
DMAS-Forge: A Framework for Transparent
Deployment of AI Applications as Distributed Systems

Alessandro Cornacchia

KAUST

Vaastav Anand

MPI-SWS

Muhammad Bilal

KAUST

Zafar Qazi

LUMS & KAUST

Marco Canini

KAUST

Abstract

Agentic AI applications increasingly rely on multiple agents

with distinct roles, specialized tools, and access to memory

layers to solve complex tasks—closely resembling service-

oriented architectures. Yet, in the rapid evolving landscape

of programming frameworks and new protocols, deploying

and testing AI agents as distributed systems remains a daunt-

ing and labor-intensive task. We present DMAS-Forge, a

framework designed to close this gap. DMAS-Forge decou-

ples application logic from specific deployment choices, and

aims at transparently generating the necessary glue code and

configurations to spawn distributed multi-agent applications

across diverse deployment scenarios with minimal manual

effort. We present our vision, design principles, and a proto-

type of DMAS-Forge. Finally, we discuss the opportunities

and future work for our approach.

1 Agentic AI

Agentic AI represents the next stage in the evolution of intel-

ligent systems. Agentic AI augments a traditional AI model

by incorporating advanced capabilities such as planning,

reasoning, contextual memory, and tool use. AI agents can

dynamically direct their own tool usage and follow the set

of steps towards achieving a goal [14, 25]. These features

enable agents to work autonomously with minimal human

intervention. Therefore, AI agents are designed to operate

in dynamic environments where adaptability and strategic

decision-making are essential.

Multi-agent systems (MAS). MAS extend this paradigm

by enabling multiple AI agents to collaborate in pursuit of

shared objectives. Each agent within such a system possesses

a degree of autonomy, specialized skills, and a localized view

of the broader environment. Through coordination, com-

munication, and task-sharing, MAS can address problems

that are too large, complex, or interdependent for a single

agent to manage effectively. Attempting to assign a highly

complex task to a single agent often leads to challenges: in-

structions may become overly complicated, the likelihood of

errors increases, validation becomes more difficult, and the

agent may require excessive access to tools and permissions.

By distributing responsibilities across multiple agents, MAS

reduces these risks. Each agent can be restricted to a well-

defined scope of action, equipped with the tools necessary

for its role, and powered by the most appropriate AI models

for its specialized function. Furthermore, the use of distinct

memory systems across agents enhances adaptability, as

agents can draw on task-specific knowledge while contribut-

ing to a collective goal. Therefore, while an individual AI

agent can perform a wide range of tasks, the collaborative

nature of MAS allows for far greater reasoning quality and

reliability [10, 15].

Collaboration strategies in MAS can follow two paradigms.

The first is dynamic coordination, determined at runtime,

where agents flexibly communicate intentions, share infor-

mation, and negotiate task assignments. The second is a

more predictable, workflow-based approach, where intra-

and inter-agent interactions are structured as a graph. The

graph predefines the execution flow—i.e., code path. Exam-

ples of the latter include prompt-chaining [24], paralleliza-

tion and routing [14], self-consistency [23], self-refine [18],

and various combinations thereof. In practice, complex MAS

applications adopt a mixture of the two approaches.

2 Problem definition

With MAS continuing to grow in complexity and size, there

is increasing consensus towards deploying and integrat-

ing MAS with distributed systems [4, 8, 20]. Powered with

standardized communication protocols such as Google’s

Agent2Agent Protocol (A2A) [17] and Anthropic’s Model

Context Protocol (MCP) [2], distributed MAS (DMAS) are

emerging as a novel trend. We first motivate this trend, then

we discuss the limitations of existing programming frame-

works in supporting DMAS.

2.1 Why distributed systems?

Akin to microservices, distributing agents into their own

services or containers, rather than deploying them as part of

a monolith, offers significant architectural and operational

benefits. This approach enables heterogeneous runtimes and

simplifies dependency management, allowing each team to

adopt the agentic framework that best suits their use case

without bloating the system with unnecessary libraries. It



1st Workshop on Systems for Agentic AI (SAA’25), October 13, 2025, Seoul, Republic of Korea

also promotes agent reuse, where a robust, fault-tolerant de-

ployment of a specific agent can be leveraged across multiple

applications. Security boundaries are strengthened through

containerization, which allows fine-grained controls such as

seccomp/AppArmor profiles, separate service accounts, and

tailored network policies — particularly important when han-

dling Personally Identifiable Information (PII), integrating

with external APIs, or managing third-party secrets.

Furthermore, isolating agents can reduce tail latency by

mitigating the impact of failures or model timeouts, ensur-

ing more predictable system responsiveness. If a container

crashes or a node fails, only the affected part of the workflow

needs to be retried, rather than restarting the entire request.

In certain scenarios, the retries might be avoided due to the

stochastic behavior of LLMs and the inherent adaptability

of MAS. For example, when agents coordinate dynamically

(§ 1), one may decide to entirely disregard the failed inter-

actions (e.g., due to the crash of a tool or agent container)

without compromising the quality of the overall outcome.

Finally, containers provide resource isolation and enable

independent scaling, so similarly with serverless [3], agents

with diverse CPU, memory, or I/O requirements can be tuned

and deployed optimally, avoiding contention and improving

overall system performance.

2.2 Disconnect between programming

frameworks and DMAS

Existing programming frameworks–such as LangGraph [13],

CrewAI [12], AutoGen [9], LlamaIndex [16] and Agno [19]–

enable programmers to structure applications in workflows

and agents, and offer built-in modules for agent coordina-

tion, tool integration and memory management. However,

they tightly couple the application logic with the execu-

tion environment by hard-coding communication interfaces.

Each specific framework implements inter-agent commu-

nication via its own modules assuming a monolithic de-

ployment (e.g., message passing in LangGraph or group

chats in Autogen). As a consequence, while it is practical for

AI engineers to write MAS applications leveraging today’s

frameworks, deploying such applications as a distributed,

protocol-compliant system is considerably more demanding.

It requires substantial manual effort, especially when the

deployment environment needs to be changed (e.g., porting

a MAS from Kubernetes [20] to Temporal [8]). In real cases,

practitioners are often puzzled on how to achieve this [5–7].

Example. Consider a LangGraph workflow [14]. To de-

ploy it as a distributed system, one would need to: (i) decide
a partitioning logic to create a distributed graph made of

smaller sub-graphs; (ii) create separate LangGraph workflow

for each sub-graph; (iii) stich-the-dots, trying to connect

DMAS-ForgeAgent 2

Agent 3

Multi-agent application Cloud / Distributed Environment

Container

Agent 1
Container

Agent 2A2A

Agent 1
MCP Tools

Agent 3

Figure 1: Objective of DMAS-Forge.

the new sub-graphs while preserving the original orchestra-

tion logic; (iv) in doing so, implement protocol adapters to

translate between LangGraph’s communication primitives

and A2A/ACP primitives; (v) scaffold deployment-specific

infrastructure to run the distributed system on the desired

environment–e.g., in Linux containers, serverless lambdas,

Kagent resources [20], VMs in E2B [11], or Temporal work-

ers [8].

Limitations. Unfortunately, this manual effort must be

repeated for every new communication protocol, changes

to the dependencies between agents, and new deployment

environment–i.e., it is not a one-time cost. The problem is ex-

acerbated by the rapid proliferation of different solutions in

the field, which forces developers to repeatedly re-engineer

their applications to keep up with the latest trends. Further, it

hinders opportunities for optimization. For example, step (i)
could be optimized based on runtime profiling of communi-

cation costs and computational load. Similarly, optimization

opportunities exist for other design choices, including which

communication protocol to use or which runtime environ-

ment. Therefore, automation is fundamental, since one might

need to iteratively re-deploy and profile a DMAS for each

design choice.

3 Our approach & vision

We envision a “write-once, deploy-everywhere” paradigm,

where developers write multi-agent applications once and

our framework flexibly ports them to different execution en-

vironments, compliant with communication protocols. This

vision is summarized in Fig. 1.

3.1 DMAS-Forge compiler

We propose a compiler-based approach that enables clean

separation of core agent logic from the underlying communi-

cation protocols and deployment infrastructure. Our key in-

sight is that the core computation model of an AI application

is completely orthogonal to how and where the computation

is performed. This clean separation allows application devel-

opers to provide their structural agentic workflow indepen-

dently from the deployment choices, and allows developers

to plug-and-play any deployment choice in the future.



1st Workshop on Systems for Agentic AI (SAA’25), October 13, 2025, Seoul, Republic of Korea

Our compiler expects two inputs, highlighted in Fig. 2.

The structural agentic workflow (ln.13): a graph-like com-

putation workflow that includes the various agent implemen-

tations with their corresponding tools and the connections

between the different agent computations. We follow the

computational graph model of an existing AI programming

framework, LangGraph, that represents the nodes in the

graphs as agents and the edges between the nodes as agent

communications.

The deployment specification (ln.8): this is the deployment

information for the computation graph including how each

agent/tool will run (i.e., process, container, serverless), how

different agents/tools will connect and communicate (i.e.,

choice of protocol), runtime constraints (e.g., hardware type,

number of replicas, access policies), and the underlying LLM

for each agent.

The compiler automatically generates the necessary glue

code for deploying the application as described by the pro-

vided workflow and the deployment specification. It automat-

ically bakes in the code to ensure that connected agents/tools

comply with the user-specified communication protocol. Ad-

ditionally, depending on the deployment targets, it automat-

ically generates the necessary configuration files, including

Dockerfiles and Kubernetes configurations to enforce access

policies, ensure the binding to the desired LLM type, etc.

Our compiler-based approach is inspired by previous ap-

proaches to flexibly configure microservices [1], and flexibly

support distributed deployment of computation graphs in

different environments [21].

4 Prototype

We showcase an initial prototype
1
in Go language, named

DMAS-Forge. To build DMAS-Forge, we extend the Blue-

print microservices compiler [1] to support AI applications.

We chose Blueprint as it is compatible with our computa-

tional model and it already provides a large array of deploy-

ment choices and infrastructure components that can be

leveraged.

Programming interfaces. Table 1 shows extensions we

add to Blueprint to support the new requirements. First, we

extend Blueprint’s workflow API to allow users to easily im-

plement their applications as structured workflows, similar

to LangGraph. Second, we offer a new wiring API, through
which developers can input the deployment specifications

to DMAS-Forge.

In our prototype, this is achieved by implementing several

new Blueprint plugins: (1) An Agent plugin, to transparently
create agents and connect themwith anyOpenAI-compatible

model. (2) A vLLM plugin, to automate model deployment in

vLLM [22]. (3) A kagent plugin, for supporting distributed

1
Available at https://github.com/vaastav/DMAS_forge

1 import DMASForge/http
2 import DMASForge/linuxcontainer
3 import DMASForge/vllm
4 import DMASForge/openai
5

6 spec = DMASForge.NewSpec()
7

8 // Deployment specification
9 def DeployAgent(agent):
10 http.Deploy(spec , agent)
11 linuxcontainer.Deploy(spec, agent)
12

13 // Structural agentic workflow
14 model = vllm.Model("gpt -4o")
15 weather = openai.Agent(model , prompt="...")
16 news = openai.Agent(model , prompt="...")
17 weather.Connect(news)
18

19 // Deployment
20 DeployAgent(news)
21 DeployAgent(weather)

Figure 2: Two-agent application in DMAS-Forge.

Workflow Type Extensions

Agent Specifies an Agent

.Connect(agent) Connects two agents

.AddTool(tool) Adds a tool

Model Specifies a Model

Tool Specifies a Tool that an Agent can use

Wiring API

NewSpec() Creates a new DMAS-Forge spec

openai.Agent() New instance of an openai Agent

vllm.Model(name) Launches a new model instance

NewTool() New instance of a tool

a2a.Deploy() Deploy Agent with A2A

mcp.Deploy() Deploy Tool using MCP

kagent.Deploy() Deploy via kagent

Table 1: DMAS-Forge API overview.

deployments with kagent [20], an emerging Kubernetes-

native framework for AI agents that provides Custom Re-

source Definitions (CRDs) for agents, tools and models.

Lastly, we leverage the RPC-over-HTTP Blueprint plugin

as an example of inter-agent communication protocol in our

prototype. Fig. 2 shows a complete example of the use of

these plugins to deploy two agents as Linux containers.

https://github.com/vaastav/DMAS_forge


1st Workshop on Systems for Agentic AI (SAA’25), October 13, 2025, Seoul, Republic of Korea

MAS
DMASForgeDeployment 

specs

optimization loop

Profiling & 
Cost model

Platform-specific artifacts

Dev Ops

Figure 3: DMAS-Forge as enabler of a closed-loop optimization pipeline for MAS deployment.

5 Discussion and future work

DMAS-Forge is a compiler-based framework that transforms

multi-agent applications into a distributed deployment with

the effort of one click. It targets diverse runtime environ-

ments and aims at generating the necessary glue code for

each of them. We presented an initial prototype that sup-

ports Linux containers. We plan to extend to other runtime

environment, as well as showcasing its benefits for (at least)

the following areas.

Optimization pipelines. A key area for improvement

would be to streamline the creation of closed-loop optimiza-

tion pipelines. Applications can be written, deployed, and

profiled for communication patterns and resource usage,

then automatically restructured for better performance. For

example, LangGraph’s communication structures (such as

sequential, parallel, or conditional flows) can be optimized

at runtime without requiring manual redeployment. This

pipeline is illustrated in Fig. 3.

This process relies on measuring and modeling commu-

nication patterns, performance, and cost-efficiency across

different infrastructures and deployment environments. It

also involves decisions about whether agents should be co-

located or separated into different containers. A key question

is whether alternative communication patterns or protocols

might better suit the application, given its deployment, la-

tency, and performance constraints.

With these improvements, users no longer need to manu-

ally specify the number of replicas or communication proto-

cols. Instead, the framework canmake those choices automat-

ically, based on the available infrastructure and performance

requirements.

Automatic security boundaries. Another area of future

work is to explore means of re-adjusting security policies

and determining the least amount of authorization for a

DMAS container (or other deployed instance), based on the

agents and tools it is running. This is particularly useful

when agents are co-located or disaggregated across contain-

ers by the optimization pipeline. Automatically determining

the security boundaries becomes necessary to minimize the

attack surface of each deployed container.

Engineering challenges. Future work should align DMAS-

Forge with the complete features of current agentic frame-

works and extend them. A key open question is whether to

build comprehensive agentic capabilities directly into DMAS-

Forge or to serve as an abstraction layer over existing frame-

works. The latter approach would require techniques (e.g.,

monkey patching) to redirect framework-specific communi-

cation primitives to protocol-compliant distributed channels

and avoid substantial re-engineering effort.

References

[1] Vaastav Anand, Deepak Garg, Antoine Kaufmann, and Jonathan Mace.

2023. Blueprint: A Toolchain for Highly-Reconfigurable Microservice

Applications. In SOSP. Association for Computing Machinery.

[2] Anthropic. 2024. Model Context Protocol (MCP). https://docs.

anthropic.com/en/docs/mcp.

[3] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Ro-

drigues. 2023. With Great Freedom Comes Great Opportunity: Re-

thinking Resource Allocation for Serverless Functions. In Proceedings
of EuroSys’23.

[4] Gohar Irfan Chaudhry, Esha Choukse, Íñigo Goiri, Rodrigo Fonseca,

Adam Belay, and Ricardo Bianchini. 2025. Towards Resource-Efficient

Compound AI Systems. In HotOS. Association for Computing Machin-

ery.

[5] GitHub Community. 2025. Issue #227. https://github.com/i-am-

bee/acp/discussions/227.

[6] Reddit community. 2025. Reddit thread: running each agent

node in LangGraph workflow in its own docker container.

https://www.reddit.com/r/LangChain/comments/1i2848r/running_

each_agent_node_in_langgraph_workflow_in/.

[7] StackOverflow community. 2024. Deploying Langgraph nodes in

separate containers. https://stackoverflow.com/questions/79677336/

deploying-langgraph-nodes-in-separate-containers.

[8] Davis Cornelia. 2025. Production-ready agents with the OpenAI

Agents SDK + Temporal. https://temporal.io/blog/announcing-openai-

agents-sdk-integration.

[9] Microsoft Corporation. 2024. AutoGen. https://microsoft.github.io/

autogen/stable//index.html.

[10] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and

Igor Mordatch. 2023. Improving Factuality and Reasoning in Language

Models through Multiagent Debate. arXiv:2305.14325

https://docs.anthropic.com/en/docs/mcp
https://docs.anthropic.com/en/docs/mcp
https://www.reddit.com/r/LangChain/comments/1i2848r/running_each_agent_node_in_langgraph_workflow_in/
https://www.reddit.com/r/LangChain/comments/1i2848r/running_each_agent_node_in_langgraph_workflow_in/
https://stackoverflow.com/questions/79677336/deploying-langgraph-nodes-in-separate-containers
https://stackoverflow.com/questions/79677336/deploying-langgraph-nodes-in-separate-containers
https://temporal.io/blog/announcing-openai-agents-sdk-integration
https://temporal.io/blog/announcing-openai-agents-sdk-integration
https://microsoft.github.io/autogen/stable//index.html
https://microsoft.github.io/autogen/stable//index.html
https://arxiv.org/abs/2305.14325


1st Workshop on Systems for Agentic AI (SAA’25), October 13, 2025, Seoul, Republic of Korea

[11] Inc. FoundryLabs. 2025. E2B: AI Sandboxes for Automation Agents.

https://e2b.dev/docs.

[12] CrewAI Inc. 2024. CrewAI. https://www.crewai.com.

[13] LangChain Inc. 2024. LangGraph. https://langchain-ai.github.io/

langgraph/.

[14] LangChain Inc. 2025. LangGraph: Workflows and Agents. https:

//langchain-ai.github.io/langgraph/tutorials/workflows/#set-up.

[15] Zhenkun Li, Lingyao Li, Shuhang Lin, and Yongfeng Zhang. 2025.

Know the Ropes: A Heuristic Strategy for LLM-based Multi-Agent

System Design. arXiv:2505.16979 [cs.AI] https://arxiv.org/abs/2505.

16979

[16] LlamaIndex. 2024. LlamaIndex. https://www.llamaindex.ai.

[17] Google LLC. 2025. Agent2Agent (A2A) Protocol. https://github.com/

a2aproject/A2A.

[18] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu

Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye,

Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder, Shashank

Gupta, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-refine: Iterative

refinement with self-feedback. In NeurIPS. Curran Associates Inc.

[19] Agnomaintainers. 2025. Agno Teams. https://docs.agno.com/concepts/

teams/introduction.

[20] Solo.io. 2025. kagent: Cloud Native Agentic AI Framework. https:

//kagent.dev/.

[21] TensorFlow. 2025. TensorFlow. https://www.tensorflow.org.

[22] vLLM (Berkley). 2025. vLLM: Easy, fast, and cheap LLM serving for

everyone. https://docs.vllm.ai.

[23] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi,

Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-

consistency improves chain of thought reasoning in language models.

In ICLR. OpenReview.net.
[24] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian

Ichter, Fei Xia, Ed Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-

of-thought prompting elicits reasoning in large language models. In

NeurIPS. Curran Associates Inc.

[25] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik

Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and

Acting in Language Models. arXiv:2210.03629

https://e2b.dev/docs
https://www.crewai.com
https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/tutorials/workflows/#set-up
https://langchain-ai.github.io/langgraph/tutorials/workflows/#set-up
https://arxiv.org/abs/2505.16979
https://arxiv.org/abs/2505.16979
https://arxiv.org/abs/2505.16979
https://www.llamaindex.ai
https://github.com/a2aproject/A2A
https://github.com/a2aproject/A2A
https://docs.agno.com/concepts/teams/introduction
https://docs.agno.com/concepts/teams/introduction
https://kagent.dev/
https://kagent.dev/
https://www.tensorflow.org
https://docs.vllm.ai
https://arxiv.org/abs/2210.03629

	Abstract
	1 Agentic AI
	2 Problem definition
	2.1 Why distributed systems?
	2.2 Disconnect between programming frameworks and DMAS

	3 Our approach & vision
	3.1 DMAS-Forge compiler

	4 Prototype
	5 Discussion and future work
	References

