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Abstract—Distributed training performs data-parallel training
of DNN models which is a necessity for increasingly complex
models and large datasets. Recent works are identifying major
communication bottlenecks in distributed training. These works
seek possible opportunities to speed-up the training in systems
supporting distributed ML workloads. As communication re-
duction, compression techniques are proposed to speed up this
communication phase. However, compression comes at the cost of
reduced model accuracy, especially when compression is applied
arbitrarily. Instead, we advocate a more controlled use of com-
pression and propose DC2, a delay-aware compression control
mechanism. DC2 couples compression control and network delays
in applying compression adaptively. DC2 not only compensates
for network variations but can also strike a better trade-off
between training speed and accuracy. DC2 is implemented as
a drop-in module to the communication library used by the ML
toolkit and can operate in a variety of network settings. We
empirically evaluate DC2 in network environments exhibiting low
and high delay variations. Our evaluation of different popular
CNN models and datasets shows that DC2 improves training
speed-ups of up to 41x and 5.3x over baselines with no-
compression and uniform compression, respectively.

Index Terms—Machine Learning, Distributed Training, Delay-
aware Control, Adaptive Gradient Compression

I. INTRODUCTION

Machine learning (ML) is used as an integral part of many
applications to create predictive models from large-scale data
and aid in decision making. ML has shown unprecedented
performance in applications such as topic modeling (e.g., [5]),
speech recognition (e.g., [14]), and image or video classification
(e.g., [20], [41]). In these applications, ML systems train
increasingly larger models on massive datasets collected from
user activities, photos, videos, text, etc. [8], [38], [39].

Many of the large data-mining organizations nowadays
dedicate a large portion of their (geo)-distributed computing
resources to deploy advanced ML systems. These systems
store, process, analyze, and exploit the massive wealth of data
collected on a global scale. However, scaling ML training jobs
over distributed resources faces a fundamental challenge: easily,
communication between distributed worker machines becomes
a bottleneck that severely degrades the scalability and perfor-
mance of distributed training [17], [34], [43]. This problem
is exacerbated when communicating in shared environments
(e.g., public cloud [26], [42]) or over the wide-area network
(e.g., geo-distributed training [16] or federated learning [23]).

Popular ML toolkits like TensorFlow or PyTorch readily
support distributed training wherein learning occurs over an
array of worker nodes. In the data-parallel setting, the data are

stored on many nodes (or partitioned among them) and the
workers run in parallel, each one using its own replica of the
model. However, this method requires that workers periodically
communicate model updates among each other. In particular,
under the synchronous replication mode (which is typically
used in practice), after each iteration of the training algorithm,
the workers need to synchronize the models by communicating
and aggregating the gradient (or parameter updates) before
proceeding with the next training iteration. The time taken to
transfer gradients, especially for large models, introduces a
delay that challenges the scalability of distributed training.

Gradient compression is commonly proposed to reduce this
transfer time; however, the work in this area (see [46] for a
recent survey) typically ignores several practical considerations
concerning production jobs. In production settings, training
jobs typically are associated with service-level objectives
and/or practical resource constraints that impose a training
time deadline; thus, the timely completion of these jobs is of
paramount importance. When network delays are predictable,
the job completion time could be estimated and feasible
deadlines (or time limits) can be set. However, in environments
where network delays are highly variable, the time spent in
the communication phase during the training becomes unpre-
dictable [25], [26], [42], [43]. The variability in communication
time makes the planning of the training jobs within the imposed
deadlines a hard problem.

To this end, in this paper, we seek to make distributed training
systems more robust and resilient to variations in network
conditions so they can finish their jobs in a predictable time [27]
and consequently meet their time (or monetary) budgets. We
propose DC2, a delay-aware compression control mechanism
that: 1) mitigates the variance of communication times, so that
dynamic network conditions do not over-extend the duration
of training jobs; 2) is generally applicable to different types
of communication network settings.

In designing DC2, we address the following challenges:
C1) How to adapt the communication to time-varying network
conditions? We strike a balance between mitigating network
variations and maintaining the convergence proprieties of
distributed training; C2) How to handle the dynamics of
different networks? We adapt to available network bandwidth
by relying on explicit or implicit signals from various metrics.

We make the following contributions:

1) We propose coupling of the network dynamics with some
form of communication volume control to achieve better
training speed-ups with respect to both time and accuracy.



2) We propose,DC2, a simple control system that adapts the
communicated volume to the network delay variations.

3) We employ DC?2 in distributed training and evaluate it in
both static and dynamic network conditions. The results
show DC2 can improve the training speed-up in highly
variable network conditions by up to ~41x and ~ 5.3
over baselines with no-compression baseline and uniform
compression, respectively.

II. BACKGROUND

Our focus is on distributed training in the data-parallel
mode via synchronous stochastic optimization algorithms such
as stochastic gradient descent (SGD) or its variants (e.g.,
ADAM [22] or ADAGrad [9]).! We offer a brief description
of this process and discuss its communication aspects.
Distributed training in a data-parallel mode: Consider a
setup with n workers. Each worker holds a copy of the model
parameters p € R? (i.e., the weights and biases) and has access
to a disjoint partition D; of the training dataset D. The training
process can be seen as solving the following optimization:
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where f;(p) is the loss function for worker 4.

An optimizer (e.g, SGD) proceeds iteratively to update the
model parameters. At each iteration, every worker selects
a so-called mini-batch of b training samples and performs
the feed-forward and back-propagation passes of the DNN
model. The latter pass calculates the stochastic gradient g;
of the loss function with respect to p. Then the gradients g;
are communicated across all workers and aggregated into the
stochastic gradient g. This communication phase is typically
supported via either a parameter server architecture or peer-
to-peer collective operations (e.g., all-reduce or all-gather).
Finally, the resulted gradient g; at iteration j is used to update
the model parameters. For example, at iteration j + 1, SGD
applies the following update rule: p;41 = p; — ng; (where n
is the learning rate).

Influence of communication on training time: Gradient
aggregation is potentially a performance-crucial step to total
training time. Since workers wait for gradient aggregation
to complete before proceeding to the next training iteration,
when a large volume of data (10s-1000s of MBs) needs to be
communicated over the network interconnecting the workers,
the time taken for gradient aggregation slows down the training
process. Popular distributed ML toolkits like TensorFlow and
PyTorch in part mitigate this issue by partially overlapping
computation with communication. This is enabled by the
backward-propagation phase that incrementally computes, in
a layer by layer fashion, the partial gradient [10]. Thus,
communication can start as soon as the earliest gradient vector
is computed (i.e., that of the last DNN layer, following the
back-propagation order). However, as reported in many studies,
due to the fast and ever increasing processing speeds of modern
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'In this paper we do not consider asynchronous data-parallel methods
because they are not commonly used in practice due to their weaker
convergence guarantees and slow rates of convergence [7].

DNN accelerators (e.g., GPUs or TPUs), this communication
phase remains predominantly the performance bottleneck,
especially at large scale and for large DNN models [11], [18],
[371, [42], [43].

Gradient compression: To accelerate training, several works
have proposed various compression techniques that aim to
reduce communication time by decreasing the transmitted data
volume. Two broad classes of compressors exist. Quantization
methods (e.g., [2], [3], [35], [44]) reduce the bit-width
precision of gradient elements (e.g., use 8 bits instead of 32).
Sparsification methods (e.g., [1], [25])) transmit only a subset
of gradient elements, say k% out of d elements; k is known
as the compression ratio.

Gradient compression is lossy operation and can adversely
affect model accuracy. Although DNN training is a stochastic
process, compression introduces an error in the aggregated
gradient g. As the level of compression increases (e.g., choosing
smaller k), so does the resulting error in the compressed
gradient. While the literature on compression methods has
established sound convergence results, a larger error implies
that: (i) in theory, a larger number of iterations might be
necessary to converge (i.e., finding p that minimizes the loss
function); and (i%) in practice, the model accuracy might
decrease. However, the relationship between the compression
level and update error (and ultimately, model accuracy) is not
straightforward since it depends on the actual data. Thus, when
gradient compression is used in practice, the compression level
remains an additional hyper-parameter to be carefully tuned
with each training job.

III. THE CASE FOR ADAPTIVE COMPRESSION

Training time is subject to communication delay and, as a
result, is directly influenced by the performance variability of
the underlying network. This means that network congestion
events can significantly slowdown training. To make matters
worse, because gradient aggregation acts as a synchronization
barrier among workers, when even a single worker experiences
congestion, gradient aggregation completes only once this
network-impaired worker finishes. The adverse effects of
network performance variations can be severe when workers
span a shared network (as it is common in the public Cloud),
where performance variability is the norm rather than the
exception [26]. This scenario, instead of a dedicated network
fabric, is the main focus of this paper.

A slowdown in training performance is undesirable: it
increases monetary costs and can result in violations of service-
level objectives (SLOs), which are costly for production DNN-
training workloads. To minimize training costs, a ML job
needs to maintain a high utilization of the DNN accelerators
(e.g., GPUs, TPUs or FPGAs). However, network congestion
events induce periods of time where DNN accelerators are
underutilized. Since Cloud tenants are charged based on the
duration of VM allocations rather than the actual usage of
compute resources, longer training times entail higher costs,
proportionately to the slowdown. Moreover, production DNN-
training workloads typically are associated with SLOs that



specify an expected time budget for training a model. SLO
violations must be minimized to avoid financial losses or other
adverse consequences.

A possible approach to avoid undesired slowdown is to
control the communication phase of distributed training, aiming
to ensure that communication time is roughly constant and stays
predictable. Although gradient compression is agnostic to net-
work conditions, we observe that its compression level can be
adapted in response to network dynamics. Our main insight is
that compression does not need to be applied uniformly across
the entire training process. Instead, the level of compression can
vary from one iteration to the next. Importantly, prior works [3],
[10] show that this variation does not invalidate the convergence
guarantees of the chosen compressor (granted their assumptions
hold for the chosen compressor, which is expected in practice).
Besides theoretical convergence bounds, our empirical results
(§V) demonstrate that adaptive compression does not negatively
affect convergence. The theoretical analysis of convergence
guarantees under adaptive compression is left for future work.

At this point, the reader may wonder: if compression
accelerates training, why not just use it consistently throughout
training? Uniformly applying compression for the entire
training process has a major drawback: it forces the decision of
a single compression level to be taken in advance, thus without
the ability to choose the compression level in an informed
fashion, the trade-off between training accuracy and time is
ignored. This is because the training time depends on both data
reduction (which compression achieves) and network conditions
(that may vary in the future). If the predetermined level is
low, accuracy may be mostly unaffected, but data reduction
might not be sufficient to achieve a training time within a
budget. Whereas if the predetermined level is high, accuracy is
sacrificed regardless of whether the network conditions could
have afforded a lower compression level and better accuracy.

Since it is not possible to know future network dynamics in
advance, we argue that compression should be exposed as a
controllable knob to be employed as a mean to counter network
congestion when the need arises. Fig. 1 graphically illustrates
the role of adaptive compression for a fictitious example
purporting the trade-off between accuracy and time. Effectively
this approach retains the ability to avoid affecting model
accuracy when network conditions are stable and not congested
while employing compression proportionately to maximize the
likelihood that training finishes within the time budget even if
it comes at a small expense of minor accuracy reduction. Next,
we describe our proposal towards this objective.

IV. DELAY-AWARE COMPRESSION CONTROL

DC2’s goal is to keep network delays minimal by controlling
the volume of data being exchanged during the gradient
aggregation phase in response to the variable network dynamics.

To achieve this, we borrow from the principles and practices
of network congestion control, that is, the idea of injecting
data into the network in proportion to available bandwidth and
responding to congestion signals. Secondly, we adapt the com-
pression level knob to modulate the volume of data transmitted.
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Fig. 2: High-level design of DC2.

Thus, DC2 is a form of application-level congestion control
similar in spirit to adaptive bit-rate algorithms commonly used
for video streaming applications.

At a high-level, the design of DC2 is admittedly straight-
forward — a main benefit of which is a simple and practical
solution to adaptive compression control. DC2 consists of two
components (c.f. Fig. 2 for a graphical illustration):

Delay Monitor: this component maintains certain mea-
surements and statistics of the network-level communication
properties. The monitoring data are the following time series
over iteration j of training: d;, the communication phase delay;
my, the minimum communication delay as witnessed up until
iteration j; a;, the average delay over the previous w samples
(dj, -+ ,dgj—w)); 75, the average delay differences over the
previous w samples (d; — d;_1), * ,d(j_w) — d(j—w—l))~

Compression Control: this component embodies control logic
that uses the monitoring data to adjust the gradient compression
level. DC2 is versatile and supports a wide range of flavors of
adaptive compression logic. More details below.

DC2 is intended to be realized as a lightweight shim-layer
that interposes between the ML toolkit and the communication
library at each worker end point. That is, adopting DC2 does
not require changes to the training script nor to the ML
toolkits. Rather, DC2 integrates in the software stack as a proxy
communication library that delegates the actual communication
of the compressed gradient to existing communication libraries
(e.g., OpenMPI or NCCL for collective operations or gRPC
for parameter-server based communication).



Algorithm 1: Adaptive Compression Algorithms

Input: £;: current ratio at iteration j
Output: k;1: the new ratio for iteration j + 1

Function DAI(k;)

return k; — ;]7;';7] ;

Functlon DAZ(k )
1f J > dyar then return k; — %] ;
if 57] ’ < dvar then return k; + kinc ;
return k

Functlon DA3( kj)
1f ] > dyar then return k; — kge. ;
if ;]j d’ < dvar then return k;j + kinc ;

return k:
Functlon DA4(I<: )
1f < 0 then

| return kj + kinc
else

return k; X (1

end
Function DA5(k;)
if dj < aXmj then

| return k; + kinc
else

5xi)

if d]‘ > a X aj then
return k; X ( — B x ﬁ)
else
1f < 0 then

| return kj + kine
else

‘ return k; X (1—B>< 7—1)

mj

end

end

end

A. Algorithms for Adaptive Compression

DC?2 design is generic and allows for different control logic to
be implemented. At each iteration, DC2 invokes a user-specified
adaptive compression algorithm to obtain the ratio k;;; based
on the current ratio k; and the data tracked by the delay
monitor.2 In addition, to avoid over- or under-compression,
DC?2 enforces a bound on the ratio to stay in [kmin, Emaz)-
These parameters are chosen by the user based on their needs.

Given this flexibility, we now propose 5 algorithms inspired
by traditional as well as recent network congestion control
schemes. The algorithms are shown in Algorithm 1. To keep
their pseudo-code succinct, the state of the delay monitor
is accessed by directly referencing the monitored variables
(dj, mj, aj, 7;). The common objective of these control
algorithms is to minimize and keep the average delay a;
close to the minimum delay m;. A brief description of
these algorithms follows. Table I summarizes the algorithms’
parameters and their default values. An illustration of the

ZFor simplicity, we use the sparsification ratio of k in the discussion. The case
of quantization bit-width as compression level is analogous but more involved
since this level is discrete. Note that, for sparsification, due to the differences
in the current ratio of k; among the workers, they communicate different
data volumes and indexes. Therefore, the values and indexes are collected via
all-gather collective operation then the aggregation is performed [30], [31].

TABLE I: Parameters used in Algorithm 1.

Symbol | Meaning Default
dyar Allowed delay variation from target 0.05
Kine Additive increase step size 0.005
Kdee Additive decrease step size 0.005
kmaz Maximum value for k 0.3
kmin Minimum value for k& 0.005
a Allowed slack from the low and high | 1.25

Jéj Multiplicative decrease factor 0.8

adaptive behavior of these algorithms in diverse scenarios will
be given in Section V-E.

Proportional to normalized delay variation (DA1): this
controller reacts in proportion to the delay deviation from the
normalized target average a;. k; is updated proportionally to the
delay difference from average divided by the difference from
the minimum. This algorithm is simple but not recommended
due to its oscillatory behavior as a result of its proportional
reaction to delay dynamics. Therefore, we omit its results.
Additive-Increase Multiplicative-Decrease (DA2): this con-
troller aims to maintain the delay around the target average d;
and uses the well-known AIMD rule [6] to adjust the knob k;
when the delay is outside the range [a; — dyar, @ + dyar)s
Additive-Increase Additive-Decrease (DA3): similar to DA2,
this controller aims to maintain the delay around the target
average d; but applies additive decrease (AD) instead of
multiplicative decrease (MD). AIAD (and similarly MIMD)
control logic is known not to reach stability for congestion
control problems [6];

Timely-Normalized Delay Gradient (DA4): This controller
is inspired by Mittal et al. [29]. It reacts to the normalized
gradient of changes in the delay (.- L4y and adjusts the knob
to stay at the target point. It apphes Additive Increase (AI)
by 2’ if the gradient is negatlve or else applies Multiplicative
Decrease (MD) by 1 — 5 x L

Timely-Thresholds Delay Gradlent (DAS): This controller
is similar to DA4 but introduces low (am;) and high (aa;)
thresholds and applies Al and MD if d; are below or above
them, respectively. Otherwise, DA4’s logic is applied.

Parameters sensitivity: The aforementioned algorithms can
be sensitive to the choice of the parameters in Table 1. We
choose these values empirically; ki, and k,,q, are chosen
based on reasonable extremes for the compression, i.e., 0.5%
and 30%, respectively. We did not conduct an exhaustive
sensitivity analysis of all parameters, which we leave for future
work. However, in our experience, the algorithms are not very
sensitive to these parameters as long as they are reasonably set.
This is because DC2 controls the application data volume at
each worker rather than controlling the sending rate, which is
accomplished by the congestion control mechanism employed
by the transport layer. The latter (i.e., sending rate) is more
sensitive to parameter settings because it regulates access to
the shared network resources among competing entities.

V. EXPERIMENTAL EVALUATION

This evaluation answers the following questions:
e What benefits, in terms of training speed-up and model
quality, does DC2 provide when performance variability affects



TABLE II: Summary of the benchmarks used in this work.

Neural Training Quality Baseline  Training
Task Network Model Dataset Parameters metric quality iterations
Image ResNet-20 [13] CIFAR-10 [24] 269,467 93.75% 2700
Classiﬁfation CNN VGG16 [39] CIFAR-10 [24] 14,982,987  Top-1 Accuracy 96.8% 2700
5 ResNet-50 [13] ImageNet [8] 25,559,081 73.75% 4950
Language RNN LSTM-2Layers [15] PTB [28] 66,034,000  Test Perplexity 103.4 1800
Modeling 1500 hidden units
~ distributed training in public clouds [26], [42]. Note, in the
2500 . . . . .. . .
4 ( static scenario, distributed training is not able to exploit all
£ 2000 available bandwidth.
e .
9 1500 Benchmarks: Table II lists the 4 ML workloads we use
v to evaluate DC2. We use both Convolution Neural Networks
@ 1000
2 (CNNs) and Recurrent Neural Networks (RNNs) models for
£ s00 image classification and language modeling tasks, respectively.
—— DYNAMIC STATIC . . . .
o We train the models using the SGD optimizer with momentum
0 200 400 600 800 1000

Training Step
Fig. 3: Running average of network transfer speed measured
by the application during the first epoch of training ImageNet
benchmark in static and dynamic network settings.

network performance (dynamic network scenario)? (§V-B)
o Are there drawbacks to employ DC2 in a network with little
to no performance variability (static network scenario)? (§V-C)
e Does adaptive compression have an impact on model
convergence? (§V-D)

Finally, we demonstrate (§V-E) that our proposed control
algorithms (D2-D5) exhibit well behaved control dynamics in
both network scenarios.

A. Experimental settings

Environment: We perform our experiments on 8 server-grade
machines equipped with dual 2.6 GHz 16-core Intel Xeon
Silver 4112 CPU, 512GB of RAM, and 25 Gbps network
interface cards. Each machine has an NVIDIA V100 GPU
with 16GB of memory. The servers run Ubuntu 18.04, Linux
kernel 4.15.0. We use PyTorch 1.1.0 with CUDA 10.2 as the
ML toolkit. We use Horovod 0.16.4 configured with OpenMPI
4.0.0 for collective operations of the distributed training.
Scenarios: We run the experiments in two network scenarios:
e Static network: the network observes minor delay variations,
as it occurs when distributed training jobs run in dedicated
clusters or a private cloud. In this case, ML workloads run in
our dedicated cluster with all the available network bandwidth.
e Dynamic network: the network observes significant delay
variations, as it occurs in public clouds where network perfor-
mance variations and unpredictability has been observed [36]
and is documented for VMs training ML models [26]. As done
in previous work [26], [42], we emulate a dynamic network
by rate limiting workers’ transmission speed with performance
variations at random. We take care to apply the same network
speed profile across experiments to obtain a fair comparison.
Fig. 3 shows an example contrasting the two network
scenarios based on the average network goodput (speed)
as measured from the application level. This example was
chosen as it closely matches reported network performance of

for the number of iterations listed in the table. Using other
optimizers, while possible, is out of scope.

Due to the long training time that the ImageNet dataset
entails, our training experiments with ImageNet last 5 epochs.
We deem this sufficient to evaluate the speed up benefits of
DC?2. However, to verify that DC2 converges for ImageNet,
we also run the experiments for 90 epochs on a shared cluster
where we are not allowed any control on the network.
Compressors: We experiment with two popular gradient
compression methods: Random-% and a low-overhead version
of Top-k (henceforth simply called Top-k).

Random-k uniformly at random selects k% of gradient
elements. Inspired by the work of Lin et al. [25], the low-
overhead version of Top-k randomly samples a subset of the
gradient (e.g., 1%) and finds a threshold to select ~ k% of
gradient elements by magnitude. Generally, Random-k has
lower overheads than Top-k on a GPU. However, Top-k is
known to perform better than Random-% [3]. We find that when
Random-£ is used, the PTB benchmark does not converge.
Therefore, we do not show these results.

The gradient compression literature is vast and there are
many techniques that have been proposed (for a recent survey
see [46]). The choice of a particular compressor is largely
orthogonal to DC2. In a sense, DC2 applies to any compressor
that admits a controllable compression level. We pick Random-
k and Top-k because their selection criteria are at two opposite
extremes of the spectrum (i.e., random vs. largest elements
by magnitude), which gives us some confidence that other
compressors are likely to lie somewhere in between. However,
we leave it for future work to apply DC2 to other compressors.

Error Compensation (EC) is a mechanism that improves
convergence of compression methods in some cases [19], [25].
Note that EC comes at the cost of higher memory consumption
of the limited resources of DNN accelerators (in our case,
GPUs) and it might not always be usable, especially with a large
mini-batch size. When EC cannot be used, the compression
level generally has to be larger (e.g., £k > 0.1) than when EC
is used. We use EC throughout our experiments except for
CIFAR-10 benchmarks.
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Fig. 4: Training Performance of ResNet20 [(a),(b),(c)] and VGG16 [(d),(e),(f)] on CIFAR-10 in the dynamic scenario.

We use the case of no-compression as the baseline. We
compare DC2 with compression to both the baseline as well
as uniformly applying compression throughout a training run.
We use k£ = 0.001 and k£ = 0.1 as uniform compression ratios
for the two compressors. These values represent extreme and
moderate ratios, respectively. We set the seed of the random
number generators so that the stochastic behavior of SGD and
network dynamics is consistent for all schemes. We use a
measurement window w of 50 iterations.

Metrics: We quantify the performance of the schemes (i.e.,
DC?2 methods, or uniform Random-k, Top-k) via these metrics:
o Normalized Training Speed-up: We evaluate the model quality
at iteration 7' (the end of training) and divide it by the time
taken to complete 7" iterations. We normalize this quantity by
the same measurement calculated for the baseline. This is the
normalized training speed-up relative to the baseline;

e Normalized Average Training Throughput: is the average
throughput normalized by the baseline’s throughput which
shows the speed-ups from compression irrespective of its impact
on model quality;

® Quality vs Total Run Time: The model quality (either top-
1 accuracy or test perplexity) evaluated after T iterations in
relation to the total run time to finish 7 iterations.

B. Dynamic Network Scenario

ResNet20 on CIFAR-10: Fig. 4a shows that, except for
uniform Random-k compressors, both uniform Top-k£ and
D(C2-assisted compressors can achieve accuracy gains over
no-compression baseline. Moreover, DC2 achieves nearly same
speed-ups of uniform compressors for Top-k and improves by
~6.7x over Random-k with ratio 0.1. We note that ratio 0.001
results in O speedup and divergence for Random-£ and results in
accuracy of 67 which is a huge reduction by 26.75% compared

Compressor
(e) Average training throughput.

Total Training Runtime (min)
(f) Training accuracy vs run time.

to baseline. Fig. 4b shows that, DC2 are able to maintain
nearly same average training throughput as the uniform
compression. However, both the throughput and the speed-up
results for Random-k highlights the benefits of the network-
aware adaptation of DC2 for the compressors. Specifically,
without unnecessarily compromising the accuracy, DC2 forces
more aggressive compression to lower the communication time
only whenever the network delays are high (Fig. 10c). Fig. 4c
shows the training accuracy for both uniform compression and
DC?2 reaches (or approaches) that of the baseline for Top-k (or
Random-k). However, unlike DC2 -based Random-k, Random-
k even with a mild uniform ratio of 0.1 which enjoys high
training throughput, can not converge. This signifies the benefits
of adopting DC2 as the regulator of compressed volume.

VGG16 on CIFAR-10: Fig. 4d shows that DC2 improves the
training speed-up over no-compression baseline and uniform
compression with ratio 0.1 by up to ~ 15.2x and 2.5X,
respectively. Even though, Top-k with ratio 0.001 shows the
highest speed-up, model accuracy is at 82 which is a significant
reduction of 14.8% compared to baseline. Similar to ResNet20,
Random-£ with ratio 0.001 results in 0 speedup and model
divergence. Fig. 4e shows DC2 adaptions can compensate
for the network variations and suppress the communication
time (esp., DA2 which significantly improves the throughput).
Even though, the throughput of ratio 0.001 is almost two
times of DA2, it resulted in divergence and significant quality
loss for both Random-k and Top-k, respectively. Notably, as
Fig. 4f shows, VGG16 seems to be more robust and tolerant
to compression compared to ResNet20. Therefore, both Top-
k and Random-k compressors can converge to reasonable
accuracy. This robustness allowed, less robust compression
methods such as Random-k, to achieve comparable speed-ups
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Fig. 5: Performance of training ResNet50 on ImageNet in the dynamic network scenarios.
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of Top-k. The reason for this tolerance could be attributed
to the parameter size and architectural differences between
ResNet20 and VGG16 models.

ResNet50 on ImageNet: Fig. 5a shows that DC2 methods have
remarkable gains in terms of training speed-up over uniform
compressors by up to (= 2.2x at ratio 0.1, ~ 1.3 at ratio
0.001). Fig. 5b shows that DC2 methods (e.g., DA2) achieve on
average training throughput as fast as the extreme compressor
(i.e., ratio of 0.001) which shows that DC2 can adapt the
compression rate to match the network condition and squeeze
the communication as necessary to maintain high training
throughput. Fig. Sc shows, accuracy of DC2 methods are close
to and higher than that of the moderate and extreme uniform
compressor, respectively. This shows that DC2 can maintain

the training throughput with little to no impact on the accuracy.

RNN-LSTM on PTB: In this benchmark, due to the length
of the no-compression baseline in the dynamic scenario, we
force stop the experiment at step 1845 (=700 minutes). The
results of Fig. 6a show that DC2 methods achieve speed-ups
over no-compression by up to ~ 41x and by ~ 5.3x over
the uniform ratio compressor. The results of Fig. 6b show
that all methods significantly improve the training throughput
over no-compression. Moreover, these results show that the
speed-ups compared to the training throughput are higher for
DC2 methods and lower for the uniform compressor. This
suggests that the gains of DC2 methods are not only from
throughput gains but also the volume adaptions, only whenever
necessary, in response to network delay variations which boosts

Method
(b) Normalized average throughput.

Fig. 6: Performance of training an LSTM on PTB using Top-k£ compressor in dynamic network scenario.

Run Time (min)
(c) Accuracy vs run-time.

the convergence. Fig. 6¢ shows the test perplexity over run-
time of all the methods and show that compression (esp.,
DA?2 scheme of DC2) can significantly improve the speed for
reaching the target convergence values.

C. Static Network Scenario

ResNet50 on ImageNet: Fig. 7a shows that DC2 methods
achieve comparable speed-ups to the moderate and extreme
uniform compressors, respectively. And, Fig. 7b shows that
DC2 methods and uniform compression have comparable
training throughput. Fig. 7c shows that moderate methods (e.g.,
0.1, DA4 and DAS) achieve higher accuracy than aggressive
ones (e.g., 0.001 and DA2). So, DC2 achieves a middle-ground
performance between mild and extreme uniform compressors
in static scenario. Moreover, DC2 provides the benefit of not
requiring prior knowledge of nor performing hyper-parameter
search for the best compression ratio in this scenario.
RNN-LSTM on PTB: The speedup results shown in
Fig. 8a show that DC2 methods achieve speed-ups over no-
compression by up to ~8.8x and by ~2.1x over the uniform
ratio compressor. The results of Fig. 8b show that all methods
improve mildly the training throughput over no-compression
(except for, DA2 which boosts it to 18 x the baseline). This
translates to mild speedups over the baseline compared to
the dynamic scenario presented earlier. Fig. 8c shows the test
perplexity over run-time and show that all methods reach the
same (or slightly better) model quality over the baseline. It also
shows that compression (esp., DA2) can significantly improve
the convergence speed for reaching these quality values.
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Fig. 9: Convergence Experiments: Training ResNet50 on
ImageNet using Top-k [a,c] and Random-k [b,d] compressors.

D. Convergence Experiments

To evaluate the convergence of the compressors with DC2
for large datasets such as ImageNet, we run distributed training
of the ResNet50 model till convergence (i.e., 90 epochs)
in an allocations-based shared cluster. In this cluster, for
each experiment, a single compute-server equipped with 8
NVIDIA V100-32GB GPUs is allocated for a time limit of 24

hours. The workers communicate intra-node via PCle interface.

The monitor module is fed with delay information generated

following the profile of the dynamic network shown in Fig. 3.

The results in Fig. 9 show the convergence behaviour for
(a) Top-k and (b) Random-%k and the average compression
ratio used to achieve a final test accuracy for (c) Top-k and (d)
Random-k. As the experiment runs towards completion nearing
the end of training time limit, we make the following observa-
tions: i) the average compression ratio (or average communi-
cated volume normalized by the baseline) of DC2 methods are
~ (0.034,0.145,0.071,0.072) or (3.4%,14.5%,7.1%,7.2%)
for (DA2, DA3, DA4, DAS) controllers, respectively. ii) Top-
k converges to close but slightly higher accuracy over the
baseline, for all methods (i.e., 0.1, 0.001 and DC2 adaption
schemes), which conforms to results in Fig. 5S¢ which showed
Top-k achieves accuracy values close to baseline. We note that
uniform compressor with ratio 0.001 (or 0.1%) achieves the
lowest accuracy among all methods; iii) Even though, Fig. 5c¢
showed Random-k exhibited significantly lower quality values
compared to baseline, most methods converge to the same
accuracy level as of the baseline. Specifically, only DC2
adaption schemes and uniform Random-k compressor with
ratio 0.1 are able to converge to baseline accuracy. In contrast,
Random-k with ratio of 0.001 achieves ~ 53% test accuracy,
which is significantly lower by 20 accuracy points compared
to the baseline accuracy. Moreover, for this compression ratio,
running the experiment for more epochs did not help with
achieving higher levels of accuracy. These results show that
adaptations of compression level by DC2 does not harm
convergence rather it helps compression methods achieve
baseline accuracy.
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E. Dynamics of DC2 Controllers

Here, we study the dynamics of the various DC2 control
methods discussed in Section IV-A. To show the adaptive
dynamics of different compression controllers presented in
Algorithm 1, we present their compression level and throughput
dynamics during the first epoch of ImageNet training on 8
nodes in the dedicated cluster.

Fig. 10 shows the dynamics of DC2 methods and the
corresponding network throughput in static and dynamic
networks, respectively. The results show that most of DC2
methods, in both static and dynamic settings, can adjust the
compression ratio in response to the network condition, which
reflects on the throughput of the workers. Moreover, the results
suggest that DA2, DA4, and DAS are the preferred methods to
provide the best performance. DA2 tends to stay at low ratios,
so it is more recommended for high-quality (or low-error)
compressors (e.g., Top-k) or robust models (e.g., VGG16). DA3
method tends to over-shoot the ratio and have more oscillations
than the former methods. DAI is extremely oscillatory due to
its proportional control law, and hence, for clarity, its dynamics’
results were not shown. In summary, results show that DC2
is an effective system for adapting training speed to varying

network conditions via an adaptive control of the compression.

VI. RELATED WORK

Distributed Training: Recently, there have been many

advances in ML toolkits that support distributed DNN training.

These advances are fueled by a vat body of work over the past
decade to further our understand of the learning process as an
optimization problem solved in a distributed setting. Numerous
proposals analyze and optimize the convergence behavior of
distributed, asynchronous and/or low-precision versions of SGD.
First, [48] analyzes a parallel version of SGD. Recently, more
work try to speed up distributed SGD by scaling the batch
size [21], [32] or adapting the learning rate [4], [12]. While
these methods improve the optimizer, communication remains
a practical dominant bottleneck in scaling distributed training.

Scaling Distributed ML: Many recent works tackle the
challenges in scaling distributed ML jobs. As communication is
predominately the bottleneck [26], [34], [42], [43], compression
methods aim to reduce communication time by means of
sparsification [1], [25], quantization [2] or delayed aggregation
[47]. For instance, [25] proposes a low-overhead Top-k by
sampling gradient elements and calculate a threshold to
sparsify the Top-k£ elements. Others works [3], [19] study
the convergence of distributed SGD and prove guarantees of
various compressors. Even though these methods reduce the
communication time, they do not provide a practical way of
choosing/tuning their communication reduction knobs. DC2 fills
this gap by adapting these knobs via low-complexity controllers
without requiring expensive any coordination among the
controllers across workers. Concurrently with DC2, DBW [45]
adapts the number of parameter servers used to perform gradient
aggregation without further delay based on a threshold on the
estimated gain of the loss function. However, the benefits
of DBW in real benchmarks and use cases are questionable
as the experiments use only simplistic settings and both
computation and communication are simulated using generic
distributions. Orthogonal works distribute the aggregation load
among workers by forming a hierarchical aggregation tree [26],
optimize the computation-communication overlap [33] or devise
an in-network aggregation function to minimize communication
time [34]. Largely, adopting and choosing the right setting for
many DNN training optimizations to scale distributed training
jobs remains an open problem. For instance, [40] proposed
MLSL to scale distributed training to up to thousands of nodes
across the cloud. These efforts could benefit from our adaptive
schemes such as DC2 that can automate the process of tuning
knobs of communication reduction methods and dynamically
adapt them to the conditions of the environment.

VII. CONCLUSIONS

We identified a practical problem for distributed ML work-
loads running in diverse network conditions. Most works
leverage gradient compression as means of reducing the
communication time without addressing the question of when
and by how much compression should be applied in various
network conditions? In this work, we tackled this question.
First, we identified the importance of adapting compression
to variable network dynamics. Then, similar in spirit to the
idea of network congestion control, we leveraged controllable
compression knobs to regulate the communicated volume to
maintain communication delays under control. This effectively
forms a feed-back closed-loop system between the network
environment and the compression controller. We designed
DC?2 that employs a network monitor and a compression
controller. We implemented DC2 as a drop-in component
to an existing communication library. We evaluated DC2 on
distributed training in static and dynamic network scenarios.
The results showed that DC2 improved the training speed-up in
dynamic settings by ~ 2.7x, ~ 2.2x and ~ 5.3Xx compared
to uniform compression for CIFAR-10, ImageNet, and PTB
benchmarks, respectively.
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