with other personalized methods on the CINIC10 dataset in terms of variance
between local models.

I.2 Visualization of the collaboration graph

We present Figures 8, 9, 10 and 11, showing our initial collaboration graph on the top left and the clients
considered for collaboration every 10 round from 0 to 80 for cases without budget constraint, with Bc = 20,
Bc = 10, and with Bc = 5 respectively. The diagonal indicates that every client always “collaborates” with itself.
To illustrate the graph evolution, the plots display collaborative links in two colors: in pink are the clients that
are selected for collaboration in that round; in yellow are the clients that were identified during the preprocessing
step but are currently not chosen. The union of pink and yellow clients corresponds to the initial collaboration
graph. The figures highlight that the initial collaboration graph is denser compared to the actually used clients
for aggregation in later rounds. This is expected since the graph is constructed as a preprocessing step, and at
this stage, model weights have not yet converged. Therefore, broader collaboration can be beneficial. However,
as training progresses, it is natural to expect that each client will benefit primarily from collaborating with clients
having similar data distributions, thus leading to a sparser collaboration graph. Another contributing factor is
that, in the preprocessing step, the decision to select a specific client for collaboration is made from a pool of
100 clients, making it more challenging than in later rounds where the decision is drawn from a smaller pool
denoted as Ωk for client k. Another observation is that in all cases, from round 60 onward, the graph remains
almost unchanged. This is attributed to the weights nearing convergence, resulting in a less random selection of
collaborators. The diversity of the graph at early rounds proves that we shouldn’t remove an edge between two
nodes if that node hasn’t been selected, as that decision could change in later rounds.

Salma Kharrat, Marco Canini, Samuel Horvath

Test Accuracy

V
a
ri
a
n
ce

Test Accuracy

Figure 7: Variance between local models using Dir(0.1) (left) and Patho(3) (right) data splits on CIFAR10.

I.3 Behavior of the collaboration graph under two groups of clients

To better visualize and have more explainability of the behavior of our algorithm, we ran an experiment using
CIFAR10 dataset and 100 clients, where 40 among them had their label flipped using the same permutation and
60 had their true labels. It’s important to note that our objective wasn’t to create an attack; rather, we aimed to
delineate the behavior of our algorithm, acknowledging that while it may exhibit robustness characteristics, the
study of robustness falls outside the scope of this paper. In this experiment, we effectively created two distinct
groups of clients. The first experiment, illustrated in Fig. 3a, involved flipped clients who did not execute the
greedy algorithm (Algorithm 2). Instead, they consistently maintained their models (a stronger attack strategy).
As expected, the collaboration graph displayed numerous edges with these flipped clients initially. This outcome
aligns with the inherent randomness in the weights during the preprocessing step, making it challenging to select
between clients. However, as the rounds progressed, we observed a notable trend: black clients increasingly
avoided selecting the red ones until they ultimately ceased choosing them altogether. This evolution is depicted
in Fig. 12, where the complete graph evolution is visualized every 10 rounds. In the second experiment (Fig. 3b),
even the red clients executed the greedy algorithm, resulting in their selection from the black clients initially.
Consequently, their models became regularized towards the black ones. Despite this behavior in the collaboration
graph, we observed that as the rounds progressed, the clients were almost segregated into two subgroups (red
and black), with very few links between them serving as a form of regularization (full graph is in Fig. 13). We
visualized the percentage of connection with malicious clients for a benign client, as presented in Fig. 14, and
found it to be very small.

DPFL: Decentralized Personalized Federated Learning

Figure 12: Our collaboration graph without Greedy. 40% of clients have flipped labels (Malicious), while 60% have
original labels (Benign). Malicious clients don’t execute Algorithm 2; instead, they consistently send their local model to
Benign clients.

Salma Kharrat, Marco Canini, Samuel Horvath

Figure 13: Our collaboration graph with Greedy. 40% of clients have flipped labels (Malicious), while 60% have original
labels (Benign). Malicious execute Algorithm 2.

DPFL: Decentralized Personalized Federated Learning

Figure 14: Visualization of the ratio of benign clients collaborating with malicious vs with benign, in the case that
malicious runs the greedy algorithm

Salma Kharrat, Marco Canini, Samuel Horvath

Figure 15: Our collaboration graph on CIFAR10 dataset with 100 clients

I.4 Measuring Asymmetry of the collaboration graph

For the experiments conducted using the CIFAR10 dataset, we analyzed the percentage of asymmetry in the
graph across different rounds for three budget settings Bc = inf , Bc = 20 and Bc = 10 respectively.We observed
that the asymmetry percentage is consistently higher in round 0 compared to subsequent rounds. This aligns
with the expectation that the greedy decision-making process during preprocessing exhibits more randomness
due to two factors, first, the model weights still didn’t capture enough of the data structure, and second as the
decision of choosing or removing a client is made from bigger pool, it makes it harder to decide. Additionally,
across all budget settings, the asymmetry percentage appears to stabilize around a specific value, exhibiting
fluctuations, starting from round 40 onwards.

DPFL: Decentralized Personalized Federated Learning

Figure 8: Our collaboration graph without constraint on CIFAR10 dataset with 100 clients

Salma Kharrat, Marco Canini, Samuel Horvath

Figure 9: Our collaboration graph with constraint Bc=20 on CIFAR10 dataset with 100 clients.

DPFL: Decentralized Personalized Federated Learning

Figure 10: Our collaboration graph with constraint Bc=10 on CIFAR10 dataset with 100 clients.

Salma Kharrat, Marco Canini, Samuel Horvath

Figure 11: Our collaboration graph with constraint Bc=5 on CIFAR10 dataset with 100 clients.

