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Growing concerns about centralized mining of personal data threatens to stifle further proliferation of machine
learning (ML) applications. Consequently, a recent trend in ML training advocates for a paradigm shift —
moving the computation of ML models from a centralized server to a federation of edge devices owned by the
users whose data is to be mined. Though such decentralization aims to alleviate concerns related to raw data
sharing, it introduces a set of challenges due to the hardware heterogeneity among the devices possessing the
data. The heterogeneity may, in the most extreme cases, impede the participation of low-end devices in the
training or even prevent the deployment of the ML model to such devices.

Recent research in distributed collaborative machine learning (DCML) promises to address the issue of ML
model training over heterogeneous devices. However, the actual extent to which the issue is solved remains
unclear, especially as an independent investigation of the proposed methods’ performance in realistic settings
is missing. In this paper, we present a detailed survey and an evaluation of algorithms that aim to enable
collaborative model training across diverse devices. We explore approaches that harness three major strategies
for DCML, namely Knowledge Distillation, Split Learning, and Partial Training, and we conduct a thorough
experimental evaluation of these approaches on a real-world testbed of 14 heterogeneous devices. Our analysis
compares algorithms based on the resulting model accuracy, memory consumption, CPU utilization, network
activity, and other relevant metrics, and provides guidelines for practitioners as well as pointers for future
research in DCML.

CCS Concepts: » Computing methodologies — Machine learning; Distributed artificial intelligence.

Additional Key Words and Phrases: Federated Learning, Split Learning, Distributed Collaborative Learning,
Ubiquitous and Mobile Computing, Device Heterogeneity.

1 INTRODUCTION

The surge in Machine Learning (ML) applications we have witnessed in the last years has been
rendered possible, among other factors, by the increased computational capacity of modern hard-
ware and the large volumes of data, that have become publicly available. The former is highly
concentrated in data centers, as the devices that often collect the data, such as smartphones and IoT
devices, have orders of magnitude lower computational power and storage capacities. Consequently,
the traditional workflow for ML has remained centralized in the sense that the data is fully revealed
and accessible by machines performing model training and evaluation.

In many cases, however, data privacy is of paramount importance. For instance, a wealth of
personal data such as sensor readings, images, and text, is typically stored on users’ smartphones.
The usage of this data could open space for numerous innovative applications, ranging from text
auto-completion to personalized health monitoring systems. However, despite the potential value
of these applications, users are typically hesitant to expose their data due to privacy and data
ownership concerns [58]. Users’ unwillingness to share their private data is evidenced by directives
introduced by many countries to govern how companies can collect and store user data [80]. To
a certain extent, data anonymization approaches might allow us to circumvent these issues and
hence permit the usage of centralized approaches even in privacy-sensitive use cases. Yet, they do
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so at the expense of a significant computational overhead [32, 88], increased network usage [16],
and decreased model performance [88].

Given the central role of smartphones and other data-collecting devices in contemporary society,
a more sensible approach than imposing some form of centralization of the ML workflow involves
designing algorithms specifically crafted to ensure privacy-sensitive operations. Such a “decentral-
ization” shift is further motivated by edge devices’ frequent requirement to independently conduct
inference on data, such as when operating offline.

In response to these concerns and challenges, the concept of Distributed Collaborative Machine
Learning (DCML) has emerged. In this work, we define DCML as an umbrella term that encompasses
all algorithms designed a) to train models using data distributed across a set of devices without
exposing the training data to any server, and b) to distribute an appropriate model to the devices that
request it. Notably, the advent of Federated Learning (FL) and its seminal algorithm, FedAvg [58],
have been pivotal in this domain. In fact, FL has garnered significant attention and several companies
utilize it to train models on users’ smartphones while safeguarding privacy. Concrete examples
include various features in Android, such as next-word prediction and smart reply [33, 35], and
Apple’s “Siri” voice assistant [100].

FL algorithms enable a privacy-preserving training process by moving the computation of model
updates to the data-collecting devices (also called “clients”). That is, a centralized server only
orchestrates the training process by a) selecting the clients to be used for training in the current
server training round, b) serving to these clients the current model, and c¢) aggregating the models
returned by the clients after they finish training. This way, the server obtains a refined model, that
will be used in the next training round.

Within this general formulation, the FedAvg [58] algorithm and variants thereof [53, 72] require
each client to download and upload a complete version of the model at every server round. However,
while such model-sharing algorithms remain widely popular and continue to serve as baselines
for comparing more advanced algorithms, they are subject to two notable drawbacks — they
entail sending large volumes of data over the network and they require all clients to use the
same model architecture regardless of the resources they possess. The former drawback may
cause significant carbon emissions [102], while the latter may lead to unfairness and in general
compromise the accuracy of the model being trained [1, 2, 59]. When deploying FL algorithms on
production environments, such issues are exacerbated by the inherent heterogeneity' present in
DCML settings to such an extent [9, 69, 102], that some researchers go as far as to say that “sharing
parameters to transfer knowledge |[...] is a wrong design choice” [14].

Given the above, researchers have started reconsidering the use of a uniform ML model across all
clients and have begun devising novel approaches aimed at reducing the computational demands
on low-end clients during DCML training. These efforts have led to the exploration of approaches,
such as Knowledge Distillation, Partial Training, and Split Learning within the DCML setting.
However, to the best of our knowledge, these algorithms have not yet been comprehensively pitted
against each other. Moreover, as FL research primarily occurs in simulation environments, several
such algorithms have never been deployed in a realistic heterogeneous testbed.

This paper fills this gap by providing a comprehensive review and experimental comparison
of the state-of-the-art approaches designed to enable collaborative training among clients with
heterogeneous computational capabilities. That is, we focus on algorithms that either support

In DCML, by client heterogeneity we might consider the heterogeneity of data-generating processes (DGPs), i.e. data
non-IIDness, or the heterogeneity of hardware capabilities. This paper focuses on the latter, which includes variations in
clients’ network connection speeds, available memory, and computing power.
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Model Customization,? i.e., allow different clients to use different model architectures, or reduce
the burden posed on the clients by offloading part of the training computation to the server.

1.1 Paper Methodology, Structure, Contributions

To compile relevant literature for this survey, we conducted a systematic search on Google Scholar
using the keywords “Hardware Heterogeneity”, “Federated Learning”, “Split Learning” and “Dis-
tributed Machine Learning”. The search was limited to academic publications and preprints. The
inclusion criteria focused on works published within the last five years,* referencing earlier funda-
mental papers when necessary. The resulting papers were screened based on their titles, abstracts,
and relevance to the survey’s scope.

As shown in Table 1, this is the first paper that compares a diverse set of client-heterogeneity-
aware DCML algorithms both in a simulation environment and in a real-world testbed consisting
of physical devices. Other relevant papers either offer a literature review [85] or, when they include
experiments on real-world devices, compare only baseline FL algorithms [7, 93, 95] and, in the case
of Gao et.al. [28], some split-learning algorithms.

To summarize, the main contributions of this paper are the following:

(1) We present the first survey of DCML algorithms explicitly designed to support model
customization or reduce the computational requirements on low-end clients by offloading
part of the training burden to the server.

(2) We propose a taxonomy of the existing algorithms in the field and discuss the relation and
the similarities between them.

(3) We thoroughly compare representative algorithms from federated knowledge distillation,
partial training, and split learning using not only inference accuracy but also metrics that
are often neglected in research [7], e.g., network usage and CPU consumption.

We first present a thorough overview of the three main families of algorithms that meet this
paper’s criteria:* we discuss federated knowledge distillation (FKD) in Section 2, partial training (PT)
in Section 3, and split learning (SL) in Section 4. We then present our experimental study, wherein we
test representative algorithms from each of the groups in both a simulation environment (Section 5)
and a real-world testbed (Section 6). In Section 7 we discuss the implications and limitations of our
study, and we conclude the paper in Section 8. The code, which can be used to reproduce the results
reported in this paper, is publicly available at https://github.com/sands-lab/flower_dcml_algorithms.

2 MODEL CUSTOMIZATION VIA FEDERATED KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) was initially introduced to transfer knowledge between a large “teacher”
model and a smaller “student” model [12, 38] and hence enable model deployment to devices with
low computational and memory capabilities [12]. Recently, KD has been applied in DCML scenarios,
leading to the emergence of the Federated KD (FKD) family of algorithms. Here, KD enables
transferring knowledge between the clients and the server and vice-versa through logits rather
than model parameters, which brings the following benefits:

(1) Sending logits instead of high-dimensional models reduces the volume of exchanged data.

2The terminology we use, “Model Customization”, should not be confused with the concept of “Model Personalization” [85],
which is commonly used in FL literature to indicate algorithms that aim to improve the predictive performance by tailoring
models to the characteristics of participating clients’ data in cases of statistical data heterogeneity among clients.

3To our knowledge, hardware heterogeneity had not received attention in the research community prior to this period.
4To our knowledge, no other algorithm meets the paper’s inclusion criteria. For example, asynchronous FL algorithms, while
addressing the issue of stragglers by using stale model updates, still assume that the model can fit within the memory of
every device [98]. Additionally, quantization — whether quantization-aware training to lower computing requirements [67]
or gradient quantization to reduce data communication [13, 78] - is orthogonal to the approaches considered in this paper.
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Table 1. Comparison of this paper with related ones.

Consider Federated . . . . Deploy on
Kooviedge Dislaionp CTT | Coni Sl Reor
Algorithms Testbed

Tan et al. [85] v v v X
Baumgart et al. [7] X X X 4
Woisetschlager et al. [93] X X X v
Wong et al. [95] X X X v
Gao et al. [28] X X v v
This paper v v v v

(2) Logits provide a model-agnostic interface, allowing each client to develop a model architec-
ture that best suits its computational and memory capabilities [52].

(3) Avoiding model parameter sharing makes the algorithms significantly more robust to
adversarial attacks and less prone to privacy leakages [14].

The main challenge of applying KD algorithms in DCML settings lies in the requirement that
the teacher and the student models are to be evaluated on the same data points, while in DCML
clients are not supposed to share any raw data among them. We next investigate the algorithms,
that have been proposed to cope with this challenge.

2.1 FKD without External Dataset

The FedKD [96] and the FML [77] algorithms propose a simple method for integrating KD in DCML
settings. During the local training phase, clients train both a small globally shared model and their
private models simultaneously with codistillation [5]. In other words, the model trained collectively
across all clients is used to inject knowledge into clients’ private models. However, while the
algorithms allow clients to customize their model, they impose a substantial computational burden
as clients must concurrently train two models instead of one.

Another simple way to apply KD in DCML settings is to define the teacher knowledge as a
fixed set of vectors (“prototypes”), each representing a given class. For instance, in the Federated
Distillation (FD) algorithm [45] the server determines the average logits for every class across all
clients. Such information is used during the local training phase, in which clients penalize deviations
of their outputs from the global logit of the corresponding target class. This training procedure
allows for a decrease in the communication overhead by several orders of magnitude, however, the
accuracy drop of such an algorithm might be as severe as 25% when compared to the plain FedAvg
algorithm [45]. In place of exchanging the average logits, averaged per-class higher-dimensional
intermediate embedding vectors might be exchanged instead, as in the FedProto algorithm [86].
In such a case, the increased communication cost is compensated by better inference capabilities.
Note, that both the FD and the FedProto algorithm trivially allow clients to customize their models
— the only requirement, in the case of the FedProto algorithm, is that all the client models need to
share some embedding dimension.

The FedGKT algorithm [36] develops a model on the server without exchanging model parameters.
Clients start by training a small model that is horizontally divided into an encoder and a classification
head. The encoder processes raw data to generate intermediate embeddings, while the classification
head - potentially comprising multiple layers — uses these embeddings to produce final predictions.
After local training, clients share the intermediate embeddings, final logits, and ground-truth labels
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for each point in their dataset with the server. The server then uses this information to train a large
model that takes the embeddings and predicts the target classes. In other words, the server trains a
more complex classification head than the one used locally by clients. In FedGKT, both the client
and the server employ KD to improve model convergence. Although innovative, this algorithm
requires clients to reveal their distribution over labels and does not develop a fully usable model
on the server — such a model lacks the encoder part, which is only available to the clients that
participated in the training process.

2.2 FKD with External Dataset Dependency

The performance of the FKD approaches might be improved with an external dataset with similar
properties to the underlying clients’ datasets. In the Cronus algorithm [14], a public dataset is
distributed to all clients, and after every training epoch clients share the logits for a subset of data
points from this dataset with the server, which aggregates these values. During local training, the
clients simultaneously train their local model on both their private labeled data and the public
data labeled with the global logits. In the related DS-FL algorithm [44], the server aggregates the
received logits with an alternative entropy-based approach, and during local training, the clients
first complete the KD training stage before training the model on their local dataset. The FedMD
algorithm expands on these concepts by incorporating a transfer learning phase, as client models
first undergo pre-training on the public dataset. Following this warm-up phase, the algorithm is
akin to DS-FL, differing only in the logit aggregation method, which in FedMD is the average.

In the algorithms just presented, the server’s role primarily involves lightweight synchronization
tasks. Conversely, several model-sharing algorithms leverage the server’s computational capabilities
to enhance model training. For instance, in the FedDF algorithm [56], multiple model architectures
are concurrently trained, and knowledge transfer occurs between these architectures using KD.
Specifically, during a KD training phase on the server, fine-tuned client models act as teachers,
while aggregated global models are treated as students. Similarly, the Fed-ET algorithm [19] allows
clients to choose among a predefined set of model architectures with a common classification head.
A consensus on predictions from fine-tuned client models is used to label data in the public dataset
and these pseudo-labels are then utilized to train a large server model with an identical classification
head as the client models. To obtain the models that will be sent to clients in the next training
iteration, Fed-ET averages the lowermost layers of the fine-tuned client models and incorporates
the classification head of the server model. The related FedAUX [75] algorithm extends the FedDF
algorithm by introducing the so-called certainty scores, which quantify the similarity of the clients’
local data to the data in the global dataset and are hence used to weight the logits produced by the
client models during the server KD stage. Certainty scores are obtained after training a logistic
regression model that aims to differentiate between data points in the local dataset and the ones in
the global dataset. Yet, the FedDF, Fed-ET, and FedAUX algorithms force the client to choose among
a predefined number of model architectures and require the sharing of the full model updates.

In the FedGEMS algorithm [18] clients compute logits locally for each data point in the public
dataset and transmit this information to the server. The server aggregates these predictions and
uses the pseudo-labels to train a global model. Additionally, KD also occurs on the client side:
selected clients receive pseudo-labels for the public dataset and, similarly to the DS-FL and FedMD
algorithms, train their local models to minimize the discrepancy between their predictions and
those received from the server. Extending this approach, the MHAT algorithm [42] trains the server
model using a combination of known target labels and client-produced logits.

2.2.1 FKD with model personalization. All the methods discussed thus far operate under the
assumption that every client receives identical information from the server, such as uniform global
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logits. However, this may lead to suboptimal model performance in the presence of significant
statistical heterogeneity among client data. The KD-pFL algorithm [105] overcomes this limitation
by introducing a square matrix that quantifies data similarity between every pair of clients. This
similarity matrix is used to construct personalized logits, i.e., each client receives a weighted average
of other clients’ logits based on the matrix coefficients. The matrix, which expresses the similarity
between clients’ data, is trained on the server using KD.

The COMET algorithm [20] combines FKD algorithms with client clustering techniques [11,
31, 76] to compute personalized logits. In detail, the COMET algorithm clusters the logits sent by
clients to the server using the K-Means clustering algorithm. The resulting centroids are then sent
back to the clients, who select the centroid closest to their logits and use it during local training for
KD.

2.3 FKD Summary
Despite the promising perspectives, FKD algorithms still face several issues and open questions:

(1) Impact of model heterogeneity: Though most algorithms are designed to work even in
cases of extreme model heterogeneity by allowing a “continuous” space of possible models,
experimentally it has been observed, that allowing some clients to use too simple models
might hinder convergence of all the models [52]. While lowering the impact of the logits
produced by simple models represents a potential means to ameliorate this, a thorough
study of the impact of severe model heterogeneity is required.

(2) Model architecture selection: The analysis of how clients should independently choose their
model architecture and its implications in real-world deployments has yet to be addressed.

(3) Statefulness: Algorithms that do not develop a fully usable server model require clients
to be stateful, i.e., clients must train their model from scratch and hence be involved in
model training across multiple training rounds. While feasible in cross-silo FL with a small
number of reliable clients, this requirement is impractical in cross-device FL settings, where
sampling from millions of devices may result in less than 1% of clients participating in
training [82].

(4) External dataset dependency: All algorithms that develop a fully usable server model depend
on an external dataset. Yet, obtaining an appropriate centralized dataset might not be feasible,
and utilizing a dataset with a different distribution than those of the clients could lead to
degraded model performance [56].

We conclude this chapter by reporting in Table 2 the main characteristics and properties of the
algorithms we analyzed.

3 MODEL CUSTOMIZATION VIA PARTIAL TRAINING
3.1 Characterization of PT approaches

Partial Training (PT) represents a group of model-sharing FL approaches that depart from the
requirement of homogeneous client models by permitting each client to receive and train only a
subnet of the global model. Such sub-models are obtained by dropping neurons in fully-connected
layers, excluding filters in convolutional layers, and reducing the depth of the network.

In PT clients are therefore oblivious to the fact that the model they receive is merely a segment
of the larger model held by the server because, as outlined in the proposed generalized Algorithm 1,
the server alone manages all the coordination of the various sub-models. In particular, during
each server epoch, the server selects a portion of the model for each participating client in the
current training round and extracts the relevant weights. In Algorithm 1 we indicate that the task of
constructing sub-models is carried out by the Decompose function, which takes as input the global
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Table 2. Summary of FKD algorithms. C is the number of classes, e the dimension of the embedding space, N
and N; the number of parameters of the global and client i’s model, k € (0, 1) an arbitrary constant, and |D|
and |D;| the cardinality of the public and client i’s private datasets respectively.

) Required Distribute | Fully customized | Number of exchanged Distillation Available

Algorlthm distillation | public dataset model floating point values happens on server

dataset to clients architecture per round by client model
FedKD [96] X X v N Client v
FML [77] X X v N Client v
FD [45] X X v C? Client X
FedProto [86] X X v e-C Client X
FedGKT [36] X X v |D;| - e Client & Server| X
Cronus [14] | Unlabeled v v k-|D|-C Client X
DS-FL [44] | Unlabeled v v k-|D|-C Client X
FedMD [52]| Labeled v v k-|D|-C Client X
FedDF [56] | Unlabeled X X N; Server v
Fed-ET [19] | Unlabeled X X N; Server v
FedAUX [75] | Unlabeled v X N; Server v
FedGEMS [18]| Labeled v v |D|-C Client & Server| v
MHAT [42]| Labeled v v |D|-C Client & Server| v
KD-pFL [105] | Unlabeled v v |D|-C Client X
Comet [20] | Unlabeled v v |D|-C Client X

Algorithm 1 General structure of Partial Training algorithms

Require: T > 0 number of training rounds, C set of training clients
1: Server initializes global model 6V
2: y° « initialize parameters for sub-model extraction
3 fort=1toT do
S € C « sample subset of available clients
{x; }lill « collect meta-information of the devices
{61}5.,,y" « Decompose (6", {x!}}5, y1=1)
for i € S in parallel do
Server sends model 6! to client i
0!*! « train model 6! on client i’s dataset D;
10: Client i sends updated model !*! to server
11:  end for
122 0" — Aggregate({0/*1},,y)
13: end for

R A A 3

model architecture 0’, client meta-data k!, and possibly some algorithm-specific state y*~'. The
client meta-data «; might consider the clients’ computational capabilities, their available memory,
and some properties of their local data, while y*~! might include information about the way the
sub-models were constructed in the previous epochs, the current value of model parameters, and
the state of the random number generator. After extracting the sub-models, the server transmits
the model segments to the clients, who train the received model and upon completing the local
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training, send back the updated model parameters to the server. Finally, the server aggregates the
weights using its Aggregate function by considering how the sub-models were constructed.

The decomposition and the aggregation function therefore form a pair that characterizes any PT
algorithm. In particular, depending on the properties of these two functions, PT algorithms may be
categorized into static, dynamic, and independent subnetwork training (IST).

3.2 PT with Static Decomposition

In static decomposition the server constructs the sub-models deterministically and consistently
across all the training rounds and clients. That is, the sub-model returned by Decompose(6?, Kf RV
are uniquely determined by the value k!, while the state y*~! does not influence the resulting models.
Note, that this does not imply that some client i necessarily receives the same sub-model in all
training rounds, as x; might change over time.

Two representatives of this category are the HeteroFL [23] and the FjORD [39] algorithms. In
HeteroFL the server determines a discrete number K of model capacities {ai}fi , and constructs
the corresponding sub-model architectures {0,,}X, by varying the width of the network, that
is, by changing the number of channels in convolutional layers and the number of neurons in
fully-connected layers. More in detail, the submodels are constructed in such a way, that for any
two model capacity classes a; < a3, it holds that 8,, C ,,, so that the models effectively form a
hierarchy. Similarly, the FjORD algorithm [39] introduces a hierarchy of nested sub-models using
the so-called Ordered Dropout.

In some cases, the properties of the data might be used to determine the sub-models to be formed.
For instance, small datasets for NLP tasks are likely to contain only a subset of all the possible tokens,
and features in the click-through rate domain are typically extremely sparse [73]. In such cases, the
inherent sparsity of the data offers a natural way for sub-model construction. The FedSelect [15]
algorithm leverages such data sparsity to construct the submodels, for instance, by removing the
weights associated with the input neurons that always take the value 0. Unfortunately, this method
is limited as it is subject to the sparsity of the data (for instance, it cannot be applied to image data).
Furthermore, it can only be applied in the first and last fully connected layers.

3.3 PT with Dynamic Decomposition

A limitation of the PT algorithms with static decomposition, which directly stems from their
static nature, lies in the fact that they allow the training of a model only as large as the largest
model that can be trained on the clients. Dynamic decomposition algorithms avoid this model
size bottleneck by iteratively serving different model parts of the model. Such iteration may be
achieved by either constructing the submodels pseudo-randomly or by introducing some heuristics
regarding which parts of the model should be trained. An example of the former is the Federated
Dropout algorithm [13, 92], in which the server translates the meta-information Kf into a single
scalar a € (0,1) and extracts the submodel by randomly sampling a fraction & of neurons in fully
connected layers and channels in convolutional layers. However, recent research has shown the
ineffectiveness of this approach [17]. In the related FedSPU algorithm [63] the server sends the
whole model to the clients, yet it instructs them to freeze a random part of the network sampled
randomly. In contrast with the Federated Dropout algorithm, this solution suffers from higher
memory usage and forward propagation time, while the backpropagation time remains unaltered.

Two representatives of PT with heuristics-based model extraction are the FedRolex [4] and the
PriSM [62] algorithms. In the former, different model parts are trained with a rolling strategy, i.e., a
rolling window iteratively loops over the entire model to extract the sub-models. Conversely, in the
PriSM algorithm the server creates low-rank sub-models using the singular value decomposition.
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Some model pruning algorithms® fall into this heuristic-extraction category as well; for instance, in
the FedMP [47] and the FL-PQSU [99] algorithms, the server constructs submodels by selecting
the neurons with the highest importance. Such importance is defined using the /1 norm, e.g., the
importance of a filter in a convolutional layer is defined as the sum of the absolute values of the
corresponding kernel’s weights.

3.3.1 PT via Independent Subnetwork Training. Independent subnetwork training (IST) can be
viewed as a special case of PT with dynamic decomposition. In contrast to the latter, the Decompose
function randomly creates models that have separate and non-overlapping segments of the model
being trained [103]. This design simplifies the Aggregate function, rendering it trivial: if a parameter
was trained in an epoch, the server copies the updated value into the new version of the global
model; otherwise, the previous value of the parameter is retained.

In its original formulation, IST was proposed for fully connected layers [103]. In such a case,
the sub-models are constructed by partitioning the neurons in every hidden layer into equally
sized groups and extracting the weights connecting any two neurons that belong to the same
partition [103]. IST has later been integrated into other model architectures. The ResIST algorithm
applies the IST principles for training the ResNet architectures [37] by distributing residual blocks
to clients in such a way that each client trains a shallower network. Next, the GIST algorithm [94]
applies IST to graph neural networks and AsyncDrop[25] to convolutional neural networks.

IST has also been applied in hierarchical FL settings (HFL).® Namely, the HIST algorithm [27]
proposes to distribute an independent subnetwork to every edge server and make each such server
train its model segment with a model-sharing FL algorithm for a given number of server rounds,
before aggregating the results on the global server level and distributing new subnetworks to the
edge servers.

IST speeds up the training convergence if compared to local SGD [84] and data parallel training
(DPT), though such speed-ups typically come at the cost of a slightly reduced inference accuracy [26,
27,94, 103]. In contrast with the DPT, wherein at some point the training time starts increasing as
we add more training machines because of the gradient communication overhead overshadowing
the benefits of parallel computation [26, 103], IST does not suffer from performance degradation
issues.

Despite its sound theoretical background [79], IST did not gain much attention in DCML set-
tings. This has led to a notable research gap concerning various practical deployment conditions.
For example, the blind replication of client-provided values by the server in the updated model
introduces vulnerabilities to potential adversarial attacks. Additionally, the influence of statistical
data heterogeneity on the efficacy of IST-trained models remains largely unexplored.

3.4 Partially Local Federated Training

The Partially Local Federated Training (PLFT) algorithms offer a compromise between PT and
the SL approaches we discuss in Section 4. Similar to SL, PLFT involves partitioning the model
horizontally into public and private segments. Conversely, akin to PT, these algorithms update
the clients’ models by sharing a portion of the overall model parameters. Specifically, the public

5Not all model pruning approaches fit within the proposed formulation. For instance, in the Hermes [51], Sub-FedAvg [90],
and PruneFL [46] algorithms, clients initially receive and train the full model. During training clients incorporate a
regularization term into the loss function, which encourages certain model parameters to be pushed to zero, effectively
reducing the model size. We do not consider these algorithms as they require the clients to train the whole (large) model
before obtaining a smaller version.

In HFL clients only communicate with the geographically closest edge server and edge servers communicate with the
global server. Therefore, there is a hierarchy in the communication.
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segment of the model — comprising either the lowermost or uppermost layers [70] — is trained
using a model-sharing algorithm, while the remaining layers remain private to each client.

In general, deciding which model parameters to designate as shared and which ones as private is
an open question, as different choices perform best in different scenarios [36]. In the LgFedAvg [54]
and the FedGH [101] algorithms, the lower layers in the model are private and the upper ones
are shared, while in the PerFed algorithm [6] the opposite route is taken, i.e. the lower layers are
collaboratively trained and the upper ones are privately trained by the clients.

These algorithms reduce the communication burden if compared to algorithms that require
the exchange of the full model, however, they require the clients to be stateful. The FedRecon
algorithm [82] attempts to solve this issue by introducing the notion of a “Reconstruction” algorithm,
which is used to initialize the private model weights as the clients need them. More in detail, a
client selected for training partitions its private dataset into a support and a query part, and uses
the former to initialize the private parameters and the latter to train the whole model after the
private part has been initialized.

PLFT algorithms can handle heterogeneous models under the condition, that the customized
client models have the same architecture of the shared layers. However, to the best of our knowledge,
this direction has never been empirically tested. We explore this direction in Section 5.

We conclude this section by listing in Table 3 the main characteristics of the algorithms presented
in this section.

Table 3. Summary of Partial Training Algorithms.

Decomposition Client recei\./e Deterministic e
non-overlapping . . Model partitioning
type model weights weight extraction

HeteroFL [23] Static X v Vertical
FjORD [39] Static X v Vertical
FedSelect [15] Static X v Vertical
Federated Dropout [13] | Dynamic X X Vertical
FedRolex [4] | Dynamic X v Vertical
FedSPU [63] | Dynamic X X Vertical
PriSM [62] | Dynamic X v Vertical
FedMP [47] | Dynamic X v Vertical
FL-PQSU [99] | Dynamic X v Vertical
IST [103] | Dynamic v X Vertical
ResIST [37] | Dynamic X X Vertical
GIST [94] | Dynamic v X Vertical
HIST [27] | Dynamic X X Vertical
AsyncDrop [25] | Dynamic v X Vertical

LgFedAvg [54] | Dynamic X v Horizontal

FedGH [101] | Dynamic X v Horizontal

PerFed [6] | Dynamic X v Horizontal

FedRecon [82] | Dynamic X v Horizontal

10
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(a) (b) (©)

Fig. 1. (a) In model-sharing algorithms, the whole model is distributed to all the training clients. (b) In SL the
model is partitioned horizontally. (c) In PT the model is partitioned vertically, i.e., clients train a reduced yet
complete version of the model.

4 SPLIT LEARNING
4.1 Introduction to Split Learning

Split learning (SL) [34, 71, 91] is a distributed model training approach where the model is hori-
zontally partitioned into multiple segments distributed across two or more training nodes. In its
simplest form, SL involves only two nodes, i.e., the client possessing the training data and the first
k layers of the model, and the server possessing the remaining N — k layers, N being the total
number of layers in the model. We visually compare the difference between SL, PT, and traditional
model-sharing algorithms in Figure 1.

After both actors initialize their model segment, training proceeds through standard backpropa-
gation. Specifically, the client first conducts a forward pass on a batch of local data on its model
segment and sends the resulting so-called “smashed” embeddings along with the corresponding
target labels to the server. The server continues the forward pass on its model portion, determines
the loss, and updates its weights by backpropagating the error until its first layer. Then, the server
communicates the gradient information to the client, enabling this way the client to perform the
backward pass on its segment of the neural network.” Therefore, SL allows clients to train a larger
model than the one they could on their own and without sharing their raw data.

The above two-node setting can be extended with several architectural variations. Of particular
interest is the so-called “U-shaped” architecture [66, 91, 106], in which the client holds both the
lowermost and topmost layers of the model. On the one hand, this configuration removes the need
for the client to share target values with the server, as the client computes the loss itself, but on the
negative side, requires four passes over the network — two during the forward pass and an equal
number during the backward pass.

When multiple clients aim to collaboratively train a model, several approaches are available.
Gupta et al. propose a formulation where clients take turns in training. That is, after client i
completes training, it sends the updated client-side model parameters to client i + 1 in a round-robin
fashion [34]. However, given that only one client is engaged in model training at any given time,
this leads to low resource usage, increased convergence time, and, when clients’ data present
statistical heterogeneity, might lead to the so-called “catastrophic forgetting” [24, 89].

To overcome the low resource utilization issue, the SplitFed algorithm [87] proposes to combine
SL with model-sharing algorithms by training the client-side models in parallel and periodically
averaging them as in the FedAvg algorithm. The SplitFed algorithm comes in two variants, as

’Such a two-node scenario is, from a technical point of view, equivalent to pipeline-parallel training [43].

11
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the authors observe that during training the server model might either be private to every client
(SplitFed v1) or be shared among all clients (SplitFed v2). When each client trains its private server
model, such server models are averaged at the end of the training round. Consequently, this version
is effectively equivalent to the FedAvg algorithm. In the SFLG algorithm [29] authors generalize
these algorithms by observing that the number of models being trained on the server may be any
value between one and the number of clients. The SplitFed 03 algorithm [30] proposes to keep the
client-side part of the model private to clients and only average the updates of the server model to
reduce catastrophic forgetting [49]. On the negative side, this prevents from developing of a public
client-side mode that may be served to new clients.

One of the main design questions in SL is determining the number of layers to be trained on the
client. Employing a shallow network on the clients reduces their resource usage; however, it also
increases the risk of potential privacy breaches [3]. Kim et al. propose an algorithm that determines
the optimal number of layers to be trained on clients in cases of IoT devices by introducing a set of
utility functions, which take into consideration the energy consumption, the privacy of the data,
and the consumed time [48].

Compared to model-sharing FL, SL reduces the volume of shared data over the network when
training large models and in the presence of a large number of clients [81]. Conversely, SL has the
disadvantage of requiring network involvement for every batch of data. To address this network
issue, Liao et al. propose the FSL algorithm, where clients use a shallow auxiliary head to compute
a loss for updating the client-side model [55]. The loss computed on the server updates only the
server-side model, removing the need for the server to share gradients with clients. Similarly, in the
AdaSplit algorithm [21], client models are trained using locally generated losses. However, unlike
the FSL algorithm, in AdaSplit clients first train their models for a fixed number of rounds and
subsequently update the server model with sparse updates. Therefore, the purpose of the client
loss in FSL and AdaSplit is to enable updating client models in the absence of the gradient from the
server. However, client losses can also be used to maximize the amount of information contained
in the smashed data as in the LocFedMix algorithm [64].

4.2 Split Learning Summary

In summary, SL represents a distinct group of DCML algorithms separate from the FL category.
Broadly, SL algorithms facilitate collaborative model training among clients with minimal mem-
ory and computational requirements by delegating some computational tasks to the server. The
presented analysis evidenced that SL needs further research in terms of:

(1) Scalability: as every client consumes some server resources, such as memory and computing
time, SL approaches seem best suited to small-scale scenarios. Consequently, there is a need
for a study to address its scalability issues and propose effective mitigation strategies.

(2) Privacy: an issue in SL arises from clients sharing target labels and the possibility that
the server may reconstruct raw data based solely on the embeddings. While the former
issue can be addressed with the U-shaped architecture, the latter remains an active area of
research [68].

(3) Implementation: to the best of our knowledge, no existing framework is specifically designed
for easy prototyping, implementing, and deploying SL algorithms. We develop such a
framework as part of the contributions of this paper, see Appendix A.

We conclude by reporting the properties of the considered SL algorithms in Table 4.

12
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Table 4. Summary of Split Learning algorithms.

Client avoids . . Number of server models g
sharing target label Client collaboration during training
L [34] X Sequential g=1
U-Shaped SL [91] v Sequential g=1
SplitFed v1 [87] X Parallel g=n
SplitFed v2 [87] X Parallel g=1
SplitFed 03 [30] X Parallel g=1
SFLG [29] X Parallel 1<g<n
FSL [55] X Parallel g=1
AdaSplit [21] X Parallel g=1

5 EXPERIMENTAL ANALYSIS IN SIMULATION ENVIRONMENT

In this section, we conduct a comprehensive evaluation of a diverse set of algorithms discussed in
this paper. Our objective is to provide insights and contributions as follows:

e To chart the landscape of algorithmic effectiveness, we analyze the performance of the
implemented algorithms across various metrics such as model accuracy, convergence speed,
communication overhead, and resource utilization.

e We validate the reported results from the original papers and uncover new insights by
executing the algorithms in a real-world testbed.

e We provide actionable guidelines that can assist researchers and practitioners in navigating
the trade-offs associated with the analyzed algorithms and hence help them make informed
decisions regarding the most suitable collaborative algorithm for their specific use case.

5.1 Experimental setup

Scenario: We consider a scenario where a group of devices with varying computational capacities
collaborates to train a shared model. These devices are grouped into k clusters based on their
computational capabilities, i.e., all clients within a cluster can train a common model architecture.
We consider k = 3, distinguishing between:

(1) High-capacity devices, which can train a Large model.

(2) Mid-capacity devices, which can train a Medium model.

(3) Low-capacity devices, which can only train a Small model.

Unless stated otherwise, we consider 21 clients evenly distributed across the three computational
tiers. Each client trains the largest model it can handle; for example, a mid-capacity device always
trains a Medium model, even though it could also train a Small model. Additionally, every client uses
the same model architecture across all algorithms. For instance, low-capacity devices consistently
train the Small model across all algorithms.

Considered algorithms: The selection of algorithms for implementation is made to maximize
diversity. Specifically, we choose a set of algorithms that cover a broad range of algorithmic ideas
surveyed in this paper. In selecting the algorithms for the experimental section, we consider their
simplicity, the clarity of their descriptions in the original papers, their novelty, and the initial results
we obtain. We also prioritize algorithms with open-source implementations and those for which
we can reproduce the results reported in the papers. For the FKD family of algorithms, we consider
the FD [45], FedKD [96], FedMD [52], and FedDF [56] algorithms. For the PT family of approaches,
we consider the HeteroFL [23], Federated Dropout [13], and LgFedAvg [54] algorithms. Finally, we

13
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take SplitFed 01 and SplitFed v2 [87] as representative of SL algorithms. A detailed discussion of
the implementation of these algorithms for our use case is provided in Appendix A.1.

We refer to algorithms that require clients to share the weights of the model being trained and
hence develop a server-side model as “stateless”. Examples of such algorithms include FedAvg,
HeteroFL, FedDF, and Federated Dropout. Conversely, algorithms that develop a private model
without sharing the corresponding model parameters, such as FedMD, FedKD, FD, and LgFedAvg,
are classified as “stateful”.

Experimental procedure: Our experimental evaluation consists of two stages. In the first stage,
we perform a grid search over possible hyperparameter values for each algorithm to determine
the best hyperparameter configuration. These initial tests take place in a simulation environment
wherein we artificially mimic computational heterogeneity among (virtual) clients. Subsequently,
in the second stage, we use the hyperparameter configuration determined in the first step and
deploy the algorithms, depending on the experiment type, either in a simulated environment or in
a real-world testbed. We limit ourselves to small-scale scenarios because of the finite number of
physical devices in the testbed at our disposal. We also assume full client participation in every
server round as otherwise it would not be possible to compare stateful and stateless algorithms.?
Details about the experimental setup, including model architecture, hyperparameter search space,
and data partitioning procedure, are discussed in Appendix A.

Training task: we focus on common classification benchmarks using the CIFAR10, CIFAR100 [50],
and CINIC10 [22] image classification datasets and the Ag-News text classification dataset [107].
For brevity, we here present results for CIFAR10 and leave the results on CIFAR100 and CINIC10
for Appendix B and on Ag-News to Appendix C. We explore two data scenarios: a) data distributed
in an IID fashion, where clients have similar distributions over the target labels, and b) in a non-IID
manner, where labels are distributed based on the Dirichlet distribution [41, 104]. Regardless of
the distribution of client labels, clients’ datasets are divided into disjoint training, validation, and
test subsets. During training, the server instructs clients to compute the validation accuracy of
the current model every five server training rounds. The validation accuracy serves two purposes.
First, it allows the server to detect convergence defined as the lack of improvement of the average
validation accuracy over four consecutive evaluation rounds (which span 4 -5 = 20 training rounds).
Second, clients use the validation accuracy to select the version of the model that will be used at
the end of training — note that each client might choose a model from a different server round.
Thus, by “test accuracy” we denote the highest validation accuracy model’s performance on the
client’s test set.

5.2 Baseline accuracy comparison

We introduce an intuitive baseline that is founded on the FedAvg algorithm. In place of training a
model across all clients as is the case of the FedAvg algorithm, we train a model with FedAvg only
across clients of the same computational capacity. That is, after clustering clients into k clusters by
considering their available computing resources, we run the FedAvg algorithm k times, each time
only involving clients of the considered cluster. To the best of our knowledge, no paper to date has
examined this option for a heterogeneous model environment. Note, that this approach is tightly
related to clustered FL algorithms [11, 76], wherein after clustering the clients according to the
properties of their data, a separate model is trained independently for each cluster. In contrast with
these solutions, however, in our case we introduce architectural model heterogeneity. Though this
solution is likely to yield unsatisfactory results for clients in underrepresented capacity groups, we

81n stateless algorithms the global model is trained in every epoch, while in stateful algorithms the client model is trained
only if the client is selected in the current training round.
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Table 5. Test accuracy (in %) and corresponding standard error achieved by FedAvg on the proposed CIFAR10
setting w.r.t. the number of local training epochs performed on the clients. All clients denotes training the
model across all clients, while Cluster clients denotes training the model across the clients in the corresponding
capacity group. That is, the accuracy of the baseline cFedAvg algorithm is the weighted average of the Cluster
clients accuracy.

Small model Medium model Large model

All clients | Cluster clients | All clients | Cluster clients | All clients | Cluster clients

1local epoch | 76.4 0.4 70.7 +1.0 82.0 0.2 77.1 +0.4 83.7 0.2 77.7 +0.4
2 local epochs | 78.5 0.2 70.6 0.7 82.9 01 76.8 +0.3 84.1 0.2 77.6 +0.4
4 local epochs | 78.3 0.2 70.2 x0.9 82.7 =o0.1 76.2 =05 83.7 x0.1 77.2 x04

argue that it is a valid baseline as it entails no overhead for clients and introduces only minimal
overhead for the server, as in this scenario the server is required to average and store k models in
memory instead of one. We refer to this extended version of the FedAvg algorithm as cFedAvg.

Takeaway 1: A trade-off exists between the size of the model and its accessibility to low-end devices,
with both factors significantly impacting the final model’s accuracy.

We report in Table 5 the accuracy for the proposed baseline, wherein we train a model only
across the clients that support it, as well as the accuracy we would obtain if all clients trained the
same model architecture with the FedAvg algorithm.’ The results are expected, as larger models
consistently outperform smaller models and at the same time, when a given model is trained across
all clients, it yields superior performance than when trained on a subset of clients. A point worth
emphasizing is that the accuracy of the Small model trained across all clients is similar and in
some cases smaller than the accuracy of the Large model trained only on the subset of clients that
support such a model. We argue that these results collectively showcase the necessity of employing
heterogeneous model architectures in heterogeneous environments. Ideally, algorithms should allow
transferring knowledge between different capacity groups of clients. Hence, when using an ideal
algorithm, the accuracy of any model should approach the accuracy that the model achieves when
trained across all clients.

5.3 Accuracy with respect to dataset size

In Figure 2 we report the accuracy we obtain with the considered algorithms w.r.t. the size of the
training dataset of the clients. In each experiment, every client samples and uses P data points from
its training set. Afterward, the server executes the algorithm until convergence.

The SplitFed algorithms achieve the highest accuracy for any P. This is expected, as in these
algorithms all clients collectively train a slightly modified version of the Large model - recall, that
the SplitFed v1 algorithm is equivalent to the FedAvg algorithm with the difference, that the burden
of training is distributed between clients and server. Therefore, the highest accuracy we get in the
case of SplitFed v1, 83.3% when P = 2000, is in line with the results reported in Table 5. A point
worth emphasizing is that in the SplitFed algorithms, every client holds and trains 57184 parameters,
which is very close to the number of parameters of the Small model (52823 parameters) used by

9These results were obtained in the simulation environment, allowing for the emulation of scenarios where all clients

possess the capability to train the largest model. However, according to the problem definition, low-capacity clients cannot
use the Large model.
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Large Model Medium Model Small Model
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<o LgFedAvg
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--e-- SplitFed v2

400 800 1200 1600 2000 400 800 1200 1600 2000 400 800 1200 1600 2000
Size of client training dataset

Fig. 2. Average client test accuracy w.r.t. the training dataset size and model size. Each subplot shows the
average test accuracy of clients training the corresponding model, e.g., the accuracy in the “Large model” plot
is the average test accuracy of the clients that train the Large model. In this and the following plots, solid
lines indicate the stateless FL algorithms, dotted lines stateful FL algorithms, and dashed lines SL algorithms.

low-capacity devices in FL algorithms. It follows, that all the devices, including the low-capacity
ones, can train the same Large model.

Takeaway 2: In an IID data scenario, SL consistently yields the best accuracy.

Within the family of stateless FL algorithms, the HeteroFL algorithm is particularly successful
for the mid-capacity cluster of devices training the Medium model, while the performance is very
similar to the cFedAvg algorithm for the Large and Small models.!’ Regarding FedDF, we notice
that the algorithm requires the client models to be very well fine-tuned on clients’ datasets for
KD on the server to be useful. In the opposite case, KD might be detrimental — for instance, when
the training set size consists of only 400 instances, the algorithm does not converge. Apart from
this, the FedDF algorithm helps the Small model to boost its performance, as the FedDF algorithm
achieves the highest test accuracy for the Small model for any P > 800.

We also implement and test the Federated Dropout algorithm but we obtain unsatisfactory
results, most notably for the Small model - the average accuracy does not reach 30% and is hence
not visible in the rightmost plot in Figure 2. We hypothesize that this result is due to two reasons.
First, the algorithm seems not well suited for cases in which different model sizes are trained at
the same time — in [13] the experiments are performed by using a constant sub-model size for all
clients. Second, the Small model has, using the terminology from [13], a federated dropout rate of
0.2. Such a rate is significantly smaller than the smallest dropout rate considered in the referenced
paper, i.e. 0.5, which has already been shown to yield unsatisfactory results [13].

Regarding stateful algorithms, the FedMD algorithm is particularly successful when the P is
small. This is due to the fact, that the importance of the public dataset consisting in our case of
1000 data points is more pronounced when there is a paucity of local training data. Conversely, the
FedKD algorithm is particularly successful when the dataset is large, with the low-capacity cluster
of devices having the highest benefits.

The accuracy obtained with LgFedAvg is lower than that of the other stateful algorithms. In
the official GitHub repository of the project [57] it is stated, that to obtain the results shown in
the paper, it is first necessary to pretrain the model with the FedAvg algorithm. We therefore

19The reduction in training data introduced by the cFedAvg algorithm may result in significantly worse performance in
other scenarios, such as when training a BERT model for text classification tasks. See Appendix C.
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Fig. 3. (a) First, second, and third quartile of the (Ig) cosine similarities between client distribution vectors,
where N is the number of clients. (b) Average test accuracy across all clients obtained by the algorithms using
the corresponding non-11D datasets.

hypothesize that the algorithm might be better suited for refining the model obtained with FedAvg
rather than training the model from scratch.

Takeaway 3: In an IID data scenario, there is a significant gap between stateful and stateless algorithms.

5.4 Impact of data heterogeneity

We next analyze how the performance of the considered algorithms changes as the degree of data
non-IIDness between clients’ datasets varies. We follow a well-established practice of simulating
heterogeneity by sampling data according to the Dirichlet distribution, effectively mimicking the
label skew type of non-IIDness [41, 104]. The Dirichlet distribution has a parameter «, which, as
shown in Figure 3(a), determines the degree of non-IIDness: the lower the value of this parameter,
the more skewed the data is among the clients; conversely, as « increases, the distribution over the
target labels becomes more uniformly distributed among the clients.

In Figure 3(b) we observe, that stateful algorithms perform better in cases of significant data
non-IIDness. This result is caused by the fact, that when the data is highly skewed, each client has
only a fraction of the overall labels in its private datasets. Consequently, the local model’s task is
simplified as the model needs to discriminate between fewer classes. On the other hand, as noted
by several researchers [40, 108], the performance of model-sharing algorithms tends to improve as
the degree of non-IIDness decreases.

Takeaway 4: Stateful algorithms better cope with the label skew type of non-IIDness.

5.5 Impact of client capacity

The experiments conducted thus far have assumed an equal distribution of devices across the three
capacity classes. However, this scenario is unlikely to occur in practice, as certain capacity tiers are
likely to be overrepresented compared to others. Here, we present how various algorithms perform
as the distribution over the available capacity tiers changes. For simplicity, we assume that the 20
clients with IID data comprising this experiment may choose only among two separate models: the
Large model and a comparison model, which can be either the Medium or the Small model.

It can be observed in Figure 4 that stateful algorithms exhibit relatively stable performance as
the distribution over trained model sizes changes. However, they tend to achieve better accuracy as
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Fig. 4. Average test accuracy across all clients w.r.t. the number of devices that train the Large model. Clients,
that do not train the Large model, use the Medium model (left figure) or the Small model (right figure).

the percentage of clients training the Large model increases. This trend is most noticeable when
the comparison model is the Small one.

Stateless algorithms are sensitive to variations in the distribution over trained model sizes.
When all devices train the Large model, the HeteroFL, cFedAvg, and Federated Dropout algorithms
yield the same accuracy. However, as the percentage of clients training a Large model decreases,
the average accuracy also decreases. For instance, Federated Dropout shows a rapid decrease
in performance, especially when the comparison model is Small. In contrast, the cFedAvg and
HeteroFL algorithms demonstrate similar performance, with HeteroFL slightly outperforming
when the comparison model is the Medium one. Note also, that when all devices train a Small
model, the average accuracy of the HeteroFL model is lower than that of cFedAvg, which may seem
counterintuitive as both algorithms train the same model and use the same aggregation strategy.
This difference arises due to the scaling of model outputs in the HeteroFL algorithm, i.e., the two
algorithms have different training procedures on the clients.!! Finally, note that we did not report
the results for SL algorithms, as in the discussed scenario all the clients train the same model
regardless of their capacity.

In Figure 4 we also note, that the average accuracy for both HeteroFL and cFedAvg is higher
when all the devices train a smaller model if compared to the case when only a small portion of
clients train the Large model. This demonstrates the trade-off between having multiple model sizes
on one hand and training each such model only on a fraction of the clients on the other.

Takeaway 5: In stateless algorithms, having only a marginal fraction of clients with large models
might be detrimental — better let all the clients use a smaller model.

6 DEPLOYING THE ALGORITHMS IN A REAL-WORLD TESTBED

We now transition from experimenting in a simulated environment to deploying the algorithms on
the Collaborative Learning Experimentation Testbed (CoLExT) [10], which includes 14 heteroge-
neous devices. We report the properties of the devices in the testbed in Table 6, while a picture of
the testbed can be seen in Figure 5. To categorize each device into its respective capacity tier, we
performed manual profiling of their performance. This involved running all models on all device
types and selecting the most suitable model for each device based on training time.

We cannot make the two training procedures the same as the initial magnitudes of the model parameters are different.
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Table 6. Listing of devices comprising the testbed with correspond-
ing properties.

device |RAM | CPU Assigned
GPU | capacity | Count
type (GB) (cores) .
tier
Jetson 64 | 12@22GHz | v High 1
AGX Orin ' '
Jetson .
OnnNano | 8 | 6@15GHz | v High 3
Fig. 5. Picture of the employed LattePanda 8 4@2.9GHz X Medium 4
Delta 3
testbed. 5
range
Pi 5B 16 8@2.4GHz X Low 6

Throughout this section, we train a model on an IID data setting using the CIFAR10 dataset.
We set each client to use a training dataset with 1000 images to enable resource consumption
comparison across different clients, and we set all algorithms to train the model for two epochs
on the clients in each server training round. We apply no modifications to the FL and the SplitFed
v2 algorithms, while for the SplitFed v1 algorithm we test the original formulation [87] and an
extended version of the algorithm that employs the U-shaped architecture [91]. We refer to the
former as “Plain SL” and to the latter as “U-shaped”.

6.1 Convergence times

To begin, we examine how accuracy evolves over time. Each algorithm we analyze employs distinct
training procedures and loss functions, resulting in varying training times across devices.

The results, reported in Figure 6, illustrate that the SL algorithms achieve the highest validation
accuracy and converge reasonably fast. The accuracy result is in line with the discussion of
Section 5.2, however in this case, the difference in accuracy between FL and SL algorithms is
further amplified because in our testbed the low-capacity tier is over-represented. The difference in
accuracy between the two SplitFed v1 versions we see in the plot is attributed to the longer training
time of the U-shaped configuration. We also observe that SplitFed v2, where clients train a common
model on the server, achieves significantly faster convergence, though some authors observe that
the faster training pace of the server model may harm in some cases model convergence [65].

Regarding the FL algorithms, cFedAvg exhibits the fastest convergence rate. This rapid con-
vergence is attributed mostly to the fact, that the training processes of different capacity tiers
are decoupled. It follows, that the high-capacity cluster converges extremely quickly. However,
ultimately, HeteroFL achieves the highest validation accuracy. The FedDF algorithm suffers from
very slow convergence because of the expensive KD stage happening on the server. Among the
stateful algorithms, the FedKD and FedMD algorithms achieve comparable accuracy, with the
FedKD algorithm demonstrating faster convergence due to the fact, that it does not require training
the model on the public dataset. Finally, we observe that also in this case the FD and the LgFedAvg
algorithms attain the lowest accuracy among the considered algorithms.
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cFedAvg
0.65 b
—— FedDF
> 0.55 FederatedDropout
I Y Bt NS T T s e 1 PR RN B LR FedKD
3 045 — > S A T e FedMD
Q
< 0.35 HeteroFL
""" LgFedAvg
0.25 —---- SplitFed v1 - Plain SL
i SplitFed v1 - U-shaped
0.15 SplitFed v2 - Plain SL
0 20 40 60 80 100

Elapsed time (m)
Fig. 6. Evolution of the average validation accuracy across all clients through time on the testbed.

6.2 Network consumption

Before delving into the results concerning network usage, it is important to note, that while the
considered algorithms vary significantly, the types of exchanged data remain limited. That is,
stateless algorithms transmit the complete model and SL algorithms transmit embeddings and
gradients. Most variability in terms of transmitted data can be observed in the stateful family of
algorithms, wherein clients transmit either a reduced model version (FedKD), logits on the public
dataset (FedMD), or class prototypes (FD).

We present in Figure 7 the volume of sent' and received bytes by the considered algorithms.
As also noted by Gao et al. [28], SL algorithms cause significantly higher network involvement
than FL algorithms — we here do not differentiate between SplitFed v1 and SplitFed v2 because
they transfer the same amount of data over the network. This fact comes as no surprise as the
embedding of a single image consists in our case of 24576 parameters. It follows, that in each epoch
every client, which in this experiment has 1000 data points and performs two local training epochs,
sends 24576 - 1000 - 2 ~ 49.1M parameters to the server. Conversely, among FL algorithms, the
largest communication happens when clients send the Large model consisting of 1.2M parameters
at the end of the training stage.

Among the FL family of algorithms, stateless algorithms exhibit traffic volumes that are one or
more orders of magnitude higher than those of the FedKD and FD algorithms, a difference that
gets amplified with larger model sizes. As for the FedMD algorithm, there is a considerable initial
downlink investment due to clients downloading the public dataset, while the amount of data sent
by this algorithm remains comparable to other stateful algorithms.

6.3 Local training resource consumption

We next analyze resource utilization during local training on clients, specifically focusing on CPU
and memory usage.'® Similar to our findings on network activity, we observe limited variability
in local training procedures. We hence collectively refer to the most straightforward training
method, wherein clients locally optimize the plain cross-entropy loss and is employed by the
FedAvg, HeteroFL, LgFedAvg, and Federated Dropout algorithms, as “vanilla training”. Conversely,
we denote the regularized training procedure used by FedDF as “FedProx” [53].

12Sent bytes include resource consumption statistics, which are not typically sent in production environments. This traffic
accounts for approximately 50kB per minute.
13For memory, we measure the Resident Set Size (RSS).
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Received bytes Sent bytes

— D
—— FedKD
—— FedMD
—— Large model

Medium model
—— Small model
—— SplitFed - Plain SL
SplitFed - U-shaped

F1 E2 F4 E5 F7 E8 F10 F1 E2 F4 E5 F7 E8 F10
Stage of training process

Fig. 7. Cumulative amount of sent and received bytes through training. Vertical dashed lines denote the
beginning of a training round, and vertical dotted lines denote the beginning of an evaluation round. Fx
represent fit round x while Ex represent evaluation round x.

Table 7. Training time in seconds in the first and Table 8. Ratio between metrics collected when
subsequent epochs when training a Small model training a Large and Small model with vanilla
with vanilla training. training.
device tvpe First Other device tvpe CPU | Memory | Round
yP epoch [s] | epochs [s] YPE | il util. time
Jetson Jetson
AGX Orin 7.87 4.67 AGX Orin 0.898 1.017 1.214
Jetson Jetson
OrinNano 9.39 5.29 Orin Nano 0.910 1.019 1.186
Latte Panda Latte Panda
Delta3 9.98 10.39 Delta3 1.044 1.321 10.226
Orange Orange
PisB 19.02 17.46 Pi5B 0.972 1.413 5.582

We detail the training time for the first training round along with the subsequent rounds’ average
training times in Table 7. Notably, the initial round on devices equipped with a GPU is 68% to
77% slower than subsequent rounds due to the CUDA context creation overhead, which includes
loading the driver and kernels. This initial sluggishness results in the Latte Panda, which lacks a
GPU, achieving a training time comparable to the Jetson Orin Nano equipped with a GPU during
the first round. Consequently, it is beneficial to utilize the GPU-equipped devices multiple times to
amortize the initial GPU setup cost. Because of this consideration, all the values we report from
this point on are measured by excluding the first training round.

Takeaway 6: The presence of a GPU is the primary indicator of the client capacity, however, GPU
initialization is slow.

Next, we report in Table 8 the ratio between the resource usage when devices train a Large
compared to the Small model with vanilla training. We note, that switching the model being trained
from Small to Large causes the training time to increase by 18 — 21% when the device has a GPU,
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Table 9. Ratio between memory usage and client training time when training the Small model with the
displayed training procedure if compared to the plain vanilla training.

FedProx FedKD FD
device type | mem util | round time | mem util | round time | mem util | round time
JetsonAGXOrin 1.000 1.170 0.998 1.376 1.002 1.237
JetsonOrinNano 0.997 1.163 0.997 1.392 0.998 1.201
LattePandaDelta3 1.014 1.005 1.004 1.290 0.991 1.004
OrangePi5B 1.030 1.020 1.004 1.486 1.001 1.010

while CPU-only devices present a time increase of multiple folds. It is also interesting to note,
that memory usage does not scale proportionally to the model size because the majority of the
memory consumption is not caused by the models per se, but rather by the deep learning library.!*
We therefore conclude that the size of the model, when it falls within the range of several million
parameters, is unlikely to pose a memory issue. For instance, a model with 1 million parameters,
assuming 32-bit precision, would occupy approximately 4MB of memory. During training, this
value increases due to the storage of activations and possibly optimizer states. However, even with
these additions, the memory footprint remains modest compared to that of the PyTorch library.
Based on our tests, loading PyTorch into memory requires, depending on the CPU architecture
(ARM or x86) between 200MB to 350MB.

Takeaway 7: When the model being trained has a parameter count in the order of millions, the
memory footprint of the model is negligible if compared to the memory occupied by the deep learning
library.

6.3.1 Comparison of FL algorithms. We report in Table 9 the ratio between different training
procedures and vanilla training. We see, that as observed also by Baumgart et al. [7], devices
featuring a GPU exhibit a greater increase in training time compared to CPU-only devices in case of
the FedProx and FD training procedures: for GPU-equipped devices, the round time increases range
from 16% to 23%, while devices equipped solely with a CPU experience a round time increase of no
more than 2%. The higher increase in training times on GPU-equipped devices is due to operations
in the training procedures that cannot be efficiently performed on the GPU, e.g. computing the
prototype matrix in the FD algorithm. As expected, since the FedKD algorithm trains two separate
models with codistillation, the training time increases for this procedure are higher compared to
the other two training procedures, with time increases ranging from 29% to 49%. Consistently with
the results discussed above, also in this case we note that memory consumption does not exhibit
any significant variation between the different algorithms.

6.3.2 Comparison of FL with SL algorithms. In Table 10 we compare the client resource usage
when training a Large model with vanilla training and the two SL variants, i.e. plain and U-shaped.
Consistent with the findings of Wong et al., we observed that devices equipped with a GPU exhibit
significantly lower CPU usage during training [95]. Offloading a part of the computation to the
server benefits all the devices when it comes to CPU and GPU utilization, as these two metrics
significantly decrease when using SL if compared to vanilla training. This computation offloading
also causes a significant decrease in training times on the devices that lack a GPU, e.g., the round
time decreases from 68.06s to 27.84s in the case of Latte Panda Delta 3.

4We did not optimize the memory usage but rather used the default PyTorch settings.
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Table 10. Absolute average CPU and GPU utilization and round training time for training a Large model
with the two SL variants and vanilla training.

Vanilla Training Plain SL U-shaped
device tvpe CPU | GPU | round CPU | GPU | round CPU | GPU | round
YPE (@) | (%) |time(s)| (%) | (%) |time(s)| (%) | (%) | time (s)
Jetson
ACK Ot | 8105|3890 | 377 | 2037 | 502 | 2293 | 2115 | 547 | 27.37
Jetson 80.73 | 44.29 | 411 | 2433 | 586 | 17.45 | 2592 | 6.25 | 20.10
Orin Nano
Latte Panda | oo, 00 | 000 | 6806 | 20022 | 000 | 27.84 | 21696 | 0.00 | 29.68
Delta3
O;?Snte 46135 | 0.00 | 5639 | 21353 | 0.00 | 3039 |212.19 | 0.00 | 34.47

The benefits of SL diminish to some extent when using the U-shaped architecture. In this case,
clients need to serialize and deserialize more tensors, transmit more data over the network as
discussed in Section 6.2, and run a forward and backward step on the last convolutional layer. The
combination of all these factors leads to an increase in training time, as well as higher CPU and
GPU involvement.

Devices with GPUs experience longer training times in SL compared to standard local training.
This delay arises from various factors including serialization, deserialization, and increased CPU-
GPU traffic. However, the primary bottleneck occurs at the central server, which possesses only
one GPU and handles simultaneous requests from 14 clients, leading to a significant slowdown in
training.

7 DISCUSSION
7.1 Limitations

The presented study compared a diverse set of algorithms by focusing on two key practical aspects
of DCML deployments, i.e. model performance and system resource usage. We limited ourselves to
these two broad dimensions as DCML is an extremely complex topic and capturing all situations
that may arise in practice is close to impossible. For instance, other aspects we did not consider in
this paper include:

e Privacy: Depending on the type of exchanged data, a “curious” server may discover more or
less of the underlying clients’ datasets. In the paper, we only reported the original authors’
privacy considerations when available. Also, we did not consider differential privacy, so
future research could compare algorithms based on their resilience to such artificially-
injected noise.

o Scalability: Researchers have observed diminishing returns when adding clients beyond a
certain point in the FedAvg algorithm [60, 102]. While this observation also applies to the
SplitFed v1 algorithm, future research should explore whether this property holds for the
other considered algorithms.

e Type of data non-IIDness: In Section 5.4 we mimicked data non-IIDness by partitioning the
datasets according to the Dirichlet distribution, effectively achieving the label-skew type of
non-IIDness [69]. However, in real-world scenarios, client datasets may present different
types of non-IIDness such as concept shift.
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o Client availability patterns: Throughout the experimental section we assumed that all clients
are available all the time, while in practice, client availability may vary throughout the
day [9].

o Software Heterogeneity: While the devices in our testbed had various hardware resources,
they were homogeneous in terms of the operating system, with all clients running Linux.
In other deployments, clients might differ in their underlying software, such as training
models on Android and iOS smartphones.

e Unreliable networks and Client Failures: The devices in our testbed were connected via a
fast (1Gbps) and reliable Ethernet network. In extreme cases, network issues could prevent
clients from uploading data in time, potentially leading the server to register client training
as a failure. This is not the only cause of client failures.

e Malicious clients: Clients may intentionally attempt to compromise the convergence of the
algorithm.

We also acknowledge that though we aimed to provide a comparison that is as unbiased and fair
as possible, practical DCML deployments are bound to differ to some extent from our setup:

e We conducted the whole experimental section following the most common practice in FL
research of training a model from scratch. However, thanks to the abundance of pre-trained
models available in many domains, FL fine-tuning of a pre-trained model is also possible [61].
In such a case, several issues discussed throughout the paper get mitigated. For instance,
when fine-tuning a model, it is common practice to freeze the initial layers of a model. In
such a case, in model-sharing algorithms, clients only need to share the updates of the
trainable parameters. It follows, that the amount of exchanged data reduces.

e Even though we attempted to optimize as much as possible the implemented algorithms
according to the information at our disposal, we do not claim that the algorithms could not
be further improved. For instance, it is possible that models of different sizes would benefit
from having different training parameters (e.g., smaller models having larger learning rates
and smaller regularization strength). However, this is a dimension we did not consider in
this survey as such a case was not explicitly discussed in the original papers where the
algorithms were introduced.

One final limitation of our work is that the algorithm comparisons are purely empirical. While
we provided intuitive explanations for observed accuracy differences whenever possible, future
research could offer a more analytical comparison of the algorithms.

7.2 Impact and Future Work

The experiments conducted in our study revealed that there is no single best algorithm; instead, each
algorithm balances computational, network, and accuracy requirements differently. As developing
a comprehensive set of use cases to identify the most suitable algorithm for each is challenging, we
believe the takeaways listed in this paper provide valuable insights that can assist practitioners in
selecting the most appropriate DCML algorithm for their application.

On a high level, we observed that for FL algorithms, sharing model parameters as in the FedAvg,
cFedAvg, and HeteroFL algorithms remains the most effective approach for achieving optimal model
accuracy. While reducing the shared data volume and fully customizing the model architecture
as in the FD, FedKD, and FedMD algorithms may seem appealing, our findings indicate that this
often leads to a notable decrease in model accuracy. Additionally, our results demonstrate that the
cFedAvg algorithm, despite its simplicity, delivers comparable performance to algorithms explicitly
tailored for model-heterogeneous scenarios. This suggests opportunities for advancing and refining
model customization algorithms in future research.

24



1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

However, these results prompt us to consider the extent to which model customization is the
solution to the device heterogeneity challenges outlined in this study. Specifically, as repeatedly
shown in Section 5, achieving the best accuracy often necessitates large models. Consequently,
when employing FL, low-end devices are excluded from this process, as training large models
on such devices leads to extended training times and places a significant burden on clients, as
demonstrated in Section 6. Conversely, these devices may train a large model when assisted by a
server as is the case in SL approaches.

Therefore, given the limitations of both FL and SL algorithms, we believe that to solve the
device heterogeneity issues, a promising direction is to view these technologies not as mutually
exclusive but rather as complementary to each other. Specifically, while plain SL may not be
suitable for large-scale deployment and training large models with FL approaches on low-end
devices may be infeasible, integrating SL and FL can harness the strengths of both approaches. For
instance, considering the close relationship between the SplitFed and the FedAvg algorithms, one
can assign a different number of layers to each device depending on the device’s computational
availability [74, 97] and hence let every client collaborate in training a large model while minimizing
the burden posed on the central server.

8 CONCLUSION

In this paper, we have explored three distinct families of algorithms designed to facilitate DCML
on devices with constrained computing and memory resources. Our investigation revealed that
each algorithmic family possesses unique strengths and weaknesses. For instance, FKD algorithms
offer model customization by exchanging logits instead of model parameters. However, they often
necessitate stateful clients and entail training models from scratch, limiting their competitiveness.
SL-based approaches incur high network traffic and computational overhead on the server, while
PT-based algorithms enable clients to train models with a size that is proportional to their capacities
but may still lag in accuracy compared to the introduced cFedAvg baseline.

To evaluate these algorithms, we conducted experiments in both simulated and live real-world
testbeds comprising heterogeneous devices. Our findings underscore the inherent trade-offs between
network utilization, model accuracy, and client resource consumption. These results shed light
on the complexities involved in optimizing DCML algorithms for diverse device environments
and highlight the need for further research to develop more robust and efficient solutions in this
domain.
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Table 11. Employed model architectures. All convolutional layers are followed by a ReLU activation.

Layer | Kernel size | Stride | Padding Smaﬁu‘tllj\/l[l(:(;:i}irrlm‘eisarge
Conv2D 3x3 1 1 20 48 96
Conv2D 3%x3 1 1 20 438 96

MaxPool2D 3%3 2
Conv2D 3X3 1 1 39 96 192
Conv2D 3%x3 1 1 39 96 192
MaxPool2D 3%3 2 1
Conv2D 3%x3 1 1 39 96 192
Conv2D 3X3 1 1 39 96 192
Conv2D 1x1 1 1 10 10 10
AvgPool2D 6X6 1 0

[108] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated Learning with
Non-IID Data. (2018). arXiv:1806.00582 [cs.DC]

A  EXPERIMENTAL SETUP

In this section we detail the experimental setup used throughout the evaluation phase of the paper.
Software stack: We implemented all the FL algorithms using the Flower FL framework [8], with
Pytorch as the deep learning library. In order to be able to test the SL algorithms, we also developed
an extension to Flower, which is available on https://github.com/sands-lab/slower. For managing
and automating the deployment of FL algorithms to the physical devices, we developed a custom
library, which uses Kubernetes for deploying clients as containers on the devices.

Data partitioning: Throughout the paper we used the CIFAR10, CIFAR100, and CINIC10 dataset.
For the CIFAR10 and CIFAR100 we use the 60000 images composing both the training and test set,
i.e., we do not differentiate between the train and test partition in the original dataset. Conversely,
in the CINIC10 dataset, we use the 90000 images in the train dataset. When constructing the
client datasets, we first divide the original dataset into N partitions. Then, we reserve 15% of the
so-obtained dataset partitions for validation and 15% for the test dataset.

For algorithms that require an additional public dataset, we use a random sample of 1000 images
from the CIFAR100 dataset as a public dataset.

The experiments in Section 5.3, Section 5.4, and Section 5.2 involved 21 clients grouped into
three tiers: low-capacity, medium-capacity, and high-capacity, with seven clients in each tier. In
contrast, the experiments in Section 5.5 were conducted with 20 clients.

Models: We use a slightly adapted version of the fully convolutional model referred to as “Model
C” in [83], which has been applied also in FL experiments, e.g. [13]. The exact model architecture
is stated in Table 11. We employed three different model architectures derived from the base model
(Large) by reducing the number of channels in convolutional layers. Each client was assigned to one
of the three available classes of devices, i.e. low-, medium-, and high-end, and depending on this
membership, trained a Small (52823 parameters), Medium (313786 parameters), or Large (1249642
parameters) model. Considering that all three models have the very same structure, we can directly
use them also for PT approaches.

Hyperparameter tuning: for all the algorithms we performed a grid search over possible values
of hyperparameters to determine the configuration, that achieves the highest accuracy. We spent

30


http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://github.com/sands-lab/slower

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

1471 Table 12. Hyperparameters search space. We bold the values that yield the highest accuracy for two local
1472 training epochs. All the algorithms also used weight decay 3e-4 and gradient norm clipping 4.0. B is the batch
1473 Size, 11 the learning rate, and i the FedProx [53] regularization strength.

1474

1475 . Tuned Constant
Algorithm Values
1476 hyperparameters hyperparameters
1477
0.02, 0.05, 0.1
1478 FedAvg [58] Z} [ [8, 12, 16] ] /
1479
Temperature [0.5, 1.0, 2.0, 4.0] e
1480 FD [43] KD strength [0.1, 0.2, 0.5] B=8,7=0.05
1481
, Public dataset size [1000, 4000] B B
ijz FedMD [52] Temperature [0.5, 1.0, 2.0] B=12,7=0.05
Server training epochs [1, 2] B=38, n=0.05
:zz FedDF [50] Weight predictions [true, false] £=0.001
Lt Federated n [0.05, 0.1] /
L Dropout [13] [8, 12, 16]
. .1
1488 HeteroFL [23] g [[g 0152’ 016]] /
1489 , 12,
1 [0.05,0.1]
1490 LgFedAvg [54] /
1491 B [8, 12, 16]

1492

1493

1404  approximately the same amount of time in hyperparameter tuning for all the algorithms to provide
1205 a fair comparison (=1 day for each method using 42 CPUs and 2 GPUs). We report in Table 12 the
1406  exact hyperparameters we tested for every algorithm. For optimization, in all the algorithms we
1497 used the plain SGD optimizer with no momentum. We used SGD as it does not incur additional
1403 memory usage by the client such as optimizer state.

1499

500 A1 Additional comments about algorithm implementation

1501 e FD: We were not able to reproduce the results stated in [45]. We contacted the authors to
1502 ask for clarification but received no answer. Also, the algorithm stated in the paper does not
1503 consider cases in which some clients are missing certain target labels and cases in which a
1504 client fails to upload its logits to the server. We avoid both these issues by computing the
1505 global logits for a class as the average logits across all clients, in place of the average across
1506 all clients excluding the target client. In the performed experiments, this update does not
1507 degrade the performance of the model.

1508 e FedKD: We ignore the adaptive hidden loss (Equation 5. in [96]), as it primarily targets
1509 transformer-like architectures. Regarding the architecture of the globally shared model, we
1510 used a model with 10% of the original filters (that is, the convolutional layers in Table 11
1511 have either 9 or 19 filters). While the results could be improved by using a larger model,
1512 this would conflict with the constraints of the low-capacity clients. We did not implement
1513 the Dynamic Gradient Approximation extension as it is orthogonal to the training task.
1514 o LgFedAvg: We assume that the model can be divided into an encoder, which we set
1515 to comprise the first five convolutional layers, and a classification head, comprising the
1516 remaining two convolutional layers. To be able to run the model across all clients, we set
1517 the parameters of the final two layers to be equal to the ones of the Small model. The first
1518 four layers of the encoder are equal to the architectures stated in Table 11, while the last
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encoder layer has in all cases 39 output filters because its output needs to be passed to the
classification head.

e FedMD: we did not include the pre-training stage performed on the public dataset. This
step is orthogonal to the remainder of the algorithm and might easily be integrated into
other algorithms as well. During the KD stage, we used the KL loss with temperature 1.0.

e SplitFed: We divide the model into a client-side (first two convolutional layers) and a
server-side segment, comprising the remaining five layers. We train a Large model as we
assume that the server has no computational constraints. Also, we reduce the number of
filters in the first convolutional layer to 64, so that the first two layers have approximately
the same number of parameters of the Small model. We implemented the SFLV1 algorithm as
in the original paper [87] and an extension that uses the U-shaped architecture. In this case,
the clients contain, apart from the initial layers as in the plain version, also the uppermost
layer, and these layers are averaged across all devices after every server training round.

e Partial training: For PT approaches (HeteroFL and Federated Dropout) we found that
gradient clipping has a vital role, as without it small models (e.g. model obtained by dropping
80% of the channels) easily diverge during local training. This confirms the statement made
in [23], wherein authors state that “gradient clipping stabilizes the optimization”. Therefore,
in partial training approaches we decrease the gradient norm clipping parameter to 1.0
whenever the model dropout rate is lower than 1.0.

e Server-side data aggregation: For algorithms that support heterogeneous models and
involve some form of averaging on the server (FedMD, FedDF), we tried weighting the data
sent by the client with the weights 0.5 (Large model), 0.35 (Medium mode), and 0.15 (Small
model). We did not optimize these values, but rather made an educated guess and picked a
reasonable choice in which more powerful models are given more weight. This adoption
consistently outperforms the non-weighted case, though the difference is typically limited
t0 0.5 - 1.0%.

B RESULTS ON OTHER VISION DATASETS

We report the accuracy w.r.t. dataset size for the CIFAR100 dataset in Figure 8 and for the CINIC
dataset in Figure 9. The results for the CIFAR100 dataset are in line with the ones discussed in
Section 5.3, with SL consistently yielding the highest accuracy and a significant gap between model-
sharing algorithms and algorithms, that do not share model parameters. The FedDF algorithm never
converges, as two local training epochs are not enough for the training to produce good enough
models. Note also, that the cFedAvg algorithm consistently outperforms the HetefoFL algorithm
for the Small model case, confirming the fact, that PT algorithms have difficulties training very
small models as observed in Section 5.5.

In contrast to the results obtained on the CIFAR10 and CIFAR100 datasets, in the case of the
CINIC dataset there no longer is a clear difference between stateful and stateless clients. However,
the individual trends for the algorithms are consistent with the ones discussed in Section 5.2:

e HeteroFL: the algorithm consistently yields the best accuracy for the Large and Medium
models, however, the efficiency of the algorithm decreases for large P in the low-capacity
cluster training the Small model;

o cFedAvg: the baseline provides relatively high accuracy in all data settings, as it is always
among the three algorithms with the highest accuracy;

e FedKD: the algorithm yields unsatisfactory results when P is small, however, the perfor-
mance of the algorithm quickly improves as P increases. In the end, the accuracy of the
FedKD algorithm in the low-capacity cluster is the highest for any P > 1500, while in

32



1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Large Model Medium Model Small Model

—=— cFedAvg

FD
—+— FedDF
? FederatedDropout
E ww< FedKD
E -4 FedMD
—*— HeteroFL
0.10 g w LgFedAvg
SplitFed v1
0.00 --e-- SplitFed v2

400 800 1200 1600 2000 400 800 1200 1600 2000 400 800 1200 1600 2000
Size of client training dataset

Fig. 8. Average client test accuracy w.r.t. the training dataset size and model size on the CIFAR100 dataset.
The experiment is equivalent to the one described in Figure 2.
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0.75
—=— cFedAvg
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Fig. 9. Average client test accuracy w.r.t. the training dataset size and model size on the CINIC dataset. The
experiment is equivalent to the one described in Figure 2.

the mid- and high-capacity cluster, the algorithm is among the three algorithms with the
highest accuracy for P > 2000.

e FedDF: the algorithm does not converge for P = 500;

e FD: The accuracy of this algorithm is low for small dataset sizes, however, the performance
improves so that in the end, in the low-capacity cluster it is the third best option for P = 2500;

e FedMD: the accuracy of this algorithm is the best among the stateful clients for P = 500.

The reduced discrepancy in accuracy between stateful and stateless algorithms can be attributed
to the unique properties of the CINIC dataset. CINIC extends the CIFAR10 dataset by including
images from ImageNet, resulting in a noisier dataset with a mix of easily classifiable and challenging
images. This leads to a lesser impact of additional data on accuracy compared to other datasets.
The observation is confirmed in Table 13, where we see that training models on individual client
datasets without collaboration yields similar test accuracy for CIFAR10 and CINIC. However,
when centralizing the 20 datasets and hence centrally training a model on a dataset with size
20 - 1500 = 30000, the accuracy increases by only 12.36% for the CINIC dataset, while the accuracy
improvement is more than double (26.82%) in the case of the CIFAR10 dataset. Note, that these
experiments were conducted using a traditional centralized learning approach.
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Table 13. Test accuracy (in %) obtained by training a model on each of the 20 client datasets with 1500 data
points each and on the combined dataset with 30000 data points.

| | CIFAR10 | CIFAR100 | CINIC10 |

| Private training by clients | 54.29 +0.02 | 9.94+0.01 | 55.35 +0.04 |
| Centralized training with aggregated dataset | 81.11 +0.01 | 46.34 +0.01 | 67.71 £ 0.01 |

Table 14. Summary of models used for text classification.

‘ Embedding dimension Intermediate size Parameter count

Small model 32 48 126724
Medium model 64 96 341508
Large model 160 256 1545060
Large Model Medium Model Small Model
0.90 - —=— cFedAvg
085 oo FD
. —— FedDF
§ A =y L FederatedDropout
SRUYE N ey ey i e N S /A Sy . S o A o e e /e I < FedKD
< o7 4 FedMD
¥ —#+— HeteroFL
0.65 <« SplitFed v1
0.60 )}/I --e-- SplitFed v2

500 1000 1500 2000 500 1000 1500 2000 560 1000 1500 2000

Size of client training dataset

Fig. 10. Average client test accuracy w.r.t. the training dataset size and model size on the Ag-News dataset.
The experiment is equivalent to the one described in Figure 2.

C RESULTS ON TEXT CLASSIFICATION TASK

We here present the accuracy achieved by the considered algorithms on a text classification task.
In particular, we use the Ag-News dataset [107], which involves classifying news descriptions into
one of the four available topics, i.e., “World”, “Business”, “Sports”, and “Sci/Tech”.

We employ a BERT-like architectures for this task. As shown in Table 14, we construct different
model sizes by varying the embedding dimension (also called “hidden size”) and the intermediate
size, i.e., the dimensionality of the “intermediate” feed-forward layer in the transformer encoder. All
other model configuration is kept constant: the number of attention heads is set to 8, the vocabulary
size is set to 2000, and the number of hidden layers is set to 6. For training, we use the Adam
optimizer with the learning rate set to 2e — 4 and batch size set to 32 for all the algorithms.

We report in Figure 10 the results with respect to the dataset size. Notably, we observe that the
main conclusions made for the image classification tasks transfer to the discussed text-classification
setting:

o The SplitFed algorithms outperform all other algorithms, with SplitFed v1 demonstrating
better performance than SplitFed v2.
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1667 e In the PT family of algorithms, HeteroFL achieves significantly higher accuracy than
1668 Federated Dropout for all model sizes except the Large model. Moreover, Federated Dropout
1669 yields particularly low accuracy when using small models.

1670 o The FedDF algorithm fails to converge when the client’s training set is too small, as the KD
1671 stage on the server becomes detrimental if the client models are undertrained. However,
1672 this issue could be mitigated to some extent by increasing the number of local training
1673 epochs on the clients.

1674 o Stateful algorithms (FD, FedMD, FedKD) exhibit a significant accuracy drop compared to
1675 stateless ones.

1676 o For algorithms that require a dataset on the server (e.g., FedDF, FedMD), we observe a
1677 significant accuracy drop when using a dataset with different characteristics from the
1678 client datasets (e.g., IMDB and Reuters datasets). The accuracy loss can be as severe as 10%.
1679 Therefore, to obtain the accuracy shown in Figure 10, we used a subset of the Ag-News
1680 dataset as the public dataset.

1681 e FedKD achieves very high accuracy, especially with larger datasets, and in some cases
1682 matches the performance of stateless algorithms. However, in our experiments, the collec-
1683 tively trained model was set to the same size as the Small model. This implies that weak
1684 clients had to train twice as many parameters compared to the other algorithms. We use
1685 such a model as the publicly shared model because we observed that training extremely
1686 small BERT models (e.g., with an embedding dimension of 16) is unstable with FL — consider
1687 for instance the difference in accuracy between training a Large and Small model with
1688 cFedAvg. Additionally, FedKD required a very high number of training rounds to converge.
1689 For example, with dataset sizes of 1500, FedKD took 340 server rounds to converge, whereas
1690 HeteroFL converged in just 36 rounds."

1691 The main difference between the text classification and image classification results lies in the

poorer performance of the cFedAvg algorithm compared to other stateless algorithms. This dif-
ference is particularly pronounced when dataset sizes are small, underscoring the importance of
having a large number of clients and a substantial amount of data when training BERT-like models.
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1713 15Recall, that we consider an algorithm to have converged if the average validation accuracy does not improve for four
1714 consecutive evaluation rounds. For the text classification task, we evaluate the global model every four training rounds.
1715
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