
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Review and Comparative Evaluation of Resource-Adaptive
Collaborative Training for Heterogeneous Edge Devices

BORIS RADOVIČ, KAUST, Saudi Arabia and University of Ljubljana, Faculty of Computer and Information
Science, Slovenia
MARCO CANINI, KAUST, Saudi Arabia
VELJKO PEJOVIĆ, University of Ljubljana, Faculty of Computer and Information Science, Slovenia
and Department of Computer Systems, Institute “Jožef Stefan”, Slovenia

Growing concerns about centralized mining of personal data threatens to stifle further proliferation of machine
learning (ML) applications. Consequently, a recent trend in ML training advocates for a paradigm shift –
moving the computation of ML models from a centralized server to a federation of edge devices owned by the
users whose data is to be mined. Though such decentralization aims to alleviate concerns related to raw data
sharing, it introduces a set of challenges due to the hardware heterogeneity among the devices possessing the
data. The heterogeneity may, in the most extreme cases, impede the participation of low-end devices in the
training or even prevent the deployment of the ML model to such devices.

Recent research in distributed collaborative machine learning (DCML) promises to address the issue of ML
model training over heterogeneous devices. However, the actual extent to which the issue is solved remains
unclear, especially as an independent investigation of the proposed methods’ performance in realistic settings
is missing. In this paper, we present a detailed survey and an evaluation of algorithms that aim to enable
collaborative model training across diverse devices. We explore approaches that harness three major strategies
for DCML, namely Knowledge Distillation, Split Learning, and Partial Training, and we conduct a thorough
experimental evaluation of these approaches on a real-world testbed of 14 heterogeneous devices. Our analysis
compares algorithms based on the resulting model accuracy, memory consumption, CPU utilization, network
activity, and other relevant metrics, and provides guidelines for practitioners as well as pointers for future
research in DCML.

CCS Concepts: • Computing methodologies→Machine learning; Distributed artificial intelligence.

Additional Key Words and Phrases: Federated Learning, Split Learning, Distributed Collaborative Learning,
Ubiquitous and Mobile Computing, Device Heterogeneity.

1 INTRODUCTION
The surge in Machine Learning (ML) applications we have witnessed in the last years has been
rendered possible, among other factors, by the increased computational capacity of modern hard-
ware and the large volumes of data, that have become publicly available. The former is highly
concentrated in data centers, as the devices that often collect the data, such as smartphones and IoT
devices, have orders of magnitude lower computational power and storage capacities. Consequently,
the traditional workflow for ML has remained centralized in the sense that the data is fully revealed
and accessible by machines performing model training and evaluation.

In many cases, however, data privacy is of paramount importance. For instance, a wealth of
personal data such as sensor readings, images, and text, is typically stored on users’ smartphones.
The usage of this data could open space for numerous innovative applications, ranging from text
auto-completion to personalized health monitoring systems. However, despite the potential value
of these applications, users are typically hesitant to expose their data due to privacy and data
ownership concerns [58]. Users’ unwillingness to share their private data is evidenced by directives
introduced by many countries to govern how companies can collect and store user data [80]. To
a certain extent, data anonymization approaches might allow us to circumvent these issues and
hence permit the usage of centralized approaches even in privacy-sensitive use cases. Yet, they do

1

HTTPS://ORCID.ORG/0009-0008-4142-931X
HTTPS://ORCID.ORG/0000-0002-5051-4283
HTTPS://ORCID.ORG/0000-0002-9009-0024

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

B. Radovič, et al.

so at the expense of a significant computational overhead [32, 88], increased network usage [16],
and decreased model performance [88].

Given the central role of smartphones and other data-collecting devices in contemporary society,
a more sensible approach than imposing some form of centralization of the ML workflow involves
designing algorithms specifically crafted to ensure privacy-sensitive operations. Such a “decentral-
ization” shift is further motivated by edge devices’ frequent requirement to independently conduct
inference on data, such as when operating offline.

In response to these concerns and challenges, the concept of Distributed Collaborative Machine
Learning (DCML) has emerged. In this work, we define DCML as an umbrella term that encompasses
all algorithms designed a) to train models using data distributed across a set of devices without
exposing the training data to any server, and b) to distribute an appropriate model to the devices that
request it. Notably, the advent of Federated Learning (FL) and its seminal algorithm, FedAvg [58],
have been pivotal in this domain. In fact, FL has garnered significant attention and several companies
utilize it to train models on users’ smartphones while safeguarding privacy. Concrete examples
include various features in Android, such as next-word prediction and smart reply [33, 35], and
Apple’s “Siri” voice assistant [100].

FL algorithms enable a privacy-preserving training process by moving the computation of model
updates to the data-collecting devices (also called “clients”). That is, a centralized server only
orchestrates the training process by a) selecting the clients to be used for training in the current
server training round, b) serving to these clients the current model, and c) aggregating the models
returned by the clients after they finish training. This way, the server obtains a refined model, that
will be used in the next training round.

Within this general formulation, the FedAvg [58] algorithm and variants thereof [53, 72] require
each client to download and upload a complete version of the model at every server round. However,
while such model-sharing algorithms remain widely popular and continue to serve as baselines
for comparing more advanced algorithms, they are subject to two notable drawbacks – they
entail sending large volumes of data over the network and they require all clients to use the
same model architecture regardless of the resources they possess. The former drawback may
cause significant carbon emissions [102], while the latter may lead to unfairness and in general
compromise the accuracy of the model being trained [1, 2, 59]. When deploying FL algorithms on
production environments, such issues are exacerbated by the inherent heterogeneity1 present in
DCML settings to such an extent [9, 69, 102], that some researchers go as far as to say that “sharing
parameters to transfer knowledge [...] is a wrong design choice” [14].

Given the above, researchers have started reconsidering the use of a uniform ML model across all
clients and have begun devising novel approaches aimed at reducing the computational demands
on low-end clients during DCML training. These efforts have led to the exploration of approaches,
such as Knowledge Distillation, Partial Training, and Split Learning within the DCML setting.
However, to the best of our knowledge, these algorithms have not yet been comprehensively pitted
against each other. Moreover, as FL research primarily occurs in simulation environments, several
such algorithms have never been deployed in a realistic heterogeneous testbed.

This paper fills this gap by providing a comprehensive review and experimental comparison
of the state-of-the-art approaches designed to enable collaborative training among clients with
heterogeneous computational capabilities. That is, we focus on algorithms that either support

1In DCML, by client heterogeneity we might consider the heterogeneity of data-generating processes (DGPs), i.e. data
non-IIDness, or the heterogeneity of hardware capabilities. This paper focuses on the latter, which includes variations in
clients’ network connection speeds, available memory, and computing power.

2

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Model Customization,2 i.e., allow different clients to use different model architectures, or reduce
the burden posed on the clients by offloading part of the training computation to the server.

1.1 Paper Methodology, Structure, Contributions
To compile relevant literature for this survey, we conducted a systematic search on Google Scholar
using the keywords “Hardware Heterogeneity”, “Federated Learning”, “Split Learning” and “Dis-
tributed Machine Learning”. The search was limited to academic publications and preprints. The
inclusion criteria focused on works published within the last five years,3 referencing earlier funda-
mental papers when necessary. The resulting papers were screened based on their titles, abstracts,
and relevance to the survey’s scope.

As shown in Table 1, this is the first paper that compares a diverse set of client-heterogeneity-
aware DCML algorithms both in a simulation environment and in a real-world testbed consisting
of physical devices. Other relevant papers either offer a literature review [85] or, when they include
experiments on real-world devices, compare only baseline FL algorithms [7, 93, 95] and, in the case
of Gao et.al. [28], some split-learning algorithms.

To summarize, the main contributions of this paper are the following:
(1) We present the first survey of DCML algorithms explicitly designed to support model

customization or reduce the computational requirements on low-end clients by offloading
part of the training burden to the server.

(2) We propose a taxonomy of the existing algorithms in the field and discuss the relation and
the similarities between them.

(3) We thoroughly compare representative algorithms from federated knowledge distillation,
partial training, and split learning using not only inference accuracy but also metrics that
are often neglected in research [7], e.g., network usage and CPU consumption.

We first present a thorough overview of the three main families of algorithms that meet this
paper’s criteria:4 we discuss federated knowledge distillation (FKD) in Section 2, partial training (PT)
in Section 3, and split learning (SL) in Section 4. We then present our experimental study, wherein we
test representative algorithms from each of the groups in both a simulation environment (Section 5)
and a real-world testbed (Section 6). In Section 7 we discuss the implications and limitations of our
study, and we conclude the paper in Section 8. The code, which can be used to reproduce the results
reported in this paper, is publicly available at https://github.com/sands-lab/flower_dcml_algorithms.

2 MODEL CUSTOMIZATION VIA FEDERATED KNOWLEDGE DISTILLATION
Knowledge Distillation (KD) was initially introduced to transfer knowledge between a large “teacher”
model and a smaller “student” model [12, 38] and hence enable model deployment to devices with
low computational and memory capabilities [12]. Recently, KD has been applied in DCML scenarios,
leading to the emergence of the Federated KD (FKD) family of algorithms. Here, KD enables
transferring knowledge between the clients and the server and vice-versa through logits rather
than model parameters, which brings the following benefits:

(1) Sending logits instead of high-dimensional models reduces the volume of exchanged data.
2The terminology we use, “Model Customization”, should not be confused with the concept of “Model Personalization” [85],
which is commonly used in FL literature to indicate algorithms that aim to improve the predictive performance by tailoring
models to the characteristics of participating clients’ data in cases of statistical data heterogeneity among clients.
3To our knowledge, hardware heterogeneity had not received attention in the research community prior to this period.
4To our knowledge, no other algorithm meets the paper’s inclusion criteria. For example, asynchronous FL algorithms, while
addressing the issue of stragglers by using stale model updates, still assume that the model can fit within the memory of
every device [98]. Additionally, quantization – whether quantization-aware training to lower computing requirements [67]
or gradient quantization to reduce data communication [13, 78] – is orthogonal to the approaches considered in this paper.

3

https://github.com/sands-lab/flower_dcml_algorithms

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

B. Radovič, et al.

Table 1. Comparison of this paper with related ones.

Consider Federated
Knowledge Distillation

Algorithms

Consider Partial
Training Algorithms

Consider Split
Learning Algorithms

Deploy on
Real-World

Testbed

Tan et al. [85] ✓ ✓ ✓ ✗
Baumgart et al. [7] ✗ ✗ ✗ ✓

Woisetschläger et al. [93] ✗ ✗ ✗ ✓
Wong et al. [95] ✗ ✗ ✗ ✓

Gao et al. [28] ✗ ✗ ✓ ✓
This paper ✓ ✓ ✓ ✓

(2) Logits provide a model-agnostic interface, allowing each client to develop a model architec-
ture that best suits its computational and memory capabilities [52].

(3) Avoiding model parameter sharing makes the algorithms significantly more robust to
adversarial attacks and less prone to privacy leakages [14].

The main challenge of applying KD algorithms in DCML settings lies in the requirement that
the teacher and the student models are to be evaluated on the same data points, while in DCML
clients are not supposed to share any raw data among them. We next investigate the algorithms,
that have been proposed to cope with this challenge.

2.1 FKD without External Dataset
The FedKD [96] and the FML [77] algorithms propose a simple method for integrating KD in DCML
settings. During the local training phase, clients train both a small globally shared model and their
private models simultaneously with codistillation [5]. In other words, the model trained collectively
across all clients is used to inject knowledge into clients’ private models. However, while the
algorithms allow clients to customize their model, they impose a substantial computational burden
as clients must concurrently train two models instead of one.

Another simple way to apply KD in DCML settings is to define the teacher knowledge as a
fixed set of vectors (“prototypes”), each representing a given class. For instance, in the Federated
Distillation (FD) algorithm [45] the server determines the average logits for every class across all
clients. Such information is used during the local training phase, in which clients penalize deviations
of their outputs from the global logit of the corresponding target class. This training procedure
allows for a decrease in the communication overhead by several orders of magnitude, however, the
accuracy drop of such an algorithm might be as severe as 25% when compared to the plain FedAvg
algorithm [45]. In place of exchanging the average logits, averaged per-class higher-dimensional
intermediate embedding vectors might be exchanged instead, as in the FedProto algorithm [86].
In such a case, the increased communication cost is compensated by better inference capabilities.
Note, that both the FD and the FedProto algorithm trivially allow clients to customize their models
– the only requirement, in the case of the FedProto algorithm, is that all the client models need to
share some embedding dimension.

The FedGKT algorithm [36] develops a model on the server without exchanging model parameters.
Clients start by training a small model that is horizontally divided into an encoder and a classification
head. The encoder processes raw data to generate intermediate embeddings, while the classification
head – potentially comprising multiple layers – uses these embeddings to produce final predictions.
After local training, clients share the intermediate embeddings, final logits, and ground-truth labels

4

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

for each point in their dataset with the server. The server then uses this information to train a large
model that takes the embeddings and predicts the target classes. In other words, the server trains a
more complex classification head than the one used locally by clients. In FedGKT, both the client
and the server employ KD to improve model convergence. Although innovative, this algorithm
requires clients to reveal their distribution over labels and does not develop a fully usable model
on the server – such a model lacks the encoder part, which is only available to the clients that
participated in the training process.

2.2 FKD with External Dataset Dependency
The performance of the FKD approaches might be improved with an external dataset with similar
properties to the underlying clients’ datasets. In the Cronus algorithm [14], a public dataset is
distributed to all clients, and after every training epoch clients share the logits for a subset of data
points from this dataset with the server, which aggregates these values. During local training, the
clients simultaneously train their local model on both their private labeled data and the public
data labeled with the global logits. In the related DS-FL algorithm [44], the server aggregates the
received logits with an alternative entropy-based approach, and during local training, the clients
first complete the KD training stage before training the model on their local dataset. The FedMD
algorithm expands on these concepts by incorporating a transfer learning phase, as client models
first undergo pre-training on the public dataset. Following this warm-up phase, the algorithm is
akin to DS-FL, differing only in the logit aggregation method, which in FedMD is the average.

In the algorithms just presented, the server’s role primarily involves lightweight synchronization
tasks. Conversely, several model-sharing algorithms leverage the server’s computational capabilities
to enhance model training. For instance, in the FedDF algorithm [56], multiple model architectures
are concurrently trained, and knowledge transfer occurs between these architectures using KD.
Specifically, during a KD training phase on the server, fine-tuned client models act as teachers,
while aggregated global models are treated as students. Similarly, the Fed-ET algorithm [19] allows
clients to choose among a predefined set of model architectures with a common classification head.
A consensus on predictions from fine-tuned client models is used to label data in the public dataset
and these pseudo-labels are then utilized to train a large server model with an identical classification
head as the client models. To obtain the models that will be sent to clients in the next training
iteration, Fed-ET averages the lowermost layers of the fine-tuned client models and incorporates
the classification head of the server model. The related FedAUX [75] algorithm extends the FedDF
algorithm by introducing the so-called certainty scores, which quantify the similarity of the clients’
local data to the data in the global dataset and are hence used to weight the logits produced by the
client models during the server KD stage. Certainty scores are obtained after training a logistic
regression model that aims to differentiate between data points in the local dataset and the ones in
the global dataset. Yet, the FedDF, Fed-ET, and FedAUX algorithms force the client to choose among
a predefined number of model architectures and require the sharing of the full model updates.

In the FedGEMS algorithm [18] clients compute logits locally for each data point in the public
dataset and transmit this information to the server. The server aggregates these predictions and
uses the pseudo-labels to train a global model. Additionally, KD also occurs on the client side:
selected clients receive pseudo-labels for the public dataset and, similarly to the DS-FL and FedMD
algorithms, train their local models to minimize the discrepancy between their predictions and
those received from the server. Extending this approach, the MHAT algorithm [42] trains the server
model using a combination of known target labels and client-produced logits.

2.2.1 FKD with model personalization. All the methods discussed thus far operate under the
assumption that every client receives identical information from the server, such as uniform global

5

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

B. Radovič, et al.

logits. However, this may lead to suboptimal model performance in the presence of significant
statistical heterogeneity among client data. The KD-pFL algorithm [105] overcomes this limitation
by introducing a square matrix that quantifies data similarity between every pair of clients. This
similarity matrix is used to construct personalized logits, i.e., each client receives a weighted average
of other clients’ logits based on the matrix coefficients. The matrix, which expresses the similarity
between clients’ data, is trained on the server using KD.

The COMET algorithm [20] combines FKD algorithms with client clustering techniques [11,
31, 76] to compute personalized logits. In detail, the COMET algorithm clusters the logits sent by
clients to the server using the K-Means clustering algorithm. The resulting centroids are then sent
back to the clients, who select the centroid closest to their logits and use it during local training for
KD.

2.3 FKD Summary
Despite the promising perspectives, FKD algorithms still face several issues and open questions:

(1) Impact of model heterogeneity: Though most algorithms are designed to work even in
cases of extreme model heterogeneity by allowing a “continuous” space of possible models,
experimentally it has been observed, that allowing some clients to use too simple models
might hinder convergence of all the models [52]. While lowering the impact of the logits
produced by simple models represents a potential means to ameliorate this, a thorough
study of the impact of severe model heterogeneity is required.

(2) Model architecture selection: The analysis of how clients should independently choose their
model architecture and its implications in real-world deployments has yet to be addressed.

(3) Statefulness: Algorithms that do not develop a fully usable server model require clients
to be stateful, i.e., clients must train their model from scratch and hence be involved in
model training across multiple training rounds. While feasible in cross-silo FL with a small
number of reliable clients, this requirement is impractical in cross-device FL settings, where
sampling from millions of devices may result in less than 1% of clients participating in
training [82].

(4) External dataset dependency: All algorithms that develop a fully usable server model depend
on an external dataset. Yet, obtaining an appropriate centralized dataset might not be feasible,
and utilizing a dataset with a different distribution than those of the clients could lead to
degraded model performance [56].

We conclude this chapter by reporting in Table 2 the main characteristics and properties of the
algorithms we analyzed.

3 MODEL CUSTOMIZATION VIA PARTIAL TRAINING
3.1 Characterization of PT approaches
Partial Training (PT) represents a group of model-sharing FL approaches that depart from the
requirement of homogeneous client models by permitting each client to receive and train only a
subnet of the global model. Such sub-models are obtained by dropping neurons in fully-connected
layers, excluding filters in convolutional layers, and reducing the depth of the network.

In PT clients are therefore oblivious to the fact that the model they receive is merely a segment
of the larger model held by the server because, as outlined in the proposed generalized Algorithm 1,
the server alone manages all the coordination of the various sub-models. In particular, during
each server epoch, the server selects a portion of the model for each participating client in the
current training round and extracts the relevant weights. In Algorithm 1 we indicate that the task of
constructing sub-models is carried out by the Decompose function, which takes as input the global

6

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Table 2. Summary of FKD algorithms.𝐶 is the number of classes, 𝑒 the dimension of the embedding space, 𝑁
and 𝑁𝑖 the number of parameters of the global and client 𝑖’s model, 𝑘 ∈ (0, 1) an arbitrary constant, and |𝐷 |
and |𝐷𝑖 | the cardinality of the public and client 𝑖’s private datasets respectively.

Algorithm
Required

distillation
dataset

Distribute
public dataset

to clients

Fully customized
model

architecture

Number of exchanged
floating point values
per round by client

Distillation
happens on

Available
server
model

FedKD [96] ✗ ✗ ✓ 𝑁 Client ✓
FML [77] ✗ ✗ ✓ 𝑁 Client ✓

FD [45] ✗ ✗ ✓ 𝐶2 Client ✗
FedProto [86] ✗ ✗ ✓ 𝑒 ·𝐶 Client ✗
FedGKT [36] ✗ ✗ ✓ |𝐷𝑖 | · 𝑒 Client & Server ✗
Cronus [14] Unlabeled ✓ ✓ 𝑘 · |𝐷 | ·𝐶 Client ✗
DS-FL [44] Unlabeled ✓ ✓ 𝑘 · |𝐷 | ·𝐶 Client ✗

FedMD [52] Labeled ✓ ✓ 𝑘 · |𝐷 | ·𝐶 Client ✗
FedDF [56] Unlabeled ✗ ✗ 𝑁𝑖 Server ✓

Fed-ET [19] Unlabeled ✗ ✗ 𝑁𝑖 Server ✓
FedAUX [75] Unlabeled ✓ ✗ 𝑁𝑖 Server ✓

FedGEMS [18] Labeled ✓ ✓ |𝐷 | ·𝐶 Client & Server ✓
MHAT [42] Labeled ✓ ✓ |𝐷 | ·𝐶 Client & Server ✓

KD-pFL [105] Unlabeled ✓ ✓ |𝐷 | ·𝐶 Client ✗
Comet [20] Unlabeled ✓ ✓ |𝐷 | ·𝐶 Client ✗

Algorithm 1 General structure of Partial Training algorithms
Require: 𝑇 > 0 number of training rounds, 𝐶 set of training clients

1: Server initializes global model 𝜃 (1)
2: 𝛾0 ← initialize parameters for sub-model extraction
3: for 𝑡 = 1 to 𝑇 do
4: 𝑆 ⊆ 𝐶 ← sample subset of available clients
5: {𝜅𝑡𝑖 }

|𝑆 |
𝑖=1 ← collect meta-information of the devices

6: {𝜃 𝑡𝑖 }𝑆𝑖=1, 𝛾
𝑡 ← Decompose

(
𝜃 𝑡 , {𝜅𝑡𝑖 }

|𝑆 |
𝑖=1, 𝛾

𝑡−1)
7: for 𝑖 ∈ 𝑆 in parallel do
8: Server sends model 𝜃 𝑡𝑖 to client 𝑖
9: 𝜃 𝑡+1𝑖 ← train model 𝜃 𝑡𝑖 on client 𝑖’s dataset 𝐷𝑖

10: Client 𝑖 sends updated model 𝜃 𝑡+1𝑖 to server
11: end for
12: 𝜃 𝑡+1 ← Aggregate

(
{𝜃 𝑡+1𝑖 }𝑆𝑖=1, 𝛾

𝑡
)

13: end for

model architecture 𝜃 𝑡 , client meta-data 𝜅𝑡𝑖 , and possibly some algorithm-specific state 𝛾𝑡−1. The
client meta-data 𝜅𝑡𝑖 might consider the clients’ computational capabilities, their available memory,
and some properties of their local data, while 𝛾𝑡−1 might include information about the way the
sub-models were constructed in the previous epochs, the current value of model parameters, and
the state of the random number generator. After extracting the sub-models, the server transmits
the model segments to the clients, who train the received model and upon completing the local

7

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

B. Radovič, et al.

training, send back the updated model parameters to the server. Finally, the server aggregates the
weights using its Aggregate function by considering how the sub-models were constructed.

The decomposition and the aggregation function therefore form a pair that characterizes any PT
algorithm. In particular, depending on the properties of these two functions, PT algorithms may be
categorized into static, dynamic, and independent subnetwork training (IST).

3.2 PT with Static Decomposition
In static decomposition the server constructs the sub-models deterministically and consistently
across all the training rounds and clients. That is, the sub-model returned by Decompose(𝜃 𝑡 , 𝜅𝑡𝑖 , 𝛾𝑡−1)
are uniquely determined by the value𝜅𝑡𝑖 , while the state𝛾𝑡−1 does not influence the resulting models.
Note, that this does not imply that some client 𝑖 necessarily receives the same sub-model in all
training rounds, as 𝜅𝑡𝑖 might change over time.

Two representatives of this category are the HeteroFL [23] and the FjORD [39] algorithms. In
HeteroFL the server determines a discrete number 𝐾 of model capacities {𝛼𝑖 }𝐾𝑖=1 and constructs
the corresponding sub-model architectures {𝜃𝛼𝑖 }𝐾𝑖=1 by varying the width of the network, that
is, by changing the number of channels in convolutional layers and the number of neurons in
fully-connected layers. More in detail, the submodels are constructed in such a way, that for any
two model capacity classes 𝛼1 < 𝛼2, it holds that 𝜃𝛼1 ⊂ 𝜃𝛼2 , so that the models effectively form a
hierarchy. Similarly, the FjORD algorithm [39] introduces a hierarchy of nested sub-models using
the so-called Ordered Dropout.

In some cases, the properties of the data might be used to determine the sub-models to be formed.
For instance, small datasets for NLP tasks are likely to contain only a subset of all the possible tokens,
and features in the click-through rate domain are typically extremely sparse [73]. In such cases, the
inherent sparsity of the data offers a natural way for sub-model construction. The FedSelect [15]
algorithm leverages such data sparsity to construct the submodels, for instance, by removing the
weights associated with the input neurons that always take the value 0. Unfortunately, this method
is limited as it is subject to the sparsity of the data (for instance, it cannot be applied to image data).
Furthermore, it can only be applied in the first and last fully connected layers.

3.3 PT with Dynamic Decomposition
A limitation of the PT algorithms with static decomposition, which directly stems from their
static nature, lies in the fact that they allow the training of a model only as large as the largest
model that can be trained on the clients. Dynamic decomposition algorithms avoid this model
size bottleneck by iteratively serving different model parts of the model. Such iteration may be
achieved by either constructing the submodels pseudo-randomly or by introducing some heuristics
regarding which parts of the model should be trained. An example of the former is the Federated
Dropout algorithm [13, 92], in which the server translates the meta-information 𝜅𝑡𝑖 into a single
scalar 𝛼 ∈ (0, 1) and extracts the submodel by randomly sampling a fraction 𝛼 of neurons in fully
connected layers and channels in convolutional layers. However, recent research has shown the
ineffectiveness of this approach [17]. In the related FedSPU algorithm [63] the server sends the
whole model to the clients, yet it instructs them to freeze a random part of the network sampled
randomly. In contrast with the Federated Dropout algorithm, this solution suffers from higher
memory usage and forward propagation time, while the backpropagation time remains unaltered.

Two representatives of PT with heuristics-based model extraction are the FedRolex [4] and the
PriSM [62] algorithms. In the former, different model parts are trained with a rolling strategy, i.e., a
rolling window iteratively loops over the entire model to extract the sub-models. Conversely, in the
PriSM algorithm the server creates low-rank sub-models using the singular value decomposition.

8

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Some model pruning algorithms5 fall into this heuristic-extraction category as well; for instance, in
the FedMP [47] and the FL-PQSU [99] algorithms, the server constructs submodels by selecting
the neurons with the highest importance. Such importance is defined using the l1 norm, e.g., the
importance of a filter in a convolutional layer is defined as the sum of the absolute values of the
corresponding kernel’s weights.

3.3.1 PT via Independent Subnetwork Training. Independent subnetwork training (IST) can be
viewed as a special case of PT with dynamic decomposition. In contrast to the latter, the Decompose
function randomly creates models that have separate and non-overlapping segments of the model
being trained [103]. This design simplifies the Aggregate function, rendering it trivial: if a parameter
was trained in an epoch, the server copies the updated value into the new version of the global
model; otherwise, the previous value of the parameter is retained.

In its original formulation, IST was proposed for fully connected layers [103]. In such a case,
the sub-models are constructed by partitioning the neurons in every hidden layer into equally
sized groups and extracting the weights connecting any two neurons that belong to the same
partition [103]. IST has later been integrated into other model architectures. The ResIST algorithm
applies the IST principles for training the ResNet architectures [37] by distributing residual blocks
to clients in such a way that each client trains a shallower network. Next, the GIST algorithm [94]
applies IST to graph neural networks and AsyncDrop[25] to convolutional neural networks.

IST has also been applied in hierarchical FL settings (HFL).6 Namely, the HIST algorithm [27]
proposes to distribute an independent subnetwork to every edge server and make each such server
train its model segment with a model-sharing FL algorithm for a given number of server rounds,
before aggregating the results on the global server level and distributing new subnetworks to the
edge servers.

IST speeds up the training convergence if compared to local SGD [84] and data parallel training
(DPT), though such speed-ups typically come at the cost of a slightly reduced inference accuracy [26,
27, 94, 103]. In contrast with the DPT, wherein at some point the training time starts increasing as
we add more training machines because of the gradient communication overhead overshadowing
the benefits of parallel computation [26, 103], IST does not suffer from performance degradation
issues.

Despite its sound theoretical background [79], IST did not gain much attention in DCML set-
tings. This has led to a notable research gap concerning various practical deployment conditions.
For example, the blind replication of client-provided values by the server in the updated model
introduces vulnerabilities to potential adversarial attacks. Additionally, the influence of statistical
data heterogeneity on the efficacy of IST-trained models remains largely unexplored.

3.4 Partially Local Federated Training
The Partially Local Federated Training (PLFT) algorithms offer a compromise between PT and
the SL approaches we discuss in Section 4. Similar to SL, PLFT involves partitioning the model
horizontally into public and private segments. Conversely, akin to PT, these algorithms update
the clients’ models by sharing a portion of the overall model parameters. Specifically, the public

5Not all model pruning approaches fit within the proposed formulation. For instance, in the Hermes [51], Sub-FedAvg [90],
and PruneFL [46] algorithms, clients initially receive and train the full model. During training clients incorporate a
regularization term into the loss function, which encourages certain model parameters to be pushed to zero, effectively
reducing the model size. We do not consider these algorithms as they require the clients to train the whole (large) model
before obtaining a smaller version.
6In HFL clients only communicate with the geographically closest edge server and edge servers communicate with the
global server. Therefore, there is a hierarchy in the communication.

9

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

B. Radovič, et al.

segment of the model – comprising either the lowermost or uppermost layers [70] – is trained
using a model-sharing algorithm, while the remaining layers remain private to each client.

In general, deciding which model parameters to designate as shared and which ones as private is
an open question, as different choices perform best in different scenarios [36]. In the LgFedAvg [54]
and the FedGH [101] algorithms, the lower layers in the model are private and the upper ones
are shared, while in the PerFed algorithm [6] the opposite route is taken, i.e. the lower layers are
collaboratively trained and the upper ones are privately trained by the clients.

These algorithms reduce the communication burden if compared to algorithms that require
the exchange of the full model, however, they require the clients to be stateful. The FedRecon
algorithm [82] attempts to solve this issue by introducing the notion of a “Reconstruction” algorithm,
which is used to initialize the private model weights as the clients need them. More in detail, a
client selected for training partitions its private dataset into a support and a query part, and uses
the former to initialize the private parameters and the latter to train the whole model after the
private part has been initialized.

PLFT algorithms can handle heterogeneous models under the condition, that the customized
client models have the same architecture of the shared layers. However, to the best of our knowledge,
this direction has never been empirically tested. We explore this direction in Section 5.

We conclude this section by listing in Table 3 the main characteristics of the algorithms presented
in this section.

Table 3. Summary of Partial Training Algorithms.

Decomposition
type

Client receive
non-overlapping
model weights

Deterministic
weight extraction Model partitioning

HeteroFL [23] Static ✗ ✓ Vertical
FjORD [39] Static ✗ ✓ Vertical

FedSelect [15] Static ✗ ✓ Vertical
Federated Dropout [13] Dynamic ✗ ✗ Vertical

FedRolex [4] Dynamic ✗ ✓ Vertical
FedSPU [63] Dynamic ✗ ✗ Vertical

PriSM [62] Dynamic ✗ ✓ Vertical
FedMP [47] Dynamic ✗ ✓ Vertical

FL-PQSU [99] Dynamic ✗ ✓ Vertical
IST [103] Dynamic ✓ ✗ Vertical

ResIST [37] Dynamic ✗ ✗ Vertical
GIST [94] Dynamic ✓ ✗ Vertical
HIST [27] Dynamic ✗ ✗ Vertical

AsyncDrop [25] Dynamic ✓ ✗ Vertical
LgFedAvg [54] Dynamic ✗ ✓ Horizontal

FedGH [101] Dynamic ✗ ✓ Horizontal
PerFed [6] Dynamic ✗ ✓ Horizontal

FedRecon [82] Dynamic ✗ ✓ Horizontal

10

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

§

(a)

§

Client-side
model

Server-side
model

(b) (c)

Fig. 1. (a) In model-sharing algorithms, the whole model is distributed to all the training clients. (b) In SL the
model is partitioned horizontally. (c) In PT the model is partitioned vertically, i.e., clients train a reduced yet
complete version of the model.

4 SPLIT LEARNING
4.1 Introduction to Split Learning
Split learning (SL) [34, 71, 91] is a distributed model training approach where the model is hori-
zontally partitioned into multiple segments distributed across two or more training nodes. In its
simplest form, SL involves only two nodes, i.e., the client possessing the training data and the first
𝑘 layers of the model, and the server possessing the remaining 𝑁 − 𝑘 layers, 𝑁 being the total
number of layers in the model. We visually compare the difference between SL, PT, and traditional
model-sharing algorithms in Figure 1.

After both actors initialize their model segment, training proceeds through standard backpropa-
gation. Specifically, the client first conducts a forward pass on a batch of local data on its model
segment and sends the resulting so-called “smashed” embeddings along with the corresponding
target labels to the server. The server continues the forward pass on its model portion, determines
the loss, and updates its weights by backpropagating the error until its first layer. Then, the server
communicates the gradient information to the client, enabling this way the client to perform the
backward pass on its segment of the neural network.7 Therefore, SL allows clients to train a larger
model than the one they could on their own and without sharing their raw data.

The above two-node setting can be extended with several architectural variations. Of particular
interest is the so-called “U-shaped” architecture [66, 91, 106], in which the client holds both the
lowermost and topmost layers of the model. On the one hand, this configuration removes the need
for the client to share target values with the server, as the client computes the loss itself, but on the
negative side, requires four passes over the network – two during the forward pass and an equal
number during the backward pass.

When multiple clients aim to collaboratively train a model, several approaches are available.
Gupta et al. propose a formulation where clients take turns in training. That is, after client 𝑖
completes training, it sends the updated client-side model parameters to client 𝑖 +1 in a round-robin
fashion [34]. However, given that only one client is engaged in model training at any given time,
this leads to low resource usage, increased convergence time, and, when clients’ data present
statistical heterogeneity, might lead to the so-called “catastrophic forgetting” [24, 89].

To overcome the low resource utilization issue, the SplitFed algorithm [87] proposes to combine
SL with model-sharing algorithms by training the client-side models in parallel and periodically
averaging them as in the FedAvg algorithm. The SplitFed algorithm comes in two variants, as

7Such a two-node scenario is, from a technical point of view, equivalent to pipeline-parallel training [43].

11

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

B. Radovič, et al.

the authors observe that during training the server model might either be private to every client
(SplitFed 𝑣1) or be shared among all clients (SplitFed 𝑣2). When each client trains its private server
model, such server models are averaged at the end of the training round. Consequently, this version
is effectively equivalent to the FedAvg algorithm. In the SFLG algorithm [29] authors generalize
these algorithms by observing that the number of models being trained on the server may be any
value between one and the number of clients. The SplitFed 𝑣3 algorithm [30] proposes to keep the
client-side part of the model private to clients and only average the updates of the server model to
reduce catastrophic forgetting [49]. On the negative side, this prevents from developing of a public
client-side mode that may be served to new clients.

One of the main design questions in SL is determining the number of layers to be trained on the
client. Employing a shallow network on the clients reduces their resource usage; however, it also
increases the risk of potential privacy breaches [3]. Kim et al. propose an algorithm that determines
the optimal number of layers to be trained on clients in cases of IoT devices by introducing a set of
utility functions, which take into consideration the energy consumption, the privacy of the data,
and the consumed time [48].

Compared to model-sharing FL, SL reduces the volume of shared data over the network when
training large models and in the presence of a large number of clients [81]. Conversely, SL has the
disadvantage of requiring network involvement for every batch of data. To address this network
issue, Liao et al. propose the FSL algorithm, where clients use a shallow auxiliary head to compute
a loss for updating the client-side model [55]. The loss computed on the server updates only the
server-side model, removing the need for the server to share gradients with clients. Similarly, in the
AdaSplit algorithm [21], client models are trained using locally generated losses. However, unlike
the FSL algorithm, in AdaSplit clients first train their models for a fixed number of rounds and
subsequently update the server model with sparse updates. Therefore, the purpose of the client
loss in FSL and AdaSplit is to enable updating client models in the absence of the gradient from the
server. However, client losses can also be used to maximize the amount of information contained
in the smashed data as in the LocFedMix algorithm [64].

4.2 Split Learning Summary
In summary, SL represents a distinct group of DCML algorithms separate from the FL category.
Broadly, SL algorithms facilitate collaborative model training among clients with minimal mem-
ory and computational requirements by delegating some computational tasks to the server. The
presented analysis evidenced that SL needs further research in terms of:

(1) Scalability: as every client consumes some server resources, such as memory and computing
time, SL approaches seem best suited to small-scale scenarios. Consequently, there is a need
for a study to address its scalability issues and propose effective mitigation strategies.

(2) Privacy: an issue in SL arises from clients sharing target labels and the possibility that
the server may reconstruct raw data based solely on the embeddings. While the former
issue can be addressed with the U-shaped architecture, the latter remains an active area of
research [68].

(3) Implementation: to the best of our knowledge, no existing framework is specifically designed
for easy prototyping, implementing, and deploying SL algorithms. We develop such a
framework as part of the contributions of this paper, see Appendix A.

We conclude by reporting the properties of the considered SL algorithms in Table 4.

12

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Table 4. Summary of Split Learning algorithms.

Client avoids
sharing target label Client collaboration Number of server models 𝑔

during training

SL [34] ✗ Sequential 𝑔 = 1
U-Shaped SL [91] ✓ Sequential 𝑔 = 1

SplitFed 𝑣1 [87] ✗ Parallel 𝑔 = 𝑛
SplitFed 𝑣2 [87] ✗ Parallel 𝑔 = 1
SplitFed 𝑣3 [30] ✗ Parallel 𝑔 = 1

SFLG [29] ✗ Parallel 1 ≤ 𝑔 ≤ 𝑛
FSL [55] ✗ Parallel 𝑔 = 1

AdaSplit [21] ✗ Parallel 𝑔 = 1

5 EXPERIMENTAL ANALYSIS IN SIMULATION ENVIRONMENT
In this section, we conduct a comprehensive evaluation of a diverse set of algorithms discussed in
this paper. Our objective is to provide insights and contributions as follows:
• To chart the landscape of algorithmic effectiveness, we analyze the performance of the

implemented algorithms across various metrics such as model accuracy, convergence speed,
communication overhead, and resource utilization.
• We validate the reported results from the original papers and uncover new insights by

executing the algorithms in a real-world testbed.
• We provide actionable guidelines that can assist researchers and practitioners in navigating

the trade-offs associated with the analyzed algorithms and hence help them make informed
decisions regarding the most suitable collaborative algorithm for their specific use case.

5.1 Experimental setup
Scenario: We consider a scenario where a group of devices with varying computational capacities
collaborates to train a shared model. These devices are grouped into 𝑘 clusters based on their
computational capabilities, i.e., all clients within a cluster can train a common model architecture.
We consider 𝑘 = 3, distinguishing between:

(1) High-capacity devices, which can train a Large model.
(2) Mid-capacity devices, which can train a Medium model.
(3) Low-capacity devices, which can only train a Small model.

Unless stated otherwise, we consider 21 clients evenly distributed across the three computational
tiers. Each client trains the largest model it can handle; for example, a mid-capacity device always
trains a Medium model, even though it could also train a Small model. Additionally, every client uses
the same model architecture across all algorithms. For instance, low-capacity devices consistently
train the Small model across all algorithms.
Considered algorithms: The selection of algorithms for implementation is made to maximize
diversity. Specifically, we choose a set of algorithms that cover a broad range of algorithmic ideas
surveyed in this paper. In selecting the algorithms for the experimental section, we consider their
simplicity, the clarity of their descriptions in the original papers, their novelty, and the initial results
we obtain. We also prioritize algorithms with open-source implementations and those for which
we can reproduce the results reported in the papers. For the FKD family of algorithms, we consider
the FD [45], FedKD [96], FedMD [52], and FedDF [56] algorithms. For the PT family of approaches,
we consider the HeteroFL [23], Federated Dropout [13], and LgFedAvg [54] algorithms. Finally, we

13

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

B. Radovič, et al.

take SplitFed 𝑣1 and SplitFed 𝑣2 [87] as representative of SL algorithms. A detailed discussion of
the implementation of these algorithms for our use case is provided in Appendix A.1.

We refer to algorithms that require clients to share the weights of the model being trained and
hence develop a server-side model as “stateless”. Examples of such algorithms include FedAvg,
HeteroFL, FedDF, and Federated Dropout. Conversely, algorithms that develop a private model
without sharing the corresponding model parameters, such as FedMD, FedKD, FD, and LgFedAvg,
are classified as “stateful”.
Experimental procedure: Our experimental evaluation consists of two stages. In the first stage,
we perform a grid search over possible hyperparameter values for each algorithm to determine
the best hyperparameter configuration. These initial tests take place in a simulation environment
wherein we artificially mimic computational heterogeneity among (virtual) clients. Subsequently,
in the second stage, we use the hyperparameter configuration determined in the first step and
deploy the algorithms, depending on the experiment type, either in a simulated environment or in
a real-world testbed. We limit ourselves to small-scale scenarios because of the finite number of
physical devices in the testbed at our disposal. We also assume full client participation in every
server round as otherwise it would not be possible to compare stateful and stateless algorithms.8
Details about the experimental setup, including model architecture, hyperparameter search space,
and data partitioning procedure, are discussed in Appendix A.
Training task: we focus on common classification benchmarks using the CIFAR10, CIFAR100 [50],
and CINIC10 [22] image classification datasets and the Ag-News text classification dataset [107].
For brevity, we here present results for CIFAR10 and leave the results on CIFAR100 and CINIC10
for Appendix B and on Ag-News to Appendix C. We explore two data scenarios: a) data distributed
in an IID fashion, where clients have similar distributions over the target labels, and b) in a non-IID
manner, where labels are distributed based on the Dirichlet distribution [41, 104]. Regardless of
the distribution of client labels, clients’ datasets are divided into disjoint training, validation, and
test subsets. During training, the server instructs clients to compute the validation accuracy of
the current model every five server training rounds. The validation accuracy serves two purposes.
First, it allows the server to detect convergence defined as the lack of improvement of the average
validation accuracy over four consecutive evaluation rounds (which span 4 · 5 = 20 training rounds).
Second, clients use the validation accuracy to select the version of the model that will be used at
the end of training – note that each client might choose a model from a different server round.
Thus, by “test accuracy” we denote the highest validation accuracy model’s performance on the
client’s test set.

5.2 Baseline accuracy comparison
We introduce an intuitive baseline that is founded on the FedAvg algorithm. In place of training a
model across all clients as is the case of the FedAvg algorithm, we train a model with FedAvg only
across clients of the same computational capacity. That is, after clustering clients into 𝑘 clusters by
considering their available computing resources, we run the FedAvg algorithm 𝑘 times, each time
only involving clients of the considered cluster. To the best of our knowledge, no paper to date has
examined this option for a heterogeneous model environment. Note, that this approach is tightly
related to clustered FL algorithms [11, 76], wherein after clustering the clients according to the
properties of their data, a separate model is trained independently for each cluster. In contrast with
these solutions, however, in our case we introduce architectural model heterogeneity. Though this
solution is likely to yield unsatisfactory results for clients in underrepresented capacity groups, we

8In stateless algorithms the global model is trained in every epoch, while in stateful algorithms the client model is trained
only if the client is selected in the current training round.

14

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Table 5. Test accuracy (in %) and corresponding standard error achieved by FedAvg on the proposed CIFAR10
setting w.r.t. the number of local training epochs performed on the clients. All clients denotes training the
model across all clients, while Cluster clients denotes training the model across the clients in the corresponding
capacity group. That is, the accuracy of the baseline cFedAvg algorithm is the weighted average of the Cluster
clients accuracy.

Small model Medium model Large model

All clients Cluster clients All clients Cluster clients All clients Cluster clients

1 local epoch 76.4 ±0.4 70.7 ±1.0 82.0 ±0.2 77.1 ±0.4 83.7 ±0.2 77.7 ±0.4

2 local epochs 78.5 ±0.2 70.6 ±0.7 82.9 ±0.1 76.8 ±0.3 84.1 ±0.2 77.6 ±0.4

4 local epochs 78.3 ±0.2 70.2 ±0.9 82.7 ±0.1 76.2 ±0.5 83.7 ±0.1 77.2 ±0.4

argue that it is a valid baseline as it entails no overhead for clients and introduces only minimal
overhead for the server, as in this scenario the server is required to average and store 𝑘 models in
memory instead of one. We refer to this extended version of the FedAvg algorithm as cFedAvg.
Takeaway 1: A trade-off exists between the size of the model and its accessibility to low-end devices,
with both factors significantly impacting the final model’s accuracy.

We report in Table 5 the accuracy for the proposed baseline, wherein we train a model only
across the clients that support it, as well as the accuracy we would obtain if all clients trained the
same model architecture with the FedAvg algorithm.9 The results are expected, as larger models
consistently outperform smaller models and at the same time, when a given model is trained across
all clients, it yields superior performance than when trained on a subset of clients. A point worth
emphasizing is that the accuracy of the Small model trained across all clients is similar and in
some cases smaller than the accuracy of the Large model trained only on the subset of clients that
support such a model. We argue that these results collectively showcase the necessity of employing
heterogeneous model architectures in heterogeneous environments. Ideally, algorithms should allow
transferring knowledge between different capacity groups of clients. Hence, when using an ideal
algorithm, the accuracy of any model should approach the accuracy that the model achieves when
trained across all clients.

5.3 Accuracy with respect to dataset size
In Figure 2 we report the accuracy we obtain with the considered algorithms w.r.t. the size of the
training dataset of the clients. In each experiment, every client samples and uses 𝑃 data points from
its training set. Afterward, the server executes the algorithm until convergence.

The SplitFed algorithms achieve the highest accuracy for any 𝑃 . This is expected, as in these
algorithms all clients collectively train a slightly modified version of the Large model – recall, that
the SplitFed 𝑣1 algorithm is equivalent to the FedAvg algorithm with the difference, that the burden
of training is distributed between clients and server. Therefore, the highest accuracy we get in the
case of SplitFed 𝑣1, 83.3% when 𝑃 = 2000, is in line with the results reported in Table 5. A point
worth emphasizing is that in the SplitFed algorithms, every client holds and trains 57184 parameters,
which is very close to the number of parameters of the Small model (52823 parameters) used by
9These results were obtained in the simulation environment, allowing for the emulation of scenarios where all clients
possess the capability to train the largest model. However, according to the problem definition, low-capacity clients cannot
use the Large model.

15

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

B. Radovič, et al.

400 800 1200 1600 2000

0.40

0.50

0.60

0.70

0.80

Large Model

400 800 1200 1600 2000

Medium Model

400 800 1200 1600 2000

Small Model
cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg
SplitFed v1
SplitFed v2

Size of client training dataset

A
cc

ur
ac

y

Fig. 2. Average client test accuracy w.r.t. the training dataset size and model size. Each subplot shows the
average test accuracy of clients training the corresponding model, e.g., the accuracy in the “Large model” plot
is the average test accuracy of the clients that train the Large model. In this and the following plots, solid
lines indicate the stateless FL algorithms, dotted lines stateful FL algorithms, and dashed lines SL algorithms.

low-capacity devices in FL algorithms. It follows, that all the devices, including the low-capacity
ones, can train the same Large model.
Takeaway 2: In an IID data scenario, SL consistently yields the best accuracy.

Within the family of stateless FL algorithms, the HeteroFL algorithm is particularly successful
for the mid-capacity cluster of devices training the Medium model, while the performance is very
similar to the cFedAvg algorithm for the Large and Small models.10 Regarding FedDF, we notice
that the algorithm requires the client models to be very well fine-tuned on clients’ datasets for
KD on the server to be useful. In the opposite case, KD might be detrimental – for instance, when
the training set size consists of only 400 instances, the algorithm does not converge. Apart from
this, the FedDF algorithm helps the Small model to boost its performance, as the FedDF algorithm
achieves the highest test accuracy for the Small model for any 𝑃 ≥ 800.

We also implement and test the Federated Dropout algorithm but we obtain unsatisfactory
results, most notably for the Small model – the average accuracy does not reach 30% and is hence
not visible in the rightmost plot in Figure 2. We hypothesize that this result is due to two reasons.
First, the algorithm seems not well suited for cases in which different model sizes are trained at
the same time – in [13] the experiments are performed by using a constant sub-model size for all
clients. Second, the Small model has, using the terminology from [13], a federated dropout rate of
0.2. Such a rate is significantly smaller than the smallest dropout rate considered in the referenced
paper, i.e. 0.5, which has already been shown to yield unsatisfactory results [13].

Regarding stateful algorithms, the FedMD algorithm is particularly successful when the 𝑃 is
small. This is due to the fact, that the importance of the public dataset consisting in our case of
1000 data points is more pronounced when there is a paucity of local training data. Conversely, the
FedKD algorithm is particularly successful when the dataset is large, with the low-capacity cluster
of devices having the highest benefits.

The accuracy obtained with LgFedAvg is lower than that of the other stateful algorithms. In
the official GitHub repository of the project [57] it is stated, that to obtain the results shown in
the paper, it is first necessary to pretrain the model with the FedAvg algorithm. We therefore

10The reduction in training data introduced by the cFedAvg algorithm may result in significantly worse performance in
other scenarios, such as when training a BERT model for text classification tasks. See Appendix C.

16

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

0.2 0.5 1.0 2.0 10.0
Alpha

0.0

0.2

0.4

0.6

0.8

C
os

in
e

si
m

ila
ri

ty

Q1
Q2
Q3

(a)

0.2 0.5 1.0 2.0 10.0
0.4

0.5

0.6

0.7

0.8 cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg
SplitFed v1
SplitFed v2

Alpha

A
cc

ur
ac

y

(b)

Fig. 3. (a) First, second, and third quartile of the
(𝑁

2
)

cosine similarities between client distribution vectors,
where 𝑁 is the number of clients. (b) Average test accuracy across all clients obtained by the algorithms using
the corresponding non-IID datasets.

hypothesize that the algorithm might be better suited for refining the model obtained with FedAvg
rather than training the model from scratch.
Takeaway 3: In an IID data scenario, there is a significant gap between stateful and stateless algorithms.

5.4 Impact of data heterogeneity
We next analyze how the performance of the considered algorithms changes as the degree of data
non-IIDness between clients’ datasets varies. We follow a well-established practice of simulating
heterogeneity by sampling data according to the Dirichlet distribution, effectively mimicking the
label skew type of non-IIDness [41, 104]. The Dirichlet distribution has a parameter 𝛼 , which, as
shown in Figure 3(a), determines the degree of non-IIDness: the lower the value of this parameter,
the more skewed the data is among the clients; conversely, as 𝛼 increases, the distribution over the
target labels becomes more uniformly distributed among the clients.

In Figure 3(b) we observe, that stateful algorithms perform better in cases of significant data
non-IIDness. This result is caused by the fact, that when the data is highly skewed, each client has
only a fraction of the overall labels in its private datasets. Consequently, the local model’s task is
simplified as the model needs to discriminate between fewer classes. On the other hand, as noted
by several researchers [40, 108], the performance of model-sharing algorithms tends to improve as
the degree of non-IIDness decreases.
Takeaway 4: Stateful algorithms better cope with the label skew type of non-IIDness.

5.5 Impact of client capacity
The experiments conducted thus far have assumed an equal distribution of devices across the three
capacity classes. However, this scenario is unlikely to occur in practice, as certain capacity tiers are
likely to be overrepresented compared to others. Here, we present how various algorithms perform
as the distribution over the available capacity tiers changes. For simplicity, we assume that the 20
clients with IID data comprising this experiment may choose only among two separate models: the
Large model and a comparison model, which can be either the Medium or the Small model.

It can be observed in Figure 4 that stateful algorithms exhibit relatively stable performance as
the distribution over trained model sizes changes. However, they tend to achieve better accuracy as

17

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

B. Radovič, et al.

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8
Large-Medium models

0 20 40 60 80 100

Large-Small models

cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg

Percentage of clients training Large model

A
cc

ur
ac

y

Fig. 4. Average test accuracy across all clients w.r.t. the number of devices that train the Large model. Clients,
that do not train the Large model, use the Medium model (left figure) or the Small model (right figure).

the percentage of clients training the Large model increases. This trend is most noticeable when
the comparison model is the Small one.

Stateless algorithms are sensitive to variations in the distribution over trained model sizes.
When all devices train the Large model, the HeteroFL, cFedAvg, and Federated Dropout algorithms
yield the same accuracy. However, as the percentage of clients training a Large model decreases,
the average accuracy also decreases. For instance, Federated Dropout shows a rapid decrease
in performance, especially when the comparison model is Small. In contrast, the cFedAvg and
HeteroFL algorithms demonstrate similar performance, with HeteroFL slightly outperforming
when the comparison model is the Medium one. Note also, that when all devices train a Small
model, the average accuracy of the HeteroFL model is lower than that of cFedAvg, which may seem
counterintuitive as both algorithms train the same model and use the same aggregation strategy.
This difference arises due to the scaling of model outputs in the HeteroFL algorithm, i.e., the two
algorithms have different training procedures on the clients.11 Finally, note that we did not report
the results for SL algorithms, as in the discussed scenario all the clients train the same model
regardless of their capacity.

In Figure 4 we also note, that the average accuracy for both HeteroFL and cFedAvg is higher
when all the devices train a smaller model if compared to the case when only a small portion of
clients train the Large model. This demonstrates the trade-off between having multiple model sizes
on one hand and training each such model only on a fraction of the clients on the other.
Takeaway 5: In stateless algorithms, having only a marginal fraction of clients with large models
might be detrimental – better let all the clients use a smaller model.

6 DEPLOYING THE ALGORITHMS IN A REAL-WORLD TESTBED
We now transition from experimenting in a simulated environment to deploying the algorithms on
the Collaborative Learning Experimentation Testbed (CoLExT) [10], which includes 14 heteroge-
neous devices. We report the properties of the devices in the testbed in Table 6, while a picture of
the testbed can be seen in Figure 5. To categorize each device into its respective capacity tier, we
performed manual profiling of their performance. This involved running all models on all device
types and selecting the most suitable model for each device based on training time.

11We cannot make the two training procedures the same as the initial magnitudes of the model parameters are different.

18

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Fig. 5. Picture of the employed
testbed.

Table 6. Listing of devices comprising the testbed with correspond-
ing properties.

device
type

RAM
(GB)

CPU
(cores) GPU

Assigned
capacity

tier
Count

Jetson
AGX Orin 64 12@2.2GHz ✓ High 1

Jetson
Orin Nano 8 6@1.5GHz ✓ High 3

LattePanda
Delta 3 8 4@2.9GHz ✗ Medium 4

Orange
Pi 5B 16 8@2.4GHz ✗ Low 6

Throughout this section, we train a model on an IID data setting using the CIFAR10 dataset.
We set each client to use a training dataset with 1000 images to enable resource consumption
comparison across different clients, and we set all algorithms to train the model for two epochs
on the clients in each server training round. We apply no modifications to the FL and the SplitFed
𝑣2 algorithms, while for the SplitFed 𝑣1 algorithm we test the original formulation [87] and an
extended version of the algorithm that employs the U-shaped architecture [91]. We refer to the
former as “Plain SL” and to the latter as “U-shaped”.

6.1 Convergence times
To begin, we examine how accuracy evolves over time. Each algorithm we analyze employs distinct
training procedures and loss functions, resulting in varying training times across devices.

The results, reported in Figure 6, illustrate that the SL algorithms achieve the highest validation
accuracy and converge reasonably fast. The accuracy result is in line with the discussion of
Section 5.2, however in this case, the difference in accuracy between FL and SL algorithms is
further amplified because in our testbed the low-capacity tier is over-represented. The difference in
accuracy between the two SplitFed 𝑣1 versions we see in the plot is attributed to the longer training
time of the U-shaped configuration. We also observe that SplitFed 𝑣2, where clients train a common
model on the server, achieves significantly faster convergence, though some authors observe that
the faster training pace of the server model may harm in some cases model convergence [65].

Regarding the FL algorithms, cFedAvg exhibits the fastest convergence rate. This rapid con-
vergence is attributed mostly to the fact, that the training processes of different capacity tiers
are decoupled. It follows, that the high-capacity cluster converges extremely quickly. However,
ultimately, HeteroFL achieves the highest validation accuracy. The FedDF algorithm suffers from
very slow convergence because of the expensive KD stage happening on the server. Among the
stateful algorithms, the FedKD and FedMD algorithms achieve comparable accuracy, with the
FedKD algorithm demonstrating faster convergence due to the fact, that it does not require training
the model on the public dataset. Finally, we observe that also in this case the FD and the LgFedAvg
algorithms attain the lowest accuracy among the considered algorithms.

19

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

B. Radovič, et al.

0 20 40 60 80 100
Elapsed time (m)

0.15

0.25

0.35

0.45

0.55

0.65

0.75

A
cc

ur
ac

y

cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg
SplitFed v1 - Plain SL
SplitFed v1 - U-shaped
SplitFed v2 - Plain SL

Fig. 6. Evolution of the average validation accuracy across all clients through time on the testbed.

6.2 Network consumption
Before delving into the results concerning network usage, it is important to note, that while the
considered algorithms vary significantly, the types of exchanged data remain limited. That is,
stateless algorithms transmit the complete model and SL algorithms transmit embeddings and
gradients. Most variability in terms of transmitted data can be observed in the stateful family of
algorithms, wherein clients transmit either a reduced model version (FedKD), logits on the public
dataset (FedMD), or class prototypes (FD).

We present in Figure 7 the volume of sent12 and received bytes by the considered algorithms.
As also noted by Gao et al. [28], SL algorithms cause significantly higher network involvement
than FL algorithms – we here do not differentiate between SplitFed 𝑣1 and SplitFed 𝑣2 because
they transfer the same amount of data over the network. This fact comes as no surprise as the
embedding of a single image consists in our case of 24576 parameters. It follows, that in each epoch
every client, which in this experiment has 1000 data points and performs two local training epochs,
sends 24576 · 1000 · 2 ≈ 49.1M parameters to the server. Conversely, among FL algorithms, the
largest communication happens when clients send the Large model consisting of 1.2M parameters
at the end of the training stage.

Among the FL family of algorithms, stateless algorithms exhibit traffic volumes that are one or
more orders of magnitude higher than those of the FedKD and FD algorithms, a difference that
gets amplified with larger model sizes. As for the FedMD algorithm, there is a considerable initial
downlink investment due to clients downloading the public dataset, while the amount of data sent
by this algorithm remains comparable to other stateful algorithms.

6.3 Local training resource consumption
We next analyze resource utilization during local training on clients, specifically focusing on CPU
and memory usage.13 Similar to our findings on network activity, we observe limited variability
in local training procedures. We hence collectively refer to the most straightforward training
method, wherein clients locally optimize the plain cross-entropy loss and is employed by the
FedAvg, HeteroFL, LgFedAvg, and Federated Dropout algorithms, as “vanilla training”. Conversely,
we denote the regularized training procedure used by FedDF as “FedProx” [53].
12Sent bytes include resource consumption statistics, which are not typically sent in production environments. This traffic
accounts for approximately 50kB per minute.
13For memory, we measure the Resident Set Size (RSS).

20

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

F1 E2 F4 E5 F7 E8 F10

105

107

109

Received bytes

F1 E2 F4 E5 F7 E8 F10

Sent bytes

FD
FedKD
FedMD
Large model
Medium model
Small model
SplitFed - Plain SL
SplitFed - U-shaped

Stage of training process

B
yt

es

Fig. 7. Cumulative amount of sent and received bytes through training. Vertical dashed lines denote the
beginning of a training round, and vertical dotted lines denote the beginning of an evaluation round. F𝑥
represent fit round 𝑥 while E𝑥 represent evaluation round 𝑥 .

Table 7. Training time in seconds in the first and
subsequent epochs when training a Small model
with vanilla training.

device type First
epoch [s]

Other
epochs [s]

Jetson
AGX Orin 7.87 4.67

Jetson
OrinNano 9.39 5.29

Latte Panda
Delta3 9.98 10.39

Orange
Pi5B 19.02 17.46

Table 8. Ratio between metrics collected when
training a Large and Small model with vanilla
training.

device type CPU
util.

Memory
util.

Round
time

Jetson
AGX Orin 0.898 1.017 1.214

Jetson
Orin Nano 0.910 1.019 1.186

Latte Panda
Delta3 1.044 1.321 10.226

Orange
Pi5B 0.972 1.413 5.582

We detail the training time for the first training round along with the subsequent rounds’ average
training times in Table 7. Notably, the initial round on devices equipped with a GPU is 68% to
77% slower than subsequent rounds due to the CUDA context creation overhead, which includes
loading the driver and kernels. This initial sluggishness results in the Latte Panda, which lacks a
GPU, achieving a training time comparable to the Jetson Orin Nano equipped with a GPU during
the first round. Consequently, it is beneficial to utilize the GPU-equipped devices multiple times to
amortize the initial GPU setup cost. Because of this consideration, all the values we report from
this point on are measured by excluding the first training round.
Takeaway 6: The presence of a GPU is the primary indicator of the client capacity, however, GPU
initialization is slow.

Next, we report in Table 8 the ratio between the resource usage when devices train a Large
compared to the Small model with vanilla training. We note, that switching the model being trained
from Small to Large causes the training time to increase by 18 − 21% when the device has a GPU,

21

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

B. Radovič, et al.

Table 9. Ratio between memory usage and client training time when training the Small model with the
displayed training procedure if compared to the plain vanilla training.

FedProx FedKD FD
device type mem util round time mem util round time mem util round time

JetsonAGXOrin 1.000 1.170 0.998 1.376 1.002 1.237
JetsonOrinNano 0.997 1.163 0.997 1.392 0.998 1.201

LattePandaDelta3 1.014 1.005 1.004 1.290 0.991 1.004
OrangePi5B 1.030 1.020 1.004 1.486 1.001 1.010

while CPU-only devices present a time increase of multiple folds. It is also interesting to note,
that memory usage does not scale proportionally to the model size because the majority of the
memory consumption is not caused by the models per se, but rather by the deep learning library.14

We therefore conclude that the size of the model, when it falls within the range of several million
parameters, is unlikely to pose a memory issue. For instance, a model with 1 million parameters,
assuming 32-bit precision, would occupy approximately 4MB of memory. During training, this
value increases due to the storage of activations and possibly optimizer states. However, even with
these additions, the memory footprint remains modest compared to that of the PyTorch library.
Based on our tests, loading PyTorch into memory requires, depending on the CPU architecture
(ARM or x86) between 200MB to 350MB.
Takeaway 7: When the model being trained has a parameter count in the order of millions, the
memory footprint of the model is negligible if compared to the memory occupied by the deep learning
library.

6.3.1 Comparison of FL algorithms. We report in Table 9 the ratio between different training
procedures and vanilla training. We see, that as observed also by Baumgart et al. [7], devices
featuring a GPU exhibit a greater increase in training time compared to CPU-only devices in case of
the FedProx and FD training procedures: for GPU-equipped devices, the round time increases range
from 16% to 23%, while devices equipped solely with a CPU experience a round time increase of no
more than 2%. The higher increase in training times on GPU-equipped devices is due to operations
in the training procedures that cannot be efficiently performed on the GPU, e.g. computing the
prototype matrix in the FD algorithm. As expected, since the FedKD algorithm trains two separate
models with codistillation, the training time increases for this procedure are higher compared to
the other two training procedures, with time increases ranging from 29% to 49%. Consistently with
the results discussed above, also in this case we note that memory consumption does not exhibit
any significant variation between the different algorithms.

6.3.2 Comparison of FL with SL algorithms. In Table 10 we compare the client resource usage
when training a Large model with vanilla training and the two SL variants, i.e. plain and U-shaped.
Consistent with the findings of Wong et al., we observed that devices equipped with a GPU exhibit
significantly lower CPU usage during training [95]. Offloading a part of the computation to the
server benefits all the devices when it comes to CPU and GPU utilization, as these two metrics
significantly decrease when using SL if compared to vanilla training. This computation offloading
also causes a significant decrease in training times on the devices that lack a GPU, e.g., the round
time decreases from 68.06s to 27.84s in the case of Latte Panda Delta 3.

14We did not optimize the memory usage but rather used the default PyTorch settings.

22

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Table 10. Absolute average CPU and GPU utilization and round training time for training a Large model
with the two SL variants and vanilla training.

Vanilla Training Plain SL U-shaped

device type CPU
(%)

GPU
(%)

round
time (s)

CPU
(%)

GPU
(%)

round
time (s)

CPU
(%)

GPU
(%)

round
time (s)

Jetson
AGX Orin 81.05 38.90 3.77 20.37 5.02 22.93 21.15 5.47 27.37

Jetson
Orin Nano 80.73 44.29 4.11 24.33 5.86 17.45 25.92 6.25 20.10

Latte Panda
Delta3 382.82 0.00 68.06 200.22 0.00 27.84 216.96 0.00 29.68

Orange
Pi5B 461.35 0.00 56.39 213.53 0.00 30.39 212.19 0.00 34.47

The benefits of SL diminish to some extent when using the U-shaped architecture. In this case,
clients need to serialize and deserialize more tensors, transmit more data over the network as
discussed in Section 6.2, and run a forward and backward step on the last convolutional layer. The
combination of all these factors leads to an increase in training time, as well as higher CPU and
GPU involvement.

Devices with GPUs experience longer training times in SL compared to standard local training.
This delay arises from various factors including serialization, deserialization, and increased CPU-
GPU traffic. However, the primary bottleneck occurs at the central server, which possesses only
one GPU and handles simultaneous requests from 14 clients, leading to a significant slowdown in
training.

7 DISCUSSION
7.1 Limitations
The presented study compared a diverse set of algorithms by focusing on two key practical aspects
of DCML deployments, i.e. model performance and system resource usage. We limited ourselves to
these two broad dimensions as DCML is an extremely complex topic and capturing all situations
that may arise in practice is close to impossible. For instance, other aspects we did not consider in
this paper include:
• Privacy: Depending on the type of exchanged data, a “curious” server may discover more or

less of the underlying clients’ datasets. In the paper, we only reported the original authors’
privacy considerations when available. Also, we did not consider differential privacy, so
future research could compare algorithms based on their resilience to such artificially-
injected noise.
• Scalability: Researchers have observed diminishing returns when adding clients beyond a

certain point in the FedAvg algorithm [60, 102]. While this observation also applies to the
SplitFed 𝑣1 algorithm, future research should explore whether this property holds for the
other considered algorithms.
• Type of data non-IIDness: In Section 5.4 we mimicked data non-IIDness by partitioning the

datasets according to the Dirichlet distribution, effectively achieving the label-skew type of
non-IIDness [69]. However, in real-world scenarios, client datasets may present different
types of non-IIDness such as concept shift.

23

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

B. Radovič, et al.

• Client availability patterns: Throughout the experimental section we assumed that all clients
are available all the time, while in practice, client availability may vary throughout the
day [9].
• Software Heterogeneity: While the devices in our testbed had various hardware resources,

they were homogeneous in terms of the operating system, with all clients running Linux.
In other deployments, clients might differ in their underlying software, such as training
models on Android and iOS smartphones.
• Unreliable networks and Client Failures: The devices in our testbed were connected via a

fast (1Gbps) and reliable Ethernet network. In extreme cases, network issues could prevent
clients from uploading data in time, potentially leading the server to register client training
as a failure. This is not the only cause of client failures.
• Malicious clients: Clients may intentionally attempt to compromise the convergence of the

algorithm.
We also acknowledge that though we aimed to provide a comparison that is as unbiased and fair

as possible, practical DCML deployments are bound to differ to some extent from our setup:
• We conducted the whole experimental section following the most common practice in FL

research of training a model from scratch. However, thanks to the abundance of pre-trained
models available in many domains, FL fine-tuning of a pre-trained model is also possible [61].
In such a case, several issues discussed throughout the paper get mitigated. For instance,
when fine-tuning a model, it is common practice to freeze the initial layers of a model. In
such a case, in model-sharing algorithms, clients only need to share the updates of the
trainable parameters. It follows, that the amount of exchanged data reduces.
• Even though we attempted to optimize as much as possible the implemented algorithms

according to the information at our disposal, we do not claim that the algorithms could not
be further improved. For instance, it is possible that models of different sizes would benefit
from having different training parameters (e.g., smaller models having larger learning rates
and smaller regularization strength). However, this is a dimension we did not consider in
this survey as such a case was not explicitly discussed in the original papers where the
algorithms were introduced.

One final limitation of our work is that the algorithm comparisons are purely empirical. While
we provided intuitive explanations for observed accuracy differences whenever possible, future
research could offer a more analytical comparison of the algorithms.

7.2 Impact and Future Work
The experiments conducted in our study revealed that there is no single best algorithm; instead, each
algorithm balances computational, network, and accuracy requirements differently. As developing
a comprehensive set of use cases to identify the most suitable algorithm for each is challenging, we
believe the takeaways listed in this paper provide valuable insights that can assist practitioners in
selecting the most appropriate DCML algorithm for their application.

On a high level, we observed that for FL algorithms, sharing model parameters as in the FedAvg,
cFedAvg, and HeteroFL algorithms remains the most effective approach for achieving optimal model
accuracy. While reducing the shared data volume and fully customizing the model architecture
as in the FD, FedKD, and FedMD algorithms may seem appealing, our findings indicate that this
often leads to a notable decrease in model accuracy. Additionally, our results demonstrate that the
cFedAvg algorithm, despite its simplicity, delivers comparable performance to algorithms explicitly
tailored for model-heterogeneous scenarios. This suggests opportunities for advancing and refining
model customization algorithms in future research.

24

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

However, these results prompt us to consider the extent to which model customization is the
solution to the device heterogeneity challenges outlined in this study. Specifically, as repeatedly
shown in Section 5, achieving the best accuracy often necessitates large models. Consequently,
when employing FL, low-end devices are excluded from this process, as training large models
on such devices leads to extended training times and places a significant burden on clients, as
demonstrated in Section 6. Conversely, these devices may train a large model when assisted by a
server as is the case in SL approaches.

Therefore, given the limitations of both FL and SL algorithms, we believe that to solve the
device heterogeneity issues, a promising direction is to view these technologies not as mutually
exclusive but rather as complementary to each other. Specifically, while plain SL may not be
suitable for large-scale deployment and training large models with FL approaches on low-end
devices may be infeasible, integrating SL and FL can harness the strengths of both approaches. For
instance, considering the close relationship between the SplitFed and the FedAvg algorithms, one
can assign a different number of layers to each device depending on the device’s computational
availability [74, 97] and hence let every client collaborate in training a large model while minimizing
the burden posed on the central server.

8 CONCLUSION
In this paper, we have explored three distinct families of algorithms designed to facilitate DCML
on devices with constrained computing and memory resources. Our investigation revealed that
each algorithmic family possesses unique strengths and weaknesses. For instance, FKD algorithms
offer model customization by exchanging logits instead of model parameters. However, they often
necessitate stateful clients and entail training models from scratch, limiting their competitiveness.
SL-based approaches incur high network traffic and computational overhead on the server, while
PT-based algorithms enable clients to train models with a size that is proportional to their capacities
but may still lag in accuracy compared to the introduced cFedAvg baseline.

To evaluate these algorithms, we conducted experiments in both simulated and live real-world
testbeds comprising heterogeneous devices. Our findings underscore the inherent trade-offs between
network utilization, model accuracy, and client resource consumption. These results shed light
on the complexities involved in optimizing DCML algorithms for diverse device environments
and highlight the need for further research to develop more robust and efficient solutions in this
domain.

ACKNOWLEDGMENTS
This publication is based on work supported by the King Abdullah University of Science and
Technology (KAUST) Office of Research Administration (ORA) under Award No. ORA-CRG2021-
4699, and by the Slovenian Research Agency through the projects “Context-Aware On-Device
Approximate Computing” (J2-3047) and core funding No. P2-0098. For computer time, this research
used the resources of the Supercomputing Laboratory at KAUST. We are thankful to Amândio R.
Faustino for his support in conducting the experiments.

REFERENCES
[1] Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini. 2022. Empirical Analysis of

Federated Learning in Heterogeneous Environments. In EuroMLSys.
[2] Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A. Fahmy. 2023. REFL: Resource-Efficient

Federated Learning. In EuroSys.
[3] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit Ahmet Çamtepe, Yansong Gao, Hyoungshick Kim,

and Surya Nepal. 2020. Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?. In ACM
ASIA Conference on Computer and Communications Security (ASIA CCS).

25

https://doi.org/10.1145/3517207.3526969
https://doi.org/10.1145/3517207.3526969
https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3320269.3384740

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

B. Radovič, et al.

[4] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. FedRolex: Model-Heterogeneous Federated Learning with
Rolling Sub-Model Extraction. In NeurIPS.

[5] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl, and Geoffrey E. Hinton. 2018. Large
Scale Distributed Neural Network Training Through Online Distillation. In ICLR.

[6] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. 2019. Federated Learning
with Personalization Layers. (2019). arXiv:1912.00818 [cs.DC]

[7] Gustav A. Baumgart, Jaemin Shin, Ali Payani, Myungjin Lee, and Ramana Rao Kompella. 2024. Not All Federated
Learning Algorithms Are Created Equal: A Performance Evaluation Study. (2024). arXiv:2403.17287 [cs.DC]

[8] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D. Lane. 2020. Flower: A
Friendly Federated Learning Research Framework. (2020). arXiv:2007.14390 [cs.DC]

[9] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon,
Jakub Konečný, Stefano Mazzocchi, H Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at scale: System design. (2019). arXiv:1902.01046 [cs.DC]

[10] Janez Božič, Amândio R. Faustino, Boris Radovič, Marco Canini, and Veljko Pejović. 2024. Where is the Testbed for
my Federated Learning Research?. In ACM/IEEE Symposium on Edge Computing (SEC).

[11] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated Learning With Hierarchical Clustering of Local
Updates To Improve Training on Non-Iid Data. In International Joint Conference on Neural Networks (IJCNN).

[12] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model Compression. In SIGKDD.
[13] S Caldas, J Konečny, H B McMahan, and others. 2018. Expanding the Reach of Federated Learning by Reducing Client

Resource Requirements. (2018). arXiv:1812.07210 [cs.DC]
[14] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. 2019. Cronus: Robust and Heterogeneous

Collaborative Learning with Black-Box Knowledge Transfer. (2019). arXiv:1912.11279 [cs.DC]
[15] Zachary Charles, Kallista A. Bonawitz, Stanislav Chiknavaryan, Brendan McMahan, and Blaise Agüera y Ar-

cas. 2022. Federated Select: A Primitive for Communication- and Memory-Efficient Federated Learning. (2022).
arXiv:2208.09432 [cs.DC]

[16] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu
Wei. 2022. THE-X: Privacy-Preserving Transformer Inference with Homomorphic Encryption. In Annual Meeting of
the Association for Computational Linguistics (ACL).

[17] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith Rush. 2022. Does Federated Dropout actually work?. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[18] Sijie Cheng, Jingwen Wu, Yanghua Xiao, and Yang Liu. 2021. FedGEMS: Federated Learning of Larger Server Models
via Selective Knowledge Fusion. (2021). arXiv:2110.11027 [cs.DC]

[19] Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. 2022. Heterogeneous Ensemble
Knowledge Transfer for Training Large Models in Federated Learning. In International Joint Conferences on Artificial
Intelligence (IJCAI).

[20] Yae Jee Cho, Jianyu Wang, Tarun Chirvolu, and Gauri Joshi. 2023. Communication-Efficient and Model-Heterogeneous
Personalized Federated Learning via Clustered Knowledge Transfer. IEEE Journal of Selected Topics in Signal Processing
(2023).

[21] Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Praneeth Vepakomma, Vivek Sharma, and
Ramesh Raskar. 2021. AdaSplit: Adaptive Trade-offs for Resource-constrained Distributed Deep Learning.
arXiv:2112.01637 [cs.LG]

[22] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. 2018. CINIC-10 Is Not ImageNet or
CIFAR-10. (2018). arXiv:1810.03505 [cs.DC]

[23] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and Communication Efficient Federated
Learning for Heterogeneous Clients. In ICLR.

[24] Qiang Duan, Shijing Hu, Ruijun Deng, and Zhihui Lu. 2022. Combined Federated and Split Learning in Edge
Computing for Ubiquitous Intelligence in Internet of Things: State-of-the-Art and Future Directions. Sensors (2022).

[25] Chen Dun, Mirian Hipolito Garcia, Chris Jermaine, Dimitrios Dimitriadis, and Anastasios Kyrillidis. 2023. Efficient
and Light-Weight Federated Learning via Asynchronous Distributed Dropout. In AISTATS.

[26] Chen Dun, Cameron R. Wolfe, Christopher M. Jermaine, and Anastasios Kyrillidis. 2022. ResIST: Layer-wise
decomposition of ResNets for distributed training. In Conference on Uncertainty in Artificial Intelligence (UAI).

[27] Wenzhi Fang, Dong-Jun Han, and Christopher G. Brinton. 2024. Submodel Partitioning in Hierarchical Federated
Learning: Algorithm Design and Convergence Analysis. In IEEE International Conference on Communication (ICC).

[28] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa, Kyuyeon Kim, Seyit Ahmet Çamtepe,
Hyoungshick Kim, and Surya Nepal. 2020. End-to-End Evaluation of Federated Learning and Split Learning for
Internet of Things. In International Symposium on Reliable Distributed Systems (SRDS).

26

http://papers.nips.cc/paper_files/paper/2022/hash/bf5311df07f3efce97471921e6d2f159-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/bf5311df07f3efce97471921e6d2f159-Abstract-Conference.html
https://openreview.net/forum?id=rkr1UDeC-
https://openreview.net/forum?id=rkr1UDeC-
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
https://arxiv.org/abs/1912.00818
https://doi.org/10.48550/arXiv.2403.17287
https://doi.org/10.48550/arXiv.2403.17287
https://arxiv.org/abs/2403.17287
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1902.01046
http://doi.org/10.1109/SEC62691.2024.00027
http://doi.org/10.1109/SEC62691.2024.00027
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1145/1150402.1150464
http://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1912.11279
http://arxiv.org/abs/1912.11279
https://arxiv.org/abs/1912.11279
https://doi.org/10.48550/arXiv.2208.09432
https://arxiv.org/abs/2208.09432
https://doi.org/10.18653/v1/2022.findings-acl.277
https://doi.org/10.1109/CVPRW56347.2022.00382
https://arxiv.org/abs/2110.11027
https://arxiv.org/abs/2110.11027
https://arxiv.org/abs/2110.11027
https://doi.org/10.24963/ijcai.2022/399
https://doi.org/10.24963/ijcai.2022/399
https://doi.org/10.1109/JSTSP.2022.3231527
https://doi.org/10.1109/JSTSP.2022.3231527
https://arxiv.org/abs/2112.01637
https://arxiv.org/abs/2112.01637
http://arxiv.org/abs/1810.03505
http://arxiv.org/abs/1810.03505
https://arxiv.org/abs/1810.03505
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://doi.org/10.3390/s22165983
https://doi.org/10.3390/s22165983
https://proceedings.mlr.press/v206/dun23a.html
https://proceedings.mlr.press/v206/dun23a.html
https://proceedings.mlr.press/v180/dun22a.html
https://proceedings.mlr.press/v180/dun22a.html
https://doi.org/10.1109/ICC51166.2024.10622512
https://doi.org/10.1109/ICC51166.2024.10622512
https://doi.org/10.1109/SRDS51746.2020.00017
https://doi.org/10.1109/SRDS51746.2020.00017

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

[29] Yansong Gao, Minki Kim, Chandra Thapa, Alsharif Abuadbba, Zhi Zhang, Seyit Camtepe, Hyoungshick Kim, and
Surya Nepal. 2022. Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things.
IEEE Trans. Comput. (2022).

[30] Manish Gawali, C. S. Arvind, Shriya Suryavanshi, Harshit Madaan, Ashrika Gaikwad, K. N. Bhanu Prakash, Viraj
Kulkarni, and Aniruddha Pant. 2021. Comparison of Privacy-Preserving Distributed Deep Learning Methods in
Healthcare. In Medical Image Understanding and Analysis (MIUA).

[31] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An Efficient Framework for Clustered
Federated Learning. In NeurIPS.

[32] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing. 2016.
CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. In ICML.

[33] Google. 2022. How Messages Improves Suggestions With Federated Technology. https://support.google.com/
messages/answer/9327902?hl=en. Accessed: 2023-11-11.

[34] Otkrist Gupta and Ramesh Raskar. 2018. Distributed Learning of Deep Neural Network Over Multiple Agents. Journal
of Network and Computer Applications (2018).

[35] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. 2018. Federated Learning for Mobile Keyboard Prediction. (2018). arXiv:1811.03604

[36] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge. In NeurIPS.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In
CVPR.

[38] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge in a Neural Network. (2015).
arXiv:1503.02531 [cs.DC]

[39] Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, and Nicholas D. Lane.
2021. FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. In NeurIPS.

[40] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. 2020. The Non-IID Data Quagmire of
Decentralized Machine Learning. In ICML.

[41] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the Effects of Non-Identical Data Distribution
for Federated Visual Classification. (2019). arXiv:1909.06335 [cs.DC]

[42] Li Hu, Hongyang Yan, Lang Li, Zijie Pan, Xiaozhang Liu, and Zulong Zhang. 2021. MHAT: an Efficient Model-
Heterogenous Aggregation Training Scheme For Federated Learning. Information Sciences (2021).

[43] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using
Pipeline Parallelism. In NeurIPS.

[44] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto. 2023. Distillation-Based
Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training With Non-IID Private
Data. IEEE Transactions on Mobile Computing (2023).

[45] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. Communication-
Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data. (2018).
arXiv:1811.11479

[46] Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros Tassiulas. 2023.
Model Pruning Enables Efficient Federated Learning on Edge Devices. IEEE Transactions on Neural Networks and
Learning Systems (2023).

[47] Zhida Jiang, Yang Xu, Hongli Xu, Zhiyuan Wang, Jianchun Liu, Chen Qian, and Chunming Qiao. 2024. Computation
and Communication Efficient Federated Learning With Adaptive Model Pruning. IEEE Transactions on Mobile
Computing (2024).

[48] Minsu Kim, Alexander C. DeRieux, and Walid Saad. 2023. A Bargaining Game for Personalized, Energy Efficient Split
Learning over Wireless Networks. In IEEE Wireless Communications and Networking Conference (WCNC).

[49] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, et al. 2016. Overcoming Catastrophic Forgetting in Neural
Networks. (2016). arXiv:1612.00796

[50] A Krizhevsky. 2009. Learning Multiple Layers of Features From Tiny Images. (2009).
[51] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes: An Efficient Federated Learning

Framework for Heterogeneous Mobile Clients. In MobiCom.
[52] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated Learning via Model Distillation. (2019).

arXiv:1910.03581 [cs.DC]
[53] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated

Optimization in Heterogeneous Networks. In MLSys.

27

https://doi.org/10.1109/TC.2021.3135752
https://doi.org/10.1007/978-3-030-80432-9_34
https://doi.org/10.1007/978-3-030-80432-9_34
https://proceedings.neurips.cc/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://support.google.com/messages/answer/9327902?hl=en
https://support.google.com/messages/answer/9327902?hl=en
https://doi.org/10.1016/j.jnca.2018.05.003
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604
https://proceedings.neurips.cc/paper/2020/hash/a1d4c20b182ad7137ab3606f0e3fc8a4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a1d4c20b182ad7137ab3606f0e3fc8a4-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
http://proceedings.mlr.press/v119/hsieh20a.html
http://proceedings.mlr.press/v119/hsieh20a.html
http://arxiv.org/abs/1909.06335
http://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1909.06335
https://doi.org/10.1016/j.ins.2021.01.046
https://doi.org/10.1016/j.ins.2021.01.046
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://doi.org/10.1109/TMC.2021.3070013
https://doi.org/10.1109/TMC.2021.3070013
https://doi.org/10.1109/TMC.2021.3070013
http://arxiv.org/abs/1811.11479
http://arxiv.org/abs/1811.11479
https://arxiv.org/abs/1811.11479
https://doi.org/10.1109/TNNLS.2022.3166101
https://doi.org/10.1109/TMC.2023.3247798
https://doi.org/10.1109/TMC.2023.3247798
https://doi.org/10.1109/WCNC55385.2023.10118601
https://doi.org/10.1109/WCNC55385.2023.10118601
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1612.00796
https://doi.org/10.1145/3447993.3483278
https://doi.org/10.1145/3447993.3483278
http://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1910.03581
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

B. Radovič, et al.

[54] Paul Pu Liang, Terrance Liu, Ziyin Liu, Ruslan Salakhutdinov, and Louis-Philippe Morency. 2020. Think Locally, Act
Globally: Federated Learning with Local and Global Representations. (2020). arXiv:2001.01523 [cs.DC]

[55] Yunming Liao, Yang Xu, Hongli Xu, Zhiwei Yao, Lun Wang, and Chunming Qiao. 2023. Accelerating Federated
Learning With Data and Model Parallelism in Edge Computing. IEEE/ACM Transactions on Networking (2023).

[56] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble Distillation for Robust Model Fusion in
Federated Learning. In NeurIPS.

[57] Terrance Liu and Paul Liang. 2020. Federated Learning with Local and Global Representations. https://github.com/
pliang279/LG-FedAvg. Accessed: 2024-03-06.

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2017. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In AISTATS.

[59] Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar Ayyub Qazi, Agha Ali Raza, and Ihsan Ayyub
Qazi. 2023. Learning Fast and Slow: Towards Inclusive Federated Learning. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).

[60] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry Huba.
2022. Federated Learning with Buffered Asynchronous Aggregation. In AISTATS.

[61] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael G. Rabbat. 2023. Where to Begin? On the
Impact of Pre-Training and Initialization in Federated Learning. In ICLR.

[62] Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr. 2022. Federated Learning of Large
Models at the Edge via Principal Sub-Model Training. (2022). arXiv:2208.13141 [cs.DC]

[63] Ziru Niu, Hai Dong, and A. Kai Qin. 2024. FedSPU: Personalized Federated Learning for Resource-constrained Devices
with Stochastic Parameter Update. (2024). arXiv:2403.11464 [cs.DC]

[64] Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun
Kim. 2022. LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split
Learning. In WWW.

[65] Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, Moongu Jeon, and
Jinho Choi. 2021. Server-Side Local Gradient Averaging and Learning Rate Acceleration for Scalable Split Learning.
(2021). arXiv:2112.05929 [cs.DC]

[66] Kamalesh Palanisamy, Vivek Khimani, Moin Hussain Moti, and Dimitris Chatzopoulos. 2021. SplitEasy: A Practical
Approach for Training ML models on Mobile Devices. In HotMobile.

[67] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. 2018. Value-Aware Quantization for Training and Inference of Neural
Networks. In European Conference on Computer Vision (ECCV).

[68] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. 2021. Unleashing the Tiger: Inference Attacks on Split
Learning. In ACM Special Interest Group on Security, Audit and Control (SIGSAC).

[69] Peter Kairouz et.al. 2021. Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine
Learning (2021).

[70] Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael G. Rabbat, Maziar Sanjabi, and Lin Xiao. 2022.
Federated Learning with Partial Model Personalization. In ICML.

[71] Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar.
2019. Split Learning for Collaborative Deep Learning in Healthcare. (2019). arXiv:1912.12115 [cs.DC]

[72] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. 2021. Adaptive Federated Optimization. In ICLR.

[73] Steffen Rendle. 2010. Factorization Machines. In International Conference on Data Mining (ICDM).
[74] Eric Samikwa, Antonio Di Maio, and Torsten Braun. 2022. ARES: Adaptive Resource-Aware Split Learning for Internet

of Things. Comput. Networks (2022).
[75] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. 2023. FedAUX: Leveraging Unlabeled Auxiliary

Data in Federated Learning. IEEE Transactions on Neural Networks and Learning Systems (2023).
[76] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. 2021. Clustered Federated Learning: Model-Agnostic

Distributed Multitask Optimization Under Privacy Constraints. IEEE Transactions on Neural Networks and Learning
Systems (2021).

[77] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Kun Kuang, Fei Wu, and Chao Wu. 2020.
Federated mutual learning. (2020). arXiv:2006.16765 [cs.LG]

[78] Nir Shlezinger, Mingzhe Chen, Yonina C. Eldar, H. Vincent Poor, and Shuguang Cui. 2021. UVeQFed: Universal Vector
Quantization for Federated Learning. IEEE Transactions on Signal Processing (2021).

[79] Egor Shulgin and Peter Richtárik. 2024. Towards a Better Theoretical Understanding of Independent Subnetwork
Training. In ICML.

[80] Dan Simmons. 2022. 17 Countries with GDPR-like Data Privacy Laws. https://insights.comforte.com/countries-with-
gdpr-like-data-privacy-laws. Accessed: 2023-12-06.

28

http://arxiv.org/abs/2001.01523
http://arxiv.org/abs/2001.01523
https://arxiv.org/abs/2001.01523
https://doi.org/10.1109/TNET.2023.3299851
https://doi.org/10.1109/TNET.2023.3299851
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://github.com/pliang279/LG-FedAvg
https://github.com/pliang279/LG-FedAvg
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1007/978-3-031-43415-0_23
https://proceedings.mlr.press/v151/nguyen22b.html
https://openreview.net/forum?id=Mpa3tRJFBb
https://openreview.net/forum?id=Mpa3tRJFBb
https://doi.org/10.48550/arXiv.2208.13141
https://doi.org/10.48550/arXiv.2208.13141
https://arxiv.org/abs/2208.13141
https://doi.org/10.48550/arXiv.2403.11464
https://doi.org/10.48550/arXiv.2403.11464
https://arxiv.org/abs/2403.11464
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3485447.3512153
https://arxiv.org/abs/2112.05929
https://arxiv.org/abs/2112.05929
https://doi.org/10.1145/3446382.3448362
https://doi.org/10.1145/3446382.3448362
https://doi.org/10.1007/978-3-030-01225-0_36
https://doi.org/10.1007/978-3-030-01225-0_36
https://doi.org/10.1145/3460120.3485259
https://doi.org/10.1145/3460120.3485259
https://ieeexplore.ieee.org/document/9464278
https://proceedings.mlr.press/v162/pillutla22a.html
http://arxiv.org/abs/1912.12115
https://arxiv.org/abs/1912.12115
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1016/j.comnet.2022.109380
https://doi.org/10.1016/j.comnet.2022.109380
https://doi.org/10.1109/TNNLS.2021.3129371
https://doi.org/10.1109/TNNLS.2021.3129371
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://arxiv.org/abs/2006.16765
https://arxiv.org/abs/2006.16765
https://doi.org/10.1109/TSP.2020.3046971
https://doi.org/10.1109/TSP.2020.3046971
https://openreview.net/forum?id=XUc29ydmLX
https://openreview.net/forum?id=XUc29ydmLX
https://insights.comforte.com/countries-with-gdpr-like-data-privacy-laws
https://insights.comforte.com/countries-with-gdpr-like-data-privacy-laws

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

[81] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019. Detailed Comparison of Communi-
cation Efficiency of Split Learning And Federated Learning. (2019). arXiv:1909.09145

[82] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush, and Sushant Prakash. 2021. Federated
Reconstruction: Partially Local Federated Learning. In NeurIPS.

[83] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. 2015. Striving for Simplicity:
The All Convolutional Net. In ICLR.

[84] Sebastian U Stich. 2018. Local SGD Converges Fast and Communicates Little. (2018). arXiv:1805.09767 [cs.DC]
[85] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2023. Towards Personalized Federated Learning. IEEE

Transactions on Neural Networks and Learning Systems (2023).
[86] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. 2022. FedProto: Federated

Prototype Learning across Heterogeneous Clients. In AAAI.
[87] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, Seyit Camtepe, and Lichao Sun. 2022. SplitFed: When

Federated Learning Meets Split Learning. In AAAI.
[88] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and Yike Guo. 2021. Privacy Preservation in Federated

Learning: An Insightful Survey From The GDPR Perspective. Computers & Security (2021).
[89] Valeria Turina, Zongshun Zhang, Flavio Esposito, and Ibrahim Matta. 2020. Combining Split and Federated Architec-

tures for Efficiency and Privacy In Deep Learning. In CoNEXT.
[90] Saeed Vahidian, Mahdi Morafah, and Bill Lin. 2021. Personalized Federated Learning by Structured and Unstructured

Pruning under Data Heterogeneity. In IEEE International Conference on Distributed Computing Systems (ICDCS)
Workshops.

[91] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018. Split Learning for Health: Distributed
Deep Learning Without Sharing Raw Patient Data. (2018). arXiv:1812.00564 [cs.DC]

[92] Dingzhu Wen, Ki Jun Jeon, and Kaibin Huang. 2022. Federated Dropout - A Simple Approach for Enabling Federated
Learning on Resource Constrained Devices. IEEE Wireless Communications Letters (2022).

[93] Herbert Woisetschläger, Alexander Isenko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. FLEDGE: Benchmarking
Federated Machine Learning Applications in Edge Computing Systems. (2023). arXiv:2306.05172

[94] Cameron R. Wolfe, Jingkang Yang, Fangshuo Liao, Arindam Chowdhury, Chen Dun, Artun Bayer, Santiago Segarra,
and Anastasios Kyrillidis. 2024. GIST: Distributed Training for Large-Scale Graph Convolutional Networks. Journal
of Applied and Computational Topology (2024).

[95] Kok-Seng Wong, Manh Nguyen-Duc, Khiem Le-Huy, et al. 2023. An Empirical Study of Federated Learning on
IoT-Edge Devices: Resource Allocation and Heterogeneity. (2023). arXiv:2305.19831

[96] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. 2022. Communication-Efficient Federated
Learning via Knowledge Distillation. Nature Communications (2022).

[97] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor T. A. Spence, and Blesson Varghese. 2022. FedAdapt:
Adaptive Offloading for IoT Devices in Federated Learning. IEEE Internet of Things Journal (2022).

[98] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. 2023. Asynchronous Federated Learning on Heteroge-
neous Devices: A Survey. Computer Science Review (2023).

[99] Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and Naixue Xiong. 2021. Accelerating Federated Learning for IoT
in Big Data Analytics With Pruning, Quantization and Selective Updating. IEEE Access (2021).

[100] Mark Xue and Julien Freudiger. 2019. Designing for Privacy. https://developer.apple.com/videos/play/wwdc2019/708.
Accessed: 2023-11-11.

[101] Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. 2023. FedGH: Heterogeneous federated learning with
generalized global header. In ACM International Conference on Multimedia.

[102] Ashkan Yousefpour, Shen Guo, Ashish Shenoy, Sayan Ghosh, Pierre Stock, Kiwan Maeng, Schalk-Willem
Krüger, Michael G. Rabbat, Carole-Jean Wu, and Ilya Mironov. 2023. Green Federated Learning. (2023).
arXiv:2303.14604 [cs.DC]

[103] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris Jermaine. 2022. Distributed
Learning of Fully Connected Neural Networks using Independent Subnet Training. Proceedings of the VLDB Endowment
(2022).

[104] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni.
2019. Bayesian Nonparametric Federated Learning of Neural Networks. In ICML.

[105] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. 2021. Parameterized Knowledge
Transfer for Personalized Federated Learning. In NeurIPS.

[106] Shiqiang Zhang, Zihang Zhao, Detian Liu, Yang Cao, Hengliang Tang, and Siqing You. 2025. Edge-assisted U-shaped
split federated learning with privacy-preserving for Internet of Things. Expert Systems with Applications (2025).

[107] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Convolutional Networks for Text Classification.
In NeurIPS.

29

http://arxiv.org/abs/1909.09145
http://arxiv.org/abs/1909.09145
https://arxiv.org/abs/1909.09145
https://proceedings.neurips.cc/paper/2021/hash/5d44a2b0d85aa1a4dd3f218be6422c66-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5d44a2b0d85aa1a4dd3f218be6422c66-Abstract.html
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1805.09767
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1609/aaai.v36i8.20819
https://doi.org/10.1609/aaai.v36i8.20819
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1109/ICDCSW53096.2021.00012
https://doi.org/10.1109/ICDCSW53096.2021.00012
http://arxiv.org/abs/1812.00564
http://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
https://doi.org/10.1109/LWC.2022.3149783
https://doi.org/10.1109/LWC.2022.3149783
https://arxiv.org/abs/2306.05172
https://arxiv.org/abs/2306.05172
https://arxiv.org/abs/2306.05172
https://doi.org/10.1007/s41468-023-00127-8
https://doi.org/10.48550/arXiv.2305.19831
https://doi.org/10.48550/arXiv.2305.19831
https://arxiv.org/abs/2305.19831
https://www.nature.com/articles/s41467-022-29763-x
https://www.nature.com/articles/s41467-022-29763-x
https://doi.org/10.1109/JIOT.2022.3176469
https://doi.org/10.1109/JIOT.2022.3176469
https://doi.org/10.1016/j.cosrev.2023.100595
https://doi.org/10.1016/j.cosrev.2023.100595
https://doi.org/10.1109/ACCESS.2021.3063291
https://doi.org/10.1109/ACCESS.2021.3063291
https://developer.apple.com/videos/play/wwdc2019/708
https://dl.acm.org/doi/10.1145/3581783.3611781
https://dl.acm.org/doi/10.1145/3581783.3611781
https://doi.org/10.48550/arXiv.2303.14604
https://arxiv.org/abs/2303.14604
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://proceedings.mlr.press/v97/yurochkin19a/yurochkin19a.pdf
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://doi.org/10.1016/j.eswa.2024.125494
https://doi.org/10.1016/j.eswa.2024.125494
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

B. Radovič, et al.

Table 11. Employed model architectures. All convolutional layers are followed by a ReLU activation.

Layer Kernel size Stride Padding Output channels
Small Medium Large

Conv2D 3 × 3 1 1 20 48 96
Conv2D 3 × 3 1 1 20 48 96

MaxPool2D 3 × 3 2
Conv2D 3 × 3 1 1 39 96 192
Conv2D 3 × 3 1 1 39 96 192

MaxPool2D 3 × 3 2 1
Conv2D 3 × 3 1 1 39 96 192
Conv2D 3 × 3 1 1 39 96 192
Conv2D 1 × 1 1 1 10 10 10

AvgPool2D 6 × 6 1 0

[108] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated Learning with
Non-IID Data. (2018). arXiv:1806.00582 [cs.DC]

A EXPERIMENTAL SETUP
In this section we detail the experimental setup used throughout the evaluation phase of the paper.
Software stack: We implemented all the FL algorithms using the Flower FL framework [8], with
Pytorch as the deep learning library. In order to be able to test the SL algorithms, we also developed
an extension to Flower, which is available on https://github.com/sands-lab/slower. For managing
and automating the deployment of FL algorithms to the physical devices, we developed a custom
library, which uses Kubernetes for deploying clients as containers on the devices.
Data partitioning: Throughout the paper we used the CIFAR10, CIFAR100, and CINIC10 dataset.
For the CIFAR10 and CIFAR100 we use the 60000 images composing both the training and test set,
i.e., we do not differentiate between the train and test partition in the original dataset. Conversely,
in the CINIC10 dataset, we use the 90000 images in the train dataset. When constructing the
client datasets, we first divide the original dataset into 𝑁 partitions. Then, we reserve 15% of the
so-obtained dataset partitions for validation and 15% for the test dataset.

For algorithms that require an additional public dataset, we use a random sample of 1000 images
from the CIFAR100 dataset as a public dataset.

The experiments in Section 5.3, Section 5.4, and Section 5.2 involved 21 clients grouped into
three tiers: low-capacity, medium-capacity, and high-capacity, with seven clients in each tier. In
contrast, the experiments in Section 5.5 were conducted with 20 clients.
Models: We use a slightly adapted version of the fully convolutional model referred to as “Model
C” in [83], which has been applied also in FL experiments, e.g. [13]. The exact model architecture
is stated in Table 11. We employed three different model architectures derived from the base model
(Large) by reducing the number of channels in convolutional layers. Each client was assigned to one
of the three available classes of devices, i.e. low-, medium-, and high-end, and depending on this
membership, trained a Small (52823 parameters), Medium (313786 parameters), or Large (1249642
parameters) model. Considering that all three models have the very same structure, we can directly
use them also for PT approaches.
Hyperparameter tuning: for all the algorithms we performed a grid search over possible values
of hyperparameters to determine the configuration, that achieves the highest accuracy. We spent

30

http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://github.com/sands-lab/slower

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

Table 12. Hyperparameters search space. We bold the values that yield the highest accuracy for two local
training epochs. All the algorithms also used weight decay 3e-4 and gradient norm clipping 4.0. 𝐵 is the batch
size, 𝜂 the learning rate, and 𝜇 the FedProx [53] regularization strength.

Algorithm Tuned
hyperparameters Values Constant

hyperparameters

FedAvg [58] 𝜂
𝐵

[0.02, 0.05, 0.1]
[8, 12, 16] /

FD [45] Temperature
KD strength

[0.5, 1.0, 2.0, 4.0]
[0.1, 0.2, 0.5] 𝐵=8, 𝜂=0.05

FedMD [52] Public dataset size
Temperature

[1000, 4000]
[0.5, 1.0, 2.0] 𝐵=12, 𝜂=0.05

FedDF [56] Server training epochs
Weight predictions

[1, 2]
[true, false]

𝐵=8, 𝜂=0.05
𝜇=0.001

Federated
Dropout [13]

𝜂
𝐵

[0.05, 0.1]
[8, 12, 16] /

HeteroFL [23] 𝜂
𝐵

[0.05, 0.1]
[8, 12, 16] /

LgFedAvg [54] 𝜂
𝐵

[0.05, 0.1]
[8, 12, 16] /

approximately the same amount of time in hyperparameter tuning for all the algorithms to provide
a fair comparison (≈1 day for each method using 42 CPUs and 2 GPUs). We report in Table 12 the
exact hyperparameters we tested for every algorithm. For optimization, in all the algorithms we
used the plain SGD optimizer with no momentum. We used SGD as it does not incur additional
memory usage by the client such as optimizer state.

A.1 Additional comments about algorithm implementation
• FD: We were not able to reproduce the results stated in [45]. We contacted the authors to

ask for clarification but received no answer. Also, the algorithm stated in the paper does not
consider cases in which some clients are missing certain target labels and cases in which a
client fails to upload its logits to the server. We avoid both these issues by computing the
global logits for a class as the average logits across all clients, in place of the average across
all clients excluding the target client. In the performed experiments, this update does not
degrade the performance of the model.
• FedKD: We ignore the adaptive hidden loss (Equation 5. in [96]), as it primarily targets

transformer-like architectures. Regarding the architecture of the globally shared model, we
used a model with 10% of the original filters (that is, the convolutional layers in Table 11
have either 9 or 19 filters). While the results could be improved by using a larger model,
this would conflict with the constraints of the low-capacity clients. We did not implement
the Dynamic Gradient Approximation extension as it is orthogonal to the training task.
• LgFedAvg: We assume that the model can be divided into an encoder, which we set

to comprise the first five convolutional layers, and a classification head, comprising the
remaining two convolutional layers. To be able to run the model across all clients, we set
the parameters of the final two layers to be equal to the ones of the Small model. The first
four layers of the encoder are equal to the architectures stated in Table 11, while the last

31

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

B. Radovič, et al.

encoder layer has in all cases 39 output filters because its output needs to be passed to the
classification head.
• FedMD: we did not include the pre-training stage performed on the public dataset. This

step is orthogonal to the remainder of the algorithm and might easily be integrated into
other algorithms as well. During the KD stage, we used the KL loss with temperature 1.0.
• SplitFed: We divide the model into a client-side (first two convolutional layers) and a

server-side segment, comprising the remaining five layers. We train a Large model as we
assume that the server has no computational constraints. Also, we reduce the number of
filters in the first convolutional layer to 64, so that the first two layers have approximately
the same number of parameters of the Small model. We implemented the SFLV1 algorithm as
in the original paper [87] and an extension that uses the U-shaped architecture. In this case,
the clients contain, apart from the initial layers as in the plain version, also the uppermost
layer, and these layers are averaged across all devices after every server training round.
• Partial training: For PT approaches (HeteroFL and Federated Dropout) we found that

gradient clipping has a vital role, as without it small models (e.g. model obtained by dropping
80% of the channels) easily diverge during local training. This confirms the statement made
in [23], wherein authors state that “gradient clipping stabilizes the optimization”. Therefore,
in partial training approaches we decrease the gradient norm clipping parameter to 1.0
whenever the model dropout rate is lower than 1.0.
• Server-side data aggregation: For algorithms that support heterogeneous models and

involve some form of averaging on the server (FedMD, FedDF), we tried weighting the data
sent by the client with the weights 0.5 (Large model), 0.35 (Medium mode), and 0.15 (Small
model). We did not optimize these values, but rather made an educated guess and picked a
reasonable choice in which more powerful models are given more weight. This adoption
consistently outperforms the non-weighted case, though the difference is typically limited
to 0.5 − 1.0%.

B RESULTS ON OTHER VISION DATASETS
We report the accuracy w.r.t. dataset size for the CIFAR100 dataset in Figure 8 and for the CINIC
dataset in Figure 9. The results for the CIFAR100 dataset are in line with the ones discussed in
Section 5.3, with SL consistently yielding the highest accuracy and a significant gap between model-
sharing algorithms and algorithms, that do not share model parameters. The FedDF algorithm never
converges, as two local training epochs are not enough for the training to produce good enough
models. Note also, that the cFedAvg algorithm consistently outperforms the HetefoFL algorithm
for the Small model case, confirming the fact, that PT algorithms have difficulties training very
small models as observed in Section 5.5.

In contrast to the results obtained on the CIFAR10 and CIFAR100 datasets, in the case of the
CINIC dataset there no longer is a clear difference between stateful and stateless clients. However,
the individual trends for the algorithms are consistent with the ones discussed in Section 5.2:

• HeteroFL: the algorithm consistently yields the best accuracy for the Large and Medium
models, however, the efficiency of the algorithm decreases for large 𝑃 in the low-capacity
cluster training the Small model;
• cFedAvg: the baseline provides relatively high accuracy in all data settings, as it is always

among the three algorithms with the highest accuracy;
• FedKD: the algorithm yields unsatisfactory results when 𝑃 is small, however, the perfor-

mance of the algorithm quickly improves as 𝑃 increases. In the end, the accuracy of the
FedKD algorithm in the low-capacity cluster is the highest for any 𝑃 ≥ 1500, while in

32

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

400 800 1200 1600 2000
0.00

0.10

0.20

0.30

0.40

0.50

Large Model

400 800 1200 1600 2000

Medium Model

400 800 1200 1600 2000

Small Model
cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg
SplitFed v1
SplitFed v2

Size of client training dataset

A
cc

ur
ac

y

Fig. 8. Average client test accuracy w.r.t. the training dataset size and model size on the CIFAR100 dataset.
The experiment is equivalent to the one described in Figure 2.

500 1000 1500 2000 2500
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Large Model

500 1000 1500 2000 2500

Medium Model

500 1000 1500 2000 2500

Small Model

cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
SplitFed v1
SplitFed v2

Size of client training dataset

A
cc

ur
ac

y

Fig. 9. Average client test accuracy w.r.t. the training dataset size and model size on the CINIC dataset. The
experiment is equivalent to the one described in Figure 2.

the mid- and high-capacity cluster, the algorithm is among the three algorithms with the
highest accuracy for 𝑃 ≥ 2000.
• FedDF: the algorithm does not converge for 𝑃 = 500;
• FD: The accuracy of this algorithm is low for small dataset sizes, however, the performance

improves so that in the end, in the low-capacity cluster it is the third best option for 𝑃 = 2500;
• FedMD: the accuracy of this algorithm is the best among the stateful clients for 𝑃 = 500.

The reduced discrepancy in accuracy between stateful and stateless algorithms can be attributed
to the unique properties of the CINIC dataset. CINIC extends the CIFAR10 dataset by including
images from ImageNet, resulting in a noisier dataset with a mix of easily classifiable and challenging
images. This leads to a lesser impact of additional data on accuracy compared to other datasets.
The observation is confirmed in Table 13, where we see that training models on individual client
datasets without collaboration yields similar test accuracy for CIFAR10 and CINIC. However,
when centralizing the 20 datasets and hence centrally training a model on a dataset with size
20 · 1500 = 30000, the accuracy increases by only 12.36% for the CINIC dataset, while the accuracy
improvement is more than double (26.82%) in the case of the CIFAR10 dataset. Note, that these
experiments were conducted using a traditional centralized learning approach.

33

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

B. Radovič, et al.

Table 13. Test accuracy (in %) obtained by training a model on each of the 20 client datasets with 1500 data
points each and on the combined dataset with 30000 data points.

CIFAR10 CIFAR100 CINIC10
Private training by clients 54.29 ± 0.02 9.94 ± 0.01 55.35 ± 0.04

Centralized training with aggregated dataset 81.11 ± 0.01 46.34 ± 0.01 67.71 ± 0.01

Table 14. Summary of models used for text classification.

Embedding dimension Intermediate size Parameter count
Small model 32 48 126724
Medium model 64 96 341508
Large model 160 256 1545060

500 1000 1500 2000
0.60

0.65

0.70

0.75

0.80

0.85

0.90

Large Model

500 1000 1500 2000

Medium Model

500 1000 1500 2000

Small Model

cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
SplitFed v1
SplitFed v2

Size of client training dataset

A
cc

ur
ac

y

Fig. 10. Average client test accuracy w.r.t. the training dataset size and model size on the Ag-News dataset.
The experiment is equivalent to the one described in Figure 2.

C RESULTS ON TEXT CLASSIFICATION TASK
We here present the accuracy achieved by the considered algorithms on a text classification task.
In particular, we use the Ag-News dataset [107], which involves classifying news descriptions into
one of the four available topics, i.e., “World”, “Business”, “Sports”, and “Sci/Tech”.

We employ a BERT-like architectures for this task. As shown in Table 14, we construct different
model sizes by varying the embedding dimension (also called “hidden size”) and the intermediate
size, i.e., the dimensionality of the “intermediate” feed-forward layer in the transformer encoder. All
other model configuration is kept constant: the number of attention heads is set to 8, the vocabulary
size is set to 2000, and the number of hidden layers is set to 6. For training, we use the Adam
optimizer with the learning rate set to 2𝑒 − 4 and batch size set to 32 for all the algorithms.

We report in Figure 10 the results with respect to the dataset size. Notably, we observe that the
main conclusions made for the image classification tasks transfer to the discussed text-classification
setting:
• The SplitFed algorithms outperform all other algorithms, with SplitFed v1 demonstrating

better performance than SplitFed v2.

34

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices

• In the PT family of algorithms, HeteroFL achieves significantly higher accuracy than
Federated Dropout for all model sizes except the Large model. Moreover, Federated Dropout
yields particularly low accuracy when using small models.
• The FedDF algorithm fails to converge when the client’s training set is too small, as the KD

stage on the server becomes detrimental if the client models are undertrained. However,
this issue could be mitigated to some extent by increasing the number of local training
epochs on the clients.
• Stateful algorithms (FD, FedMD, FedKD) exhibit a significant accuracy drop compared to

stateless ones.
• For algorithms that require a dataset on the server (e.g., FedDF, FedMD), we observe a

significant accuracy drop when using a dataset with different characteristics from the
client datasets (e.g., IMDB and Reuters datasets). The accuracy loss can be as severe as 10%.
Therefore, to obtain the accuracy shown in Figure 10, we used a subset of the Ag-News
dataset as the public dataset.
• FedKD achieves very high accuracy, especially with larger datasets, and in some cases

matches the performance of stateless algorithms. However, in our experiments, the collec-
tively trained model was set to the same size as the Small model. This implies that weak
clients had to train twice as many parameters compared to the other algorithms. We use
such a model as the publicly shared model because we observed that training extremely
small BERT models (e.g., with an embedding dimension of 16) is unstable with FL – consider
for instance the difference in accuracy between training a Large and Small model with
cFedAvg. Additionally, FedKD required a very high number of training rounds to converge.
For example, with dataset sizes of 1500, FedKD took 340 server rounds to converge, whereas
HeteroFL converged in just 36 rounds.15

The main difference between the text classification and image classification results lies in the
poorer performance of the cFedAvg algorithm compared to other stateless algorithms. This dif-
ference is particularly pronounced when dataset sizes are small, underscoring the importance of
having a large number of clients and a substantial amount of data when training BERT-like models.

15Recall, that we consider an algorithm to have converged if the average validation accuracy does not improve for four
consecutive evaluation rounds. For the text classification task, we evaluate the global model every four training rounds.

35

	Abstract
	1 Introduction
	1.1 Paper Methodology, Structure, Contributions

	2 Model Customization via Federated Knowledge Distillation
	2.1 FKD without External Dataset
	2.2 FKD with External Dataset Dependency
	2.3 FKD Summary

	3 Model Customization via Partial Training
	3.1 Characterization of PT approaches
	3.2 PT with Static Decomposition
	3.3 PT with Dynamic Decomposition
	3.4 Partially Local Federated Training

	4 Split Learning
	4.1 Introduction to Split Learning
	4.2 Split Learning Summary

	5 Experimental Analysis in Simulation Environment
	5.1 Experimental setup
	5.2 Baseline accuracy comparison
	5.3 Accuracy with respect to dataset size
	5.4 Impact of data heterogeneity
	5.5 Impact of client capacity

	6 Deploying the Algorithms in a Real-World Testbed
	6.1 Convergence times
	6.2 Network consumption
	6.3 Local training resource consumption

	7 Discussion
	7.1 Limitations
	7.2 Impact and Future Work

	8 Conclusion
	References
	A Experimental setup
	A.1 Additional comments about algorithm implementation

	B Results on other vision datasets
	C Results on text classification task

