
Cracking Open the Black Box: What Observations Can Tell Us
About Reinforcement Learning Agents

Arnaud Dethise
KAUST

Marco Canini
KAUST

Srikanth Kandula
Microsoft

ABSTRACT
Machine learning (ML) solutions to challenging networking prob-
lems, while promising, are hard to interpret; the uncertainty about
how they would behave in untested scenarios has hindered adop-
tion. Using a case study of an ML-based video rate adaptation
model, we show that carefully applying interpretability tools and
systematically exploring the model inputs can identify unwanted
or anomalous behaviors of the model; hinting at a potential path
towards increasing trust in ML-based solutions.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Networks
→ Network resources allocation; • Computing methodologies
→ Reinforcement learning.

KEYWORDS
explainable machine learning, post-hoc explanations, feature anal-
ysis, neural adaptive video streaming

ACM Reference Format:
Arnaud Dethise, Marco Canini, and Srikanth Kandula. 2019. Cracking Open
the Black Box: What Observations Can Tell Us About Reinforcement Learn-
ing Agents. In NetAI ’19: ACM SIGCOMM 2019 Workshop on Network Meets
AI & ML, August 23, 2019, Beijing, China. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3341216.3342210

1 INTRODUCTION
Machine learning (ML) based solutions have recently been devel-
oped for several problems in networked systems such as resource al-
location [10], routing [16], video rate selection [11] and congestion
control [3]. Many of these problems do not have tractable optimal
solutions. A key advantage of learning-based solutions is that they
can be attuned to speci�c problem instances; for example, a video
rate adaptation method that is tuned speci�cally for Net�ix clients
in the United States may perform better than a generic method; or
a cluster job scheduler trained for the jobs at a particular company
may perform better than o�-the-shelf generic heuristics. More-
over, learning can avoid manual e�ort to tune heuristics. Current
results, while early, are laudable because they achieve improve-
ments even on problems that have been studied intensively. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
NetAI ’19, August 23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6872-8/19/08. . . $15.00
https://doi.org/10.1145/3341216.3342210

trend may accelerate and some authors already call for self-driving
networks [4, 7].

Yet, there is a general fear that ML systems are black boxes:
closed systems that receive an input, produce an output, and o�er
no clue why. This creates uncertainty about why these systems
work, whether they will continue to work in conditions that are dif-
ferent from those seen during training or whether they will fall o�
performance cli�s. These issues are not speci�c to the networking
community and it is possible that the lack of interpretability and
behavioural uncertainity is a reason why ML-based solutions for
systems problems have thus far not been widely adopted [5, 13, 18].

Some researchers are working towards models that are easy-to-
interpret [12, 17]; however, current interpretable solutions have
lower performance and longer training times than black box tech-
niques. For the non-interpretable models, some recently developed
techniques can analyze the reasons behind the decisions taken by
a model [2, 8, 14]. We propose to use these tools to examine a
model’s decisions on various inputs (e.g., real network traces) and
we compare the model’s outputs with the outputs expected based
on domain knowledge.

In this paper, we use this method to understand the behavior
of Pensieve [11], a model that targets the video bit rate adaptation
problem and is built using a popular reinforcement learning ap-
proach. Our main contribution is to show what kind of information
can be extracted by carefully inspecting behavior-revealing data
and using post-hoc explanations. Our analysis also builds intuition
on the bene�ts of this approach by showing the performance and
pitfalls of the Pensieve agent. Finally, we raise some additional
concerns when applying interpretability tools to explain ML-based
solutions for networked systems.

Our �ndings for Pensieve can be classi�ed into three types: ob-
servations about the agent’s decisions (Section 4), understanding
how individual input features have contributed to these decisions
(Section 5) and the broader relationship between feature values and
decisions (Section 6).

Our case study reveals several interesting aspects; we highlight
two of them. (1) The Pensieve agent bases its decisions on very few
of the inputs. That is, using just a handful of inputs leads to decisions
that are nearly as good as the 25 features used by the authors of
Pensieve; fewer features would simplify training and lead to a more
succinct solution. (2) The Pensieve agent rarely uses two out of the
six bit rates available (e.g., rates 1200Kbps and 2850Kbps are almost
never used); this happens even though training data contains a
large fraction of traces for which using these rates is appropriate.
We �nd that the reason is that time-multiplexing between rates on
either side of the ignored rates leads to a reasonable QoE.

We take care to mention that we fully expect such anomalies to
be discovered in other recent ML-based solutions; we believe our
method can be generalized to several of these. We chose Pensieve

NetAI ’19, August 23, 2019, Beijing, China Arnaud Dethise, Marco Canini, and Srikanth Kandula

Agent EnvironmentTake action !"

Reward #"

Observe state $"

Figure 1: A typical reinforcement learning model.

primarily because the authors kindly shared their code and model.
The goal with this example is to illustrate the value in understanding
ML models beyond just looking at their bottom-line performance.
Our hope with this paper is to initiate a discussion around the
importance and bene�ts of doing so.

2 BACKGROUND
To explore how to understand the behaviour of a trained neural
network, we focus on the Pensieve agent [11]. Here, we describe
the RL architecture and the video rate selection problem considered
by Pensieve.

2.1 Reinforcement Learning
A reinforcement learning approach considers an agent interacting
with an environment. At each time step t , the agent selects an action
at based on the current state of the environment st ; applying the
action changes the environment and yields a reward rt . The goal of
training is to learn to select actions that maximize expected rewards.
Figure 1 depicts the typical RL architecture.

In some cases, such as with Pensieve, the RL model is trained
using a simulator of the environment by replaying traces; Pensieve
replays traces that contain available bandwidth along a network
path and the simulator mimics streaming video at di�erent bit
rates. Pensieve is trained to maximize the discounted sum of future
rewards, E

⇥Õ1
t=0 �

t rt
⇤
where � 2 [0, 1) is the discount factor.

The RL approach is popular to train agents in networked systems
because such agents integrate well with decision-making in existing
software. These systems typically record a lot of information about
the environment. Neural networks can identify useful features from
that information even when given many potential features. Another
bene�t of using RL for systems is that it is intractable to �nd optimal
decisions; by using the instantaneous performance of the system
(e.g. throughput, latency, utilization, quality of experience) as a
reward, the agent when trained can maximize performance metrics.

2.2 Adaptive Bit Rate Selection in Pensieve
In video streaming services, videos are typically divided into �xed-
length chunks that are encoded at multiple bit rates. When the client
�nishes downloading a chunk, it chooses the bit rate at which to
download the next chunk; higher bit rates increase perceived quality
but consume more network bandwidth.

Figure 2: CDF of the network bandwidth in the testing and
training sets.

The goal of adaptive bit rate selection in Pensieve is to maximize
a QoE function, de�ned in [19] as:

QoE =
N’
n=1

q(Rn) � µ
N’
n=1

Tn �
N’
n=1

|q(Rn+1) � q(Rn)| (1)

where N is the total number of chunks, q(Rn) is the perceived
quality for the selected bit rate Rn , µTn is a penalty for time spent
re-bu�ering, and |q(Rn+1)�q(Rn)| is a penalty for non-smooth video
playback, incurred when the bit rate changes. In all our experiments,
we use the linear reward function q(Rn) = Rn .

The inputs for the agent consist of 25 features that include the
current bu�er duration, the inferred network throughput and down-
load time of the past 8 chunks, the sizes available for the next
chunks, the number of remaining chunks until the end of the video
and the previously selected bit rate. Chunks are 4-second long and
the total length of a video is 48 chunks.

The action space consists of the following 6 bit rates in Kbps: 300,
750, 1200, 1850, 2850 and 4300. Hence, the agent outputs a vector of
6 probabilities, each value being the probability to select a speci�c
bit rate. The client decides the next-chunk’s bit rate by sampling
based on these probabilities.

3 EXPERIMENTAL METHODOLOGY
Before we delve into the experimental results of our analysis, we
clarify how we run our experiments and collect measurements.
Unless otherwise noted, we run the pre-trained agent on every
network trace in the testing set provided by the Pensieve authors.
At every decision step, we collect the output probabilities of each
decision. When presenting statistical results, we make use of all
decisions from every trace as samples.

We contrast the composition of traces in the training and testing
sets to help understand whether some behaviors of the agent are
due to insu�cient training, due to an incomplete training dataset
or due to some other reason. Figure 2 shows the distribution of
the average available bandwidth in training and testing sets; we
observe that the distributions are similar. The largest di�erence
is at the 70th percentile, which is 1400Kbps in the testing set and
1700Kbps in the training set. However, the minimum and maximum
average available bandwidth in the testing set are higher (550 and
4550Kbps, respectively) than in the training set (1200 and 3550Kbps,
respectively).

Cracking Open the Black Box NetAI ’19, August 23, 2019, Beijing, China

Figure 3: Frequency with which each possible bit rate is se-
lected over the testing set.

Figure 4: CDF of the available bandwidth at each decision
step in the testing set (blue) and the bit rate selected for the
next chunk by Pensieve (orange).

4 BREAKDOWN OF DECISIONS
We start by showing how basic statistics of the outputs returned
by the agent at each decision step allows us to validate whether
the decision space chosen by the model’s creator has been learned
correctly by the neural network. We analyze the relation between
throughput and decision. Then, we show that Pensieve uses just
four out of the six bit rates available and we quantify the e�ects of
this behavior on the QoE.
Probability of decisions. Figure 3 shows the average probability
of selecting each bit rate.1 This �gure shows that the 750Kbps bit
rate is the most likely to be chosen (47%), while the best quality
(4300Kbps) is selected only 3% of the time. The most interesting
observation is that the intermediate bit rates 1200Kbps and 2850Kbps
are almost never selected.

We verify that the characteristics of the testing set do not include
a bias for not selecting bit rates 1200 and 2850Kbps. Figure 4 shows
the distribution of the available bandwidth in the traces at each de-
cision (in blue) versus the bit rate selected for the chunk (in orange).
Ideally, we want the orange line to be as close as possible to the
blue one, so that the selected bit rate closely matches the available
bandwidth. We see that this is not the case, and the ignored bit
rates mentioned above (marked with red stars) create a signi�cant
gap between the two lines.

Probability of bit rate across throughput. We now breakdown
the agent’s bit rate selections by throughput. Speci�cally, we con-
sider ever decision made and the measured throughput (aggregated

1That is, the average over all decisions in the testing set of the probability of selecting
each bit rate.

Figure 5: Average bit rate selected by Pensieve for various
measured throughput values. Dashed lines show the stan-
dard deviation.

Figure 6: Behavior of Pensieve for a synthetic network trace
with constant available bandwidth of 1200Kbps.

in 200Kbps bins) when that decision was made. Figure 5 reports the
average selected bit rate.We observe that even though the 1200Kbps
bit rate is almost never selected, the average bit rate is still close to
1200Kbps when the throughput is close to this value. To illustrate
how the agent behaves in this regime, we use a synthetic trace
where the available bandwidth is kept constant at 1200Kbps. The
bit rate decision over time is shown in Figure 6.

Empirical policy and implications on QoE. Based on the above
observations, we can better make sense of the agent’s policy: the
Pensieve model has learned to use only four out of the six available
bit rates, and will multiplex between multiple bit rates to get closer to
the actual bandwidth. A de�nitive answer as to why this particular
policy was learned is outside the scope of this paper. It is possibly
due to regularization penalties used by policy gradient methods
that force the model to prefer using fewer actions to reduce the
entropy. Next, we measure the loss in video quality (reward) due to
ignoring these bit rates.

Assuming that every bit rate is an admissible decision, Equa-
tion 1 shows that the optimal average reward per decision re-
quires selecting the bit rate B equal to the available bandwidth,
and QoE = 1

N
ÕN
1 q(B) = B. To quantify the optimality gap due to

using a �nite number of bit rates (recall, Pensieve e�ectively uses
four bit rates), for a given bit rate B, we use a reward loss metric
de�ned as the average di�erence between the optimal reward (in-
troduced above) and the average Pensieve reward calculated over a
synthetic trace with constant bit rate B and 4800 decision steps.

Figure 7 shows the reward loss for B 2 [300, 4300]Kbps in 50Kbps
increments. We observe that even though Pensive ignores the

NetAI ’19, August 23, 2019, Beijing, China Arnaud Dethise, Marco Canini, and Srikanth Kandula

Figure 7: Di�erence between the optimal reward that can be
achieved assuming the agent is able to choose any possible
bit rate and the Pensieve agent.

Figure 8: Con�dence of the agent in its most likely decision.

1200Kbps and 2850Kbps bit rates, the reward loss when the avail-
able bandwidth is near these values is similar to the reward loss
at other bandwidth values. The reward loss is always below 0.15.
Thus, we conjecture that the training process chooses to ignore
these bit rates because even ignoring them results in no worse loss
than is achieved by just quantizing the rates.

Decision con�dence. Since the agent’s output is a vector of prob-
abilities (one per bit rate), the actual bit rate is chosen randomly
(weighted by bit rate probabilities) unless the probability of all but
one bit rates is 0. We analyze the values of these probabilities to
�nd how much randomness is present in the agent’s decisions. In
particular, we consider for each decision the highest probability
among the bit rates. We call decision con�dence the probability
for the bit rate with highest probability and say that con�dence is
high when this probability is high. Figure 8 shows that 77% of the
decisions have a high con�dence (a probability higher than 0.95),
90% of the decisions have con�dence higher than 0.8, and less than
1% of the decisions have con�dence below 0.5. This reveals that
most decisions are not random and ties are almost always between
no more than two bit rates.

5 CONTRIBUTION OF EACH FEATURE
To further explain the Pensieve model, we seek to understand how
the agent uses input features. We use an explainability tool called
LIME [14] which builds a linear approximation of the model around
a single decision to compute how much each feature contributes to
the decision. A large contribution (or simply weight) for a feature
indicates that small variations in that feature’s value are more
likely to change the decision; a small weight means that even large
changes to a feature’s value will likely not change the decision.

Rank Feature Weight
1 Previous bit rate 0.377
2 Bu�er 0.184
3 Throughput [T] 0.154
4 Throughput [T-1] 0.028
5 Download time [T-1] 0.018
6 Download time [T] 0.018
7 Throughput [T-7] 0.017

Table 1: Normalized average weight of individual features;
i.e., their extent of contribution to decisions.

Figure 9: CDF of the individual weight of each feature on the
testing dataset.

Weights are computed for each bit rate and can be positive (if
changing the value decreases the probability of the chosen bit rate)
or negative (if changing the value increases the probability). To
account for how much the agent “pays attention to” each feature,
we summed the absolute weight value across all classes and nor-
malized the result so that the sum of the weight of all features is 1.
Table 1 shows the average weight of the top seven features across
all decisions. It shows that the previous bit rate (which is used to
ensure smoothness), the current amount of data in the bu�er and
the most recent throughput value are the most important features
on average, accounting for 71.5% of the weight.

One question is how often the features that are not part of the
top three have an impact on the decision. To analyze this, Figure 9
shows the distribution of the weight of each feature across all
decisions. We observe that only four of the 25 features (shown in
the legend) have a weight above 0.07. We note that LIME is a local
approximation of the model and can be noisy.

To verify that features that have a small weight as computed
by LIME actually have almost no impact on a decision, we re-ran
experiments wherein we replace the value of each of these features
with a dummy value that is equal to the testing dataset’s average
value for that feature. We did this because excluding the features
altogether would require retraining a new model. Our approach
e�ectively “hides” the value of the low weight features from the
model. We observe that the impact on the model’s decisions is small.
Figure 10 shows the distribution of the agent’s QoE when all but
the top k features are hidden. This �gure shows that by removing
all features except for the top three (green line), the performance
of the agent is very close to that using all features (black line). This
suggests that the Pensieve model could be simpli�ed to take fewer
inputs which, in turn, reduces its complexity and training time.

Cracking Open the Black Box NetAI ’19, August 23, 2019, Beijing, China

Figure 10: CDF of the average QoE achieved by hiding all but
the top k features.

Figure 11: An example trace of how the decision changes
when the network throughput varies.

6 EFFECTS OF INPUTS ON DECISIONS
We have shown that di�erent features have di�erent weights (i.e.,
contributions) to the decisions of the Pensieve agent. We now ex-
plore how the actual input values a�ect the decision. From a macro-
scopic perspective, we �rst show that there exists a clear relation
(as expected) between the network throughput and the selected bit
rate. Then, at a microscopic level, we analyze how the top three
features individually a�ect the decision.

Perhaps the most important trait of an adaptive bit rate agent is
that it adapts to varying bandwidth conditions. This is the expected
behavior and we seek to con�rm it experimentally. We analyze the
temporal behavior of the agent and observe that the expected bit
rate rises and falls with the network throughput. Figure 11 shows
an example execution of the agent on a single trace. The expected
bit rate, here, is the weighted average bit rate, weighted by the
probability with which each bit rate was to be selected based on
the decision of the Pensieve agent.

To understand the individual e�ect of a feature’s value on the
decision, we draw scatter plots relating the value of a feature and
its corresponding weight to the decision as estimated by LIME. In
each scatter plot, one point corresponds to one decision. Here, we
focus on the three features that have a high weight in the decisions.

Figure 12 shows the weight associated for di�erent values of
the ‘amount of data in the bu�er’ feature. Note that four ranges
of feature values (0–12 seconds of bu�ered video, 12–16 seconds,
16–20 and more than 20 seconds of bu�ered video) have distinct
weights; the additional variation in each range is at least partially
due to the LIME approximation. This behavior can be explained as
follows: when the bu�er is almost empty, the agent would switch
to a lower bit rate to �ll it, and when the bu�er is almost full, the
agent would switch to a higher quality to improve the QoE. The

Figure 12: Relation between bu�er value and weight.

Figure 13: Relation between throughput value and weight.

Figure 14: Relation between previous bit rate and weight.
The orange star is the average, the red triangles show the
standard deviation.

“sweet spot” in bu�er size, as chosen by Pensieve, appears to be
16–20 seconds of video in the bu�er; here, the bu�er length has
only a little impact on the decision.

Figure 13 shows the weight associated for di�erent values of the
‘throughput’ feature. While the behavior appears similar to that
in Figure 12, it is not clear why Pensive behaves in this way. Specif-
ically, we would expect that the agent would pay as much attention
to any throughput value, including those between 1000Kbps and
1600Kbps. The weight may be small here because the agent has a
default assumption that throughput is in this range and only other
throughput values have an e�ect on the decision; we are not yet
able to con�rm this hypothesis.

Figure 14 shows the weight for di�erent values of the ‘previous
bit rate’ feature (the possible values are discrete, because there
are only six possible bit rates). We note that the weight is higher
for 300Kbps and 750Kbps than for 1850Kbps. This is possibly be-
cause the 1850 Kbps bit rate is used for a wide range of throughput
(between 1300Kbps and 3000Kbps).

Finally, Figures 15, 16 and 17 show the relationship between
feature values and the expected bit rate. Here, horizontal clusters

NetAI ’19, August 23, 2019, Beijing, China Arnaud Dethise, Marco Canini, and Srikanth Kandula

Figure 15: Relation between bu�er value and chosen bit rate.

Figure 16: Relation between throughput value and chosen
bit rate.

Figure 17: Relation between previous bit rate and chosen bit
rate. The orange star is the average, the red triangle shows
the standard deviation.

are caused by decisions where the probability of a speci�c bit rate
is high. As expected, a large bu�er and a high throughput correlate
to selecting a higher bit rate. In Figure 16, we highlight points (in
red) for which the di�erence between throughput and bit rate is
greater than the gap between available bit rates. These points are
worth further investigation as we will discuss in the next section.

7 LIMITATIONS
We have shown that one can understand the decisions of Pensieve
to some degree despite the “black box” nature of the model that was
learnt using RL. Here, we highlight additional challenges that re-
main and also discuss future directions for research in interpretable
RL for networked systems.

The problem of explainable AI [5, 18] has become popular in
the ML community. Today’s solutions such as saliency maps [15],
post-hoc explanations [2, 14] and interpretable models [17] fail to
address some speci�c concerns when using models learnt using RL
in networked systems. In particular, it is unclear how to combine
them with the domain knowledge of system experts. Also, these
solutions tend to explain individual decisions rather than the entire

policy or explain where exactly a sequence of decisions may go
wrong.

One method that results in models that are easy to interpret is
to restrict the models to be linear regressions over input features.
However, linear models might perform poorly in speci�c applica-
tions; indeed, our preliminary tests in the context of adaptive bit
rate showed worsened QoE.

We list below some open issues towards increasing trust in RL-
based solutions. At a high level, these challenges are questions that
are of interest to system operators which cannot be answered by
only looking at the inputs and outputs of an RL agent.
Finding outliers. A key concern about ML solutions is whether
they will fall o� performance cli�s. One approach to detect perfor-
mance cli�s is to �nd outliers in the decisions: if a small change in
the input leads to a signi�cant change in the decision, it is possible
that the decision may lead to a sizable performance degradation.
As an example, consider the hypothetical case where the agent
over-reacts to a relatively small change in measured throughput
and seeks to increase bit rate to a level that cannot sustain unin-
terrupted video streaming. We note that �nding such outliers is
di�cult because the input space can be very large and impractical
to fully explore.
Ensuring stability and adaptation. It is reasonable to require
that an RL agent converges to a stable control if the environment
is stable (e.g., in the context of Pensieve, when the network path
has a �xed available bandwidth). At the same time, it is reasonable
to assume that the RL agent must adapt in response to changes
in environment. A key challenge is that neither of these concerns
can be guaranteed pre-hoc; it is unclear how a trained RL agent
will respond to conditions that are not seen during training. The
only option today, it appears to us, is to keep an eye on how the RL
agent behaves in practice. Systematically checking that the agent’s
decision achieves these desiderata is a worthy direction for future
work.
Local maxima policies. RL algorithms try to �nd the values of
parameters that will maximize their reward function. Because it is a
non-convex problem, it is possible that the network will converge to
a local maximum instead (as shown in Section 4). This observation
leads to three major challenges in analyzing the model:
(1) Detect when the learnt policy is sub-optimal.
(2) Guide training towards improvement.
(3) Identify, during training, if the model appears to be stuck in a
local maximum.

8 CONCLUSION
We have shown that by observing the decisions of agents and using
simple, easily available analysis tools such as LIME, it is possible
to extract some information about the behavior of the Pensieve
agent. This method allows us to look into the “black-box” models
and, as we show here, can o�er insights that are useful to both
model creators as well as users of the model. More work needs to
be done however and we discuss some additional issues speci�c to
understanding RL models. Ensuring the correctness of ML solutions
remains an interesting and open problem that needs to be solved
to encourage the deployment of RL-based systems in production
environments.

Cracking Open the Black Box NetAI ’19, August 23, 2019, Beijing, China

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We are
grateful to Nikolaj Bjørner, Bernard Ghanem, HaoWang andXiaojin
Zhu for their valuable comments and suggestions.We also thank the
Pensieve authors, in particular Mohammad Alizadeh and Hongzi
Mao, for their help and feedback.

REFERENCES
[1] A. Dethise, M. Canini, and S. Kandula. Cracking Open the Black Box Github

repository, 2019. https://github.com/adethise/observing-rl-agents-netai2019.
[2] J. Chen, L. Song, M. Wainwright, and M. Jordan. Learning to Explain: An

Information-Theoretic Perspective on Model Interpretation. In ICML, 2018.
[3] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and M. Schapira.

PCC Vivace: Online-Learning Congestion Control. In NSDI, 2018.
[4] N. Feamster and J. Rexford. Why (and How) Networks Should Run Themselves.

CoRR, abs/1710.11583, 2017.
[5] FICO. Explainable Machine Learning Challenge, 2018. https://community.�co.

com/s/explainable-machine-learning-challenge.
[6] H. Mao, R. Netravali and M. Alizadeh. Pensieve Github repository, 2017.

https://github.com/hongzimao/pensieve.
[7] K. Kompella. The Self-Driving Network™: How to Realize It, 2017.

https://www.nanog.org/sites/default/�les/1_Kompella_The_Networking_
Grand_Challenge.pdf.

[8] S. M. Lundberg and S.-I. Lee. A Uni�ed Approach to Interpreting Model Predic-
tions. In NIPS, 2017.

[9] M. T. Ribeiro, S. Singh and C. Guestrin. LIME Github repository, 2016.
https://github.com/marcotcr/lime.

[10] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource Management with
Deep Reinforcement Learning. In HotNets, 2016.

[11] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In SIGCOMM, 2017.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[13] NIPS. Interpretable ML Symposium, 2017. http://interpretable.ml/.
[14] M. T. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?” Explaining

the Predictions of Any Classi�er. In KDD, 2016.
[15] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:

Visualising image classi�cation models and saliency maps. In ICLR workshop,
2014.

[16] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to Route. In
HotNets, 2017.

[17] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically
Interpretable Reinforcement Learning. In ICML, 2018.

[18] C. Wierzynski. The Challenges and Opportunities of Explainable AI, 2018. https:
//ai.intel.com/the-challenges-and-opportunities-of-explainable-ai/.

[19] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP. In SIGCOMM, 2015.

A REPRODUCIBILITY APPENDIX
Our repository [1] provides the source code used for the experi-
ments in this paper. We also include a copy of the trained agent
and the network traces provided by the Pensieve authors [6] used
in our experiments.

Our code includes scripts to convert the network traces to exe-
cution traces, generate explanations on those traces using LIME,
and �nally create the plots included in the paper. The experiments
and data generation can be run on any machine capable of running
Python3 and TensorFlow.

We do not include the training information for the agent being
tested. To train a new agent and perform its analysis, we refer the
reader to the original Pensieve paper.

This section describes the requirements to re-run our experi-
ments, how data is generated and transformed, and �nally how
data is aggregated for visualization.

A.1 Requirements
Platform. Reproducing our results does not require any speci�c
hardware. The following software can be used to reproduce our
experiments and measurements:

• Python 3.7.3
• TensorFlow 1.13.1
• The following Pythonmodules, available from pip, are needed:
tflearn, numpy, lime

• To display the results, Jupyter and matplotlib are required

Data. We require the user to supply the following data:

• The checkpoint of a trained agent based on Pensieve
• Traces of network bandwidth measurements. The format is
<timestamp [s]> <bandwidth [MB/s]>

• The per-chunk size (in bytes) of the video for each available
bit rate

Our implementation is immediately ready to run with any agent
sharing the interface of Pensieve, including new agents trained with
di�erent data or parameters. Agents sharing the Pensieve interface
can be easily adapted by implementing the Predictor interface,
which is independent of the underlying ML framework.
Dataset. Our experiments use the trained Pensieve agent provided
by the authors [6], one video divided in 48 chunks and 6 bit rates,
and 142 network traces. In total, we analyze 6816 decisions.

A.2 Data generation
Once a new agent and fresh network data have been collected,
reproducing the results requires running the Predictor. This will
convert the network traces to execution traces, which store the
environment values, outputs, and rewards at each decision step for
all traces.

For this conversion, we provide two scripts that will automati-
cally run the agent on all traces. One script (run_agent.py) runs the
normal agent without modi�cation. The second script (run_agent_
top_k.py) takes as a parameter some value k and will run the agent
by including only k of its features, which can be chosen by ordering
all feature by order of importance. Note that the importance of
features will be determined later using the traces of the normal

NetAI ’19, August 23, 2019, Beijing, China Arnaud Dethise, Marco Canini, and Srikanth Kandula

agent, but for convenience our results already include all features
by order.

After this step, we acquire as many execution traces as we have
network traces. Each trace contains all environment parameters and
decisions. We use this data to train a LIME tabular explainer. This
explainer takes as input the input values for the neural network,
and returns the contribution of all features for each class (which
can be positive or negative). The explainer is otherwise set to use
default parameters. For details about LIME and LIME explanations,
we refer the reader to their repository [9]. We do not generate
explanations for the traces using the top k features, as those are
not required for this paper.

To extract information from the explanations more easily, we im-
plemented our own explanation model. It is suitable for sequences
of decisions, as each trace’s explanations can be queried by the user
for the values and weights of all or any feature over time.

A.3 Figure data
We describe how the data is aggregated for all �gures in the paper.
Bandwidth: (Figure 2) The bandwidth measurement is the average
available network bandwidth for each trace. This information is
encoded in the trace �les. We collect this network speed over the
whole trace, which might extend beyond the time used for video
streaming. We have 142 bandwidth values.

Bit rate probabilities: (Figures 3, 4) For each decision taken by the
agent, we collect a vector with the probabilities to select each bit
rate. Those vectors are then summed and normalized to re�ect the
global probabilities. We have 6816 vectors of 6 bit rate probabilities.
Throughput: (Figures 4, 5, 11, 13, 16) The throughput is the value
of goodput achieved by the system for downloading each chunk.
It is also used as one of the inputs to the Pensieve agent. We have
6816 throughput values.
Expected bit rate: (Figures 5, 6, 11, 15, 16, 17) The expected bit rate
for one decision is the average of the probability vector weighted
by the bit rate values.
Reward: (Figure 7) The reward for each decision is computed from
Formula 1. It is expressed in Mbps with µ = 4.3. We have 6816
reward values.
QoE: (Figure 10) The QoE for one trace is the sum of rewards.
Feature weight: (Figures 9, 12, 13, 14) For each decision and each
feature, LIME returns how much the feature contributed to the
decision (which can be a negative value). We take the sum of the
absolute values for each bit rate as our feature weight. We then
normalize all weights so that the total of all features is equal to 1.
We have 6816 weights for each of the 25 features.
Data in bu�er, previous bit rate (Figures 12, 14, 15, 17) These
values are collected from the Pensieve simulator and are also used
as inputs to the Pensieve agent for each decision.

