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Abstract—Progressing beyond centralized AI is of paramount
importance, yet, distributed AI solutions, in particular various
federated learning (FL) algorithms, are often not comprehen-
sively assessed, which prevents the research community from
identifying the most promising approaches and practitioners
from being convinced that a certain solution is deployment-
ready. The largest hurdle towards FL algorithm evaluation is the
difficulty of conducting real-world experiments over a variety of
FL client devices and different platforms, with different datasets
and data distribution, all while assessing various dimensions
of algorithm performance, such as inference accuracy, energy
consumption, and time to convergence, to name a few. In this
paper, we present COLEXT, a real-world testbed for FL research.
COLEXT is designed to streamline experimentation with custom
FL algorithms in a rich testbed configuration space, with a large
number of heterogeneous edge devices, ranging from single-board
computers to smartphones, and provides real-time collection
and visualization of a variety of metrics through automatic
instrumentation. According to our evaluation, porting FL al-
gorithms to COLEXT requires minimal involvement from the
developer, and the instrumentation introduces minimal resource
usage overhead. Furthermore, through an initial investigation
involving popular FL algorithms running on COLEXT, we reveal
previously unknown trade-offs, inefficiencies, and programming
bugs.

Index Terms—Federated Learning, Testbed, Performance Eval-
uation

I. INTRODUCTION

Data is a most precious resource, and the one that, with the
growth of privacy awareness, users tend to be less inclined to
share with third parties. Centralized AI has made tremendous
advances in the last couple of decades. Yet, virtually all of the
publicly available data, such as the content of the World Wide
Web, are already being used for large foundational models.
The next breakthrough in AI will necessarily have to rely on
high-quality private data residing on end-user devices.

Harnessing individuals’ data while maintaining privacy is a
challenging feat, and various research approaches have been
proposed to tackle this issue [1], [2]. Federated learning (FL)
allows distributed collaborative training of machine learning
(ML) models over a group of participating devices, with
a centralized server used merely for training orchestration,
essentially aggregating clients’ model updates and sharing
the newly-created model within the group [2]. Its conceptual
simplicity makes FL the most popular solution for privacy-
preserving distributed AI, especially when deep learning (DL)
models are involved.

∗Equal contribution. Work done in part while Janez Božič was interning
at KAUST.
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Fig. 1: Max. validation accuracy and energy to accuracy (ETA)
for three FL algorithms on the CIFAR-10 dataset. In FedAvg and
FedProx, all clients use either a Small or a Large model, while in
HeteroFL, clients use one of the two depending on the computa-
tional power. The ETA axis values cannot be (reliably) assessed
without real-world experimentation provided by COLEXT.

The original FL algorithm, FedAvg [3] was shown to un-
derperform when different assumptions, such as the uniformity
of data distribution or computational capabilities over clients,
are lifted [4]–[11]. A large body of theoretical work has
followed, and various attempts to alleviate the issue have been
made [12]–[17]. Nevertheless, these scientific contributions
very rarely trickle down to practice, primarily because they
do not provide readily usable implementations and fail to
convince that the claimed improvements indeed translate to
real-world deployments. Instead, most proposals remain at the
level of a simulation running on a single server, and the real-
world behavior in terms of the algorithm running time, compu-
tational/memory/energy demand, and performance under var-
ious real-world constraints, such as with data/network/device
heterogeneity, remains unknown.

In this paper, we aim to increase the credibility of FL re-
search by providing COLEXT – a solution for reproducible FL
experimentation over real-world devices while also enabling a
gamut of relevant performance metrics to be collected. Our
solution is tailored to support virtually any existing and future
algorithm constructed on top of the currently most popular
FL framework, Flower [18], and enables a range of scenario-
defining parameters, such as client heterogeneity, metric col-
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lection configurations, and others, to be set. We implement
COLEXT in a federation of 28 single-board computers (SBCs)
and 20 Android smartphones and demonstrate its utility for
objectively assessing FL algorithms over different dimensions.

As an illustrative example, in Figure 1, we depict the result
of COLEXT experimentation over three popular FL algorithms
(FedAvg [3], FedProx [12], and HeteroFL [19]), with two
different model sizes (small – with 35k and large – with 380k
parameters), and a different ratio of clients participating in
every training round. Traditional means of simulation-based
assessment would “see” only the y-axis in the figure, essen-
tially comparing algorithms based on the highest accuracy
achieved, and would identify FedProx over a 380k parameter
model with full client participation as the most promising
solution. COLEXT, on the other hand, uncovers other metrics
that may be relevant, such as the memory, CPU, and energy
usage, as well as the training duration, and juxtaposes them
with the achieved accuracy. In Figure 1, for instance, COLEXT
reveals that the amount of energy needed for reaching a
particular level of accuracy (i.e., energy-to-accuracy, ETA)
differs drastically among points that achieve very similar ac-
curacy. Thus, the previously identified FedProx configuration
reaches the top accuracy while consuming almost 350 kJ (kilo
Joules). At the same time, involving only 40% of the clients
in each training round, the FedAvg algorithm incurs a 4 p.p.
(percentage points) decrease in accuracy while consuming less
than a third of the energy (i.e., 100 kJ).

The above is just one of the examples of how COLEXT can
uncover nuances related to the performance of FL algorithms
in real-world environments and can do this with minimal
involvement of the algorithm developer. More broadly, our
work brings the following contributions to FL research:
• We design and implement a framework for experimen-
tation with FL algorithms that readily supports a wide
range of existing and future FL solutions. Experimenters
need to make minor changes (three lines of code) to run their
Flower-ready algorithms on COLEXT.
• We instrument algorithms to collect a range of metrics.
We implement low-level acquisition of CPU/GPU utilization,
memory consumption, training time, and network usage. We
also expose real-world energy measurements through power
meters deployed in our setup.
• We develop an expressive interface for defining the
experimentation scenario. An experimenter can decide on the
level of heterogeneity among devices, change the experiment’s
training parameters, and configure metric collection settings.
• We deploy COLEXT in a heterogeneous device setting
and perform thorough experimentation with a number of
popular FL algorithms. Our COLEXT testbed includes both
SBCs and Android devices. Through microbenchmarks, we
confirm that COLEXT can support a range of algorithms with
negligible impact on the device’s resources, while use-case
experimentation demonstrates how COLEXT can be harnessed
to uncover implementation inefficiencies and trade-off issues
related to the real-world use of FL.

While this paper unveils only a few important and inter-

esting revelations (such as the one described in Figure 1),
we believe that COLEXT will help practitioners navigate the
trade-offs that different FL algorithms avail and will also help
researchers identify the most promising directions for future
development of FL algorithms. To facilitate this, COLEXT is
available to interested researchers and the code is open source.
Information on how to access the testbed and the code can be
found at https://github.com/sands-lab/colext.

II. BACKGROUND AND OBSTACLES TO REALISTIC FL
EXPERIMENTATION

A. FL Primer and Algorithm Variations

FL is arguably the most promising means of training AI
models in a distributed manner so that the data of individual
training participants (clients) remain private. In its simplest
form, FL operates in rounds t = 0, 1, . . . , T −1, and lets each
client k from a set of clients K = {1, 2, . . . ,K} independently
train a model w over its local dataset Dk using stochastic
gradient descent (SGD) or a variation thereof. After E local
training epochs, the updated versions of the model wk are sent
to the server, which then aggregates them in a new version of
the global model, usually weighting the contribution of each
client according to the number of data samples nk in Dk :
w(t+1) = 1∑

k∈K(t) nk

∑
k∈K(t) nkw

(t,E)
k . After T rounds, the

global model w(T ) is considered trained.
The above algorithm, which is essentially a form of dis-

tributed SGD with local steps, is termed FedAvg and repre-
sents the de-facto baseline from which numerous other FL
algorithms have been developed and have been pitted against.
For instance, FedProx [12] extends the FedAvg local training
loss function Fk(w) with a proximal term µ

2 ∥w − w(t)∥2,
where µ is a non-negative constant, that penalizes large devi-
ations of the local model from the global model. i.e. the loss
function becomes: F prox

k (w) = Fk(w)+ µ
2 ∥w−w(t)∥2. Other

solutions may introduce other modifications and innovations,
for instance, by changing the way in which local weight
updates are aggregated on the server [14], enabling knowledge
distillation among the global and the local models [20], or, as
is the case with HeteroFL (results of which are depicted in Fig-
ure 1) by allowing aggregation of models of different sizes.
Notably, even without any modifications, FedAvg already
enables significant customization, as several hyperparameters,
such as the number of local epochs, the number of clients per
round, the deadline for receiving an update from a client, and
the number of clients that have to report to a server for a round
to be considered successful, all can be tuned and have been
shown to influence the performance of the algorithm [8], [10].

B. Experimentation Challenges

1) Impact of Heterogeneity on FL: In a centralized setting,
SGD is performed on the same computing device, and the
data comes from the same distribution in each iteration of the
algorithm. When SGD is, through FL, deployed over multiple
clients, the convergence of the resulting distributed algorithm
may be affected by the heterogeneity of a real-world setting.

https://github.com/sands-lab/colext


For practical purposes, critical heterogeneities affecting FL
include data, hardware, and platform heterogeneities.

Data heterogeneity. The nature of data distribution among
clients plays a pivotal role in FL. In Independent and Iden-
tically Distributed (IID) scenarios, each client’s data con-
forms to a uniform distribution, simplifying model aggre-
gation across devices. Conversely, non-IID data presents a
more challenging landscape where client dataset distributions
vary significantly. This diversity demands nuanced strategies
to adaptively reconcile differences between local and global
models while preserving data privacy and achieving robust
model performance.

Data heterogeneity is the most broadly examined property
of realistic FL, and a plethora of algorithms, including previ-
ously described FedProx, have been proposed to address the
issue [11]–[17], [20]–[23]. At least a part of the reason for
intensive research in this direction can be explained by the ease
at which one can experiment with FL over non-IID data – the
actual clients may remain simulated, while datasets assigned
to these clients can be made artificially non-IID.

Hardware heterogeneity. “Stragglers,” clients who, usually
due to poor computing capabilities, take prohibitively long
to complete a round of local training, present a major issue
in practical FL [24]. Under the presence of stragglers, FL
becomes highly inefficient because either other clients must
wait for the stragglers, or the stragglers’ local updates must be
discarded for the learning to advance [25]. Alternatives, such
as asynchronous FL, have been proposed [26], but a common
approach in practice is to select clients with uniform hardware
specifications [27]. Unfortunately, such an approach severely
limits the applicability of FL and may introduce bias in the
resulting models, as clients of certain characteristics (and,
consequently, data properties) do not feature in the training.

Solutions for learning over clients of heterogeneous capa-
bilities have been proposed [19], yet independently evaluating
such solutions remains challenging, as it would require a
testbed of sufficiently heterogeneous clients. Furthermore, with
heterogeneous clients come heterogeneous processing speeds,
power consumption, memory usage, and other metrics, which
suddenly expand the dimensionality in which the optimal FL
solution should be sought. As seen in Figure 1, introducing
just one dimension (energy to accuracy) may alter the way we
assess the optimality of an FL algorithm.

Platform heterogeneity. FL is promoted as a solution for
edge AI. Yet, “edge” encompasses a wide range of devices,
from embedded devices and single board computers (SBCs)
common in the Internet of Things (IoT) deployments, to
smartwatches, smartphones, and beyond. Nevertheless, FL
algorithms are rarely tested in actual deployments, and even
more rarely are evaluated on multiple platforms. Mobile de-
vices, in particular, tend to be highly underrepresented when it
comes to evaluating FL solutions. FL over different platforms
is challenging to implement, and, to the best of our knowledge,
only one framework – Flower [18] – enables distributed

training over both Linux and Android platforms.1

2) Experiment Orchestration and Testbed Implementation:
Defining, scoping, and monitoring experiments. Thorough
examination of FL algorithms should encompass experimen-
tation over different datasets and different data distributions,
with a varying number of clients involved and reporting,
to name just a few experiment parameters that should be
considered. Without an easy-to-use support for such exper-
imentation, researchers either limit the richness of the ex-
perimental scenarios or develop their own infrastructure for
such experimentation, which is both time consuming and error
prone.

Furthermore, a realistic view of algorithm performance ne-
cessitates its realistic deployment. Constructing a full-fledged
hardware testbed requires significant resources, both in terms
of time and money. A high-end mobile device can cost about
$1,000, an SBC can cost up to $500, while a high-frequency
power meter costs about $1,000. Equipping an FL testbed with
a few dozen devices can be prohibitively expensive for many
smaller research groups to do. Moreover, hardware failures
(especially networking connectivity) and software updates
require active DevOps effort to maintain testbed usability.
Performance metric collection and analysis. In Section I, we
have demonstrated the need for assessing FL algorithms along
different dimensions. Metrics, such as CPU/GPU utilization,
energy and power consumption, memory consumption, data
transfer sizes, and others, can paint a different picture of an
algorithm’s performance compared to merely inspecting the
inference accuracy on a test set. However, capturing these
metrics without requiring changes in the algorithm code and
without affecting the execution of the algorithm is challeng-
ing. Moreover, the data should be collected throughout the
experiment, reliably transferred and stored, and presented to
the experimenter in an appropriate manner.

III. RELATED WORK

Realistic experimentation is at the core of computer science
research. With the rise of distributed and networked comput-
ing, a need for more elaborate testbeds has appeared. Conse-
quently, testbeds tailored to allow multiple researchers to con-
duct relatively diverse experiments have appeared. Planetlab,
for example, was a global testbed for computer networking ser-
vices research that spawned over more than 1,000 distributed
nodes at its peak [28]. Emulab, on the other hand, allows
experimentation with various networking topologies that are
emulated over a cluster of networking devices [29]. Building
upon the Emulab software, the CMU wireless emulator enables
remote emulation of wireless propagation conditions [30].
Also on the wireless front, the ORBIT testbed allowed in-
door and outdoor evaluation of wireless protocols [31], while
massive MIMO testbeds, such as [32], enable experimentation
with future 5G and 6G wireless transmission protocols.

The above testbeds have had a significant impact on net-
working research. Yet, besides the networking aspect, practical

1Flower does not allow a mix of different platforms in the same FL setting.



FL encompasses mobile systems and ML aspects. Testbeds,
such as CityLab [33], facilitate IoT systems research, however,
do not cover mobile, especially smartphone-based, computa-
tion, and do not readily support distributed ML applications.
ML testbeds, on the other hand, focus on cloud computing
(e.g., CloudLab [34]) and do not support FL over edge devices.

FL research is supported by several open-source frame-
works that have emerged in recent years [18], [35]–[46].
These frameworks typically provide APIs for users to express
DL model architectures, data loading, and model training
algorithms. Often, the frameworks separate the client-side
training logic from the server-side aggregation logic. In several
cases, such as with Flower [18], these frameworks include a
simulation backend that allows an FL system to be run in a
simulated environment without any substantial code changes.

Simulating FL is essential to expedite the prototyping
of FL algorithms, system designs and evaluations thereof.
Generally speaking, simulation can facilitate studying FL
systems in different scenarios where the user can control
the number of clients, the conditions in which they operate,
the algorithms they execute, and other factors. To aid in
simplifying large-scale simulation, several toolkits have been
proposed to support simulating FL workloads [6], [47]–[54].
To supplement FL simulation with realistic characteristics of
heterogeneous devices, Protea [55] proposes to profile devices
to obtain information regarding resource consumption and
computation time. Similarly, FedScale [48] builds a simulation
infrastructure on top of realistic client device behavior traces
in order to account for system-level heterogeneities that might
affect FL. Nevertheless, certain aspects of FL performance,
for instance, individual devices’ energy consumption, cannot
be reliably assessed through trace-based simulation due to the
use of simplified models [56], [57].

Critical for FL experimentation is the need to take real-
world heterogeneities into account. Several studies have ana-
lyzed heterogeneity at the level of data [5], [21], [58], [59],
system [9], [10], and client availability [6], [8], and have
shown that these factors significantly impact the performance
of FL. Consequently, several benchmarks that include compre-
hensive data partitioning strategies to cover the typical non-IID
data cases have been introduced [4], [7], [60]–[65].

Nevertheless, to this date, most FL research results have
been obtained through simulation, and only relatively few stud-
ies (e.g., [66]–[70]) make use of actual experimental testbeds.
Wong et al. perform a thorough study of FedAvg on a real-
world edge computing testbed [71]. Their study demonstrates
the utility of experimentation over heterogeneous hardware
(the authors use Raspberry Pi 3/4, Jetson Nano and Jetson
TX2), with various experiment settings (e.g., different data
distributions), while different metrics (such as CPU utilization)
are collected. Grounded in these findings, but not limited to
FedAvg, COLEXT enables real-world experimentation on a
wide span of hardware platforms, including 28 SBCs across 6
hardware types and 20 Android mobile phones across 8 models
and 5 vendors, all while a wide range of metrics, from CPU
utilization, to the amount of transferred data, to high-frequency
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energy measurements are collected.

IV. COLEXT: FEDERATED LEARNING TESTBED

In this paper, we develop COLEXT, a testbed for com-
prehensive experimentation with FL over real-world devices.
COLEXT is designed as a solution for seamless deploy-
ment of arbitrary FL algorithms and supports a range of
experimental scenarios. Characteristically, the testbed supports
highly heterogeneous deployments and a comprehensive set of
performance metrics.

The overview of the testbed is shown in Figure 2. The
COLEXT server acts as a central entity for both experiment
coordination as well as model aggregation within an FL
algorithm. The experiment configuration, COLEXT Config,
is provided by the experimenter. This configuration includes a
reference to the code of the FL algorithm under test, FL Code,
and the selection of COLEXT clients that will participate
in the experiment. Clients can be selected from a range of
devices, which, in the current implementation of COLEXT,
include ARM and x86 SBCs (some having CUDA-capable
GPUs) and Android smartphones.

The COLEXT server instantiates the experiment by pack-
aging experimenter-provided FL code into deployable units
and deploying these to the appropriate devices: for SBCs,
COLEXT packages the code into containers and deploys
them with Kubernetes; for Android smartphones, the code is
integrated within the COLEXT Android app code, packed into
an APK, and deployed with Android Debug Bridge (ADB).
The COLEXT server also executes the FL server code pro-
vided by the experimenter. Separately, the experiment devices
collaborate to collect relevant metrics. These are collected
partly on clients and partly on the server and are transferred
to the COLEXT database for further inspection.

Once the experiment is completed, the researcher will find
a rich range of hardware and system metrics and statistics to
gain insights into the performance of their FL algorithm, com-
pare different FL algorithms based on the metrics, and even
identify the performance difference across various devices. To
facilitate the analysis, COLEXT also provides a Grafana-based
COLEXT dashboard where the metrics collected during an
experiment can be visualized in real-time.



A. Using COLEXT in a Nutshell

Interaction with COLEXT is designed to be succinct and
in line with the workflow employed when using currently
popular FL simulation environments [18], [36], [49], [50]. In
a nutshell, the experimenter has to:

1) Access the COLEXT server running Python, and in a
local Python environment, install our colext package.

2) In the FL code, import the above library and wrap the
FL client and strategy code with COLEXT decorators.
If used outside of the testbed, these decorators do not
modify the program behavior and thus can safely be
included in the code in general. An example of decorated
client and strategy would be:

from colext import MonitorFlwrClient, MonitorFlwrStrategy

@MonitorFlwrClient

class FlowerClient(fl.client.NumPyClient):
[...]

@MonitorFlwrStrategy

class FlowerStrategy(flwr.server.strategy.Strategy):
[...]

3) Declare the pip requirements.txt file with the
dependencies.

4) Declare the COLEXT_config.yaml experiment con-
figuration file, which specifies the client and server entry
points and the testbed devices on which the experiment
will run. An example of such a file would be:

code:
client:
entrypoint: "client.py"

args:
- "--server_addr=${COLEXT_SERVER_ADDRESS}"

- "--client_id=${COLEXT_CLIENT_ID}"

server:
entrypoint: "server.py"

args: "--n_clients=${COLEXT_N_CLIENTS} --n_rounds=3"

devices:
- { dev_type: LattePandaDelta3, count: 4 }

- { dev_type: OrangePi5B, count: 2 }

- { dev_type: JetsonOrinNano, count: 4 }

monitoring:
scrapping_interval: 0.3 # in seconds

push_to_db_interval: 10 # in seconds

5) Deploy the experiment using the
colext_launch_job command, after which
the experiment performance metrics will be available
for real-time monitoring on the COLEXT dashboard.
Optionally, after the experiment is completed, the
experimenter can call colext_get_metrics to
retrieve the collected data in the form of CSV files
from the COLEXT database. In the terminal, it would
look like:

$ colext_launch_job --config <path-to-config>

# Prints a job-id and a Grafana dashboard link

# After the job finishes, retrieve metrics for job-id

$ colext_get_metrics --job_id <job-id>

V. COLEXT IMPLEMENTATION

A. Underlying FL Framework

COLEXT is designed to provide a realistic picture of FL
algorithm performance in a real-world deployment, yet, at the
same time, it aims to minimize the effort one needs to put
into the experimentation. Therefore, rather than developing a
custom solution for FL, we base COLEXT on an existing
framework, offering researchers a convenient way to deploy
their existing code with minimal modification.

From the available frameworks, we opted for Flower [18].
This framework offers a simple interface that facilitates FL
research and is currently the most popular FL framework,
with a large community of developers actively using and
developing the framework.2 Moreover, the Flower community
led a substantial effort towards reproducing FL research, which
has generated a pool of high quality baselines coded against
the Flower API. From the technical side, Flower supports syn-
chronous FL, relying on gRPC [72] protocol, and ensures that
on-client training, on-server aggregation, and communication
between the FL clients and the server are executed.

While COLEXT relies on Flower, it is by no means locked
into using this framework. Indeed, Flower could be substituted
with any other framework that supports on-device execution
of FL, as long as, besides the FL training control commands,
the framework exposes API hooks for indicating the begin-
ning/end of an FL round at the server and the beginning/end
of the local training on the client.

B. COLEXT Client and Server

The majority of FL research has been developed in Python
and evaluated on Linux-based x86 machines due to the ease
of use of this platform. Real-world FL deployments, on the
other hand, are expected to include other platforms, such as
the Tegra architecture of NVIDIA Jetsons, or even different
operating systems, such as Android. With COLEXT, we aim
to support code execution on different devices with minimal
effort from the experimenter’s side.

Android and Linux-based clients are handled differently in
Flower. Consequently, in COLEXT we devise a separate Linux
FL client and an Android FL client.

Linux client leverages containers cross-compiled using
Docker Buildx to support multiple architectures, including
AMD64 and ARM64. These containers are then stored on our
private container registry using Harbor [73]. COLEXT expects
that experimenters have their FL code written in Python and

2Flower GitHub page has been “starred” 4.4K times, while the TesorFlow
Federated page has accumulated 2.3K stars. In addition, the Flower website
states that the framework is associated with “The world’s largest Federated
Learning conference” – Flower AI Summit 2024.



will use the supplied pip requirements.txt file to install
the dependencies within the container.

Due to the unavailability of specific Python packages on the
Python Package Index (PyPI) for some of the SBC architec-
tures used in our testbed, we manually pre-compiled multiple
versions of certain Python packages (such as PyTorch with
GPU support for ARM) and enabled their inclusion during
the container packaging process.

In the client code, COLEXT expects that COLEXT deco-
rators have been applied to automatically collect performance
metrics from the FL code. Finally, while the common situation
of an experimenter providing the Python code with the pip
requirements.txt file is handled through automatic con-
tainer packaging (the configuration specification is described
in subsection IV-A), other setups, such as those involving
custom dependency compilation, are possible with manual
container building.

Android client is based on the COLEXT Android app,
within which an experimenter copies their Java/Kotlin code
defining the client behavior. The provided app exposes the
TensorFlow Lite support for on-device DL training, handles
communication with the server, and collects performance
metrics.

FL server is provided as a Python script, irrespective of
whether the clients are SBCs or smartphones, and is expected
to run on a Linux x86 machine. Similar to the Linux clients,
the FL server code is containerized with all its dependencies
installed. COLEXT expects the server code to utilize the
server-side COLEXT decorator to collect performance metrics,
e.g., round timings. Additionally, the container is configured
to have access to the GPU on the host machine in case the
server code can benefit from the accelerator.

C. Datasets and Data Partitioning

Regardless of client type, clients must obtain their dataset
at the start of each experiment. To avoid repeated downloads,
commonly used datasets in FL research, such as CIFAR [74]
and MNIST [75], are cached on all devices. Users can include
additional datasets to be cached if needed.

Note that since the entire dataset is installed on each device,
clients still need to determine which data points comprise
their specific subset. To stay general, COLEXT is oblivious
to specific data partitioning schemes, and we assume the
responsibility of devising data partitions lies with the user.3

D. Collecting Performance Metrics

In COLEXT, we aim to seamlessly capture experiment
performance metrics with minimal modification to the FL
research code and also support intuitive and informative vi-
sualization of the captured metrics.

The performance of FL has traditionally been evaluated
along a single dimension – inference accuracy of the resulting
model. COLEXT naturally supports the collection of this

3For instance, one option is to assign dataset subsets to clients by generating
a CSV file for every client, listing the data point indices to be used, as shown
in https://github.com/sands-lab/flower dcml algorithms.

metric by logging the returned accuracy values from Flower’s
server and client evaluation functions. Nevertheless, as shown
in our introductory example in Figure 1, metrics, such as the
energy consumption per device, execution time, and others,
are necessary for a holistic evaluation of FL algorithms. In
COLEXT, such metrics are collected by a background scraper
that periodically records them, timestamps them with the local
time, and aggregates the data in batches before sending them
to COLEXT database. The measurements are unrelated to FL
rounds. However, as the devices in the testbed are synchro-
nized using NTP, COLEXT can associate the performance
data with rounds by grouping the data according to the round
start/finish time.

The way the metrics are collected differs between Linux
and Android clients. In Linux, standard hardware metrics
such as CPU, memory, and network utilization are obtained
using the psutils Python package from a separate back-
ground process. Power consumption, however, is tracked dif-
ferently for different devices. Thus, for NVIDIA Jetsons,
we obtain the power consumption of the entire board using
jetson-stats monitoring tool. For LattePanda devices, on
the other hand, such a tool is not available, and we capture the
CPU power consumption using Intel “Running Average Power
Limit” (RAPL) through the pyRAPL Python package. Finally,
for OrangePi devices, no suitable software solution exists;
thus, we resort to physical power consumption measurement
using the Monsoon power meter [76].

Regarding GPUs, even though all SBCs have one, we were
only able to train ML models on NVIDIA Jetsons’ GPUs. The
other GPUs, the Intel HD Graphics GPU on the LattePanda
and the Mali GPU on the Orange Pi, lack support from major
ML frameworks, as these GPUs primarily focus on graphics
processing, thus have limited memory and lack support for
precision formats required for machine learning. NVIDIA
Jetson integrated GPUs, on the other hand, support CUDA
and, for the purpose of deep learning, can be treated as discrete
GPUs. Metrics for NVIDIA Jetson GPUs were collected using
the jetson-stats package.

In Android, accessing performance metrics is more
challenging than in Linux. While in the past, parsing
/proc/stat allowed one to retrieve device utilization met-
rics, in newer versions of Android (as of Android 12), this
is not available anymore. We therefore develop a set of
techniques for accessing various metrics on Android devices.
First, we assign special privileges to our app in Android OS,
where we register the app as the device owner. Then, we
use the official memory utilization API to obtain the memory
usage and /sys/devices/system/cpu scraping for CPU
utilization statistics. Obtaining GPU usage statistics is highly
challenging, as there is no official API for GPU statistics on
Android, nor do the usage statistics files necessarily exist on
the file system. Our investigation with multiple phone makers,
and models (Google Pixel 7, Xiaomi 12, Samsung Galaxy S21
FE, M54, XCover 6 Pro, ROG Phone 6, OnePlus Nord 2T 5G,
and Xiaomi Poco X5 Pro) finds that only Samsung devices
reliably expose the GPU utilization files, and only in case the

https://github.com/sands-lab/flower_dcml_algorithms


TABLE I: COLEXT environment variables.

Environment Variable Description
COLEXT SERVER ADDRESS Server address (host:port)

COLEXT N CLIENTS Number of clients
COLEXT CLIENT ID Client ID (0...n clients)

COLEXT CLIENT DEV TYPE Client device type

devices are rooted. We, thus, collect GPU statics for Samsung
devices within the COLEXT testbed. Finally, when it comes to
power consumption, the official Android BatteryManager
API allows us to collect power consumption attributed to
different apps and the system as a whole, all from our app
that was previously given device owner privileges.

E. Experiment Orchestration

COLEXT automates the deployment and running of FL
experiments on real-world clients. Since the underlying FL
framework handles Android and Linux clients separately (see
also Section V-B), the experiment orchestration varies between
SBCs and smartphones.

For SBCs, we create a Kubernetes cluster containing Linux
clients and the server. We use the microk8s orchestration
tool as it is geared towards edge devices and conveniently
available as a snap package, which isolates the Kubernetes
installation from the host filesystem while natively running the
entire Kubernetes stack without the need for containers. Con-
tainer deployment in Kubernetes requires configuring pods, the
deployment unit in Kubernetes. COLEXT prepares FL client
and server pod configurations using Jinja2 template files
that can be configured with the required device type for the
client, entry point, mounted directories for dataset caching,
and added COLEXT related environment variables (listed in
Table I), including a client identifier and device type.

Exposing and utilizing GPU computation through a Kuber-
netes container is done through microk8s, yet the support is
limited to discrete GPUs and is incompatible with integrated
GPUs of NVIDIA Jetsons. To overcome this, we configured
the underlying container runtime on those devices to use
the NVIDIA container runtime as the default runtime, which
exposes the GPU to any containers running on the device.

Finally, we also had issues with the default microk8s
Container Network Interface (CNI), Calico, because the
ipset kernel module is missing from Jetsons. To avoid this
issue, we switched to another CNI, Flannel [77].

For smartphones, a Kubernetes-based solution is not an
option. Instead, we build our own deployment system using
a combination of Python scripts, Bash scripts, and ADB.
ADB allows us to administer Android devices and issue
commands for installing and running our applications, while
Python scripts, along with Bash commands, provide an inter-
face between COLEXT server (also written in Python) and
deployment scripts. The smartphones are connected to the
server in Debug mode, which allows us to transfer files, install
the refreshed application (if needed), and run the application
for the clients through ADB commands.

Fig. 3: Example capture of COLEXT Dashboard.

F. COLEXT Dashboard

COLEXT Dashboard provides a visual depiction of the col-
lected performance metrics. To avoid cluttering the dashboard,
an experimenter can limit the metrics to a subset of rounds and
clients. A cropped screenshot of the dashboard can be seen in
Figure 3. Hovering over the graph provides information across
different clients, while the x-axis denotes time.

The dashboard also allows highlighting periods the FL
algorithm spends on different training stages (“Show stages”):
training in blue, and evaluation in red. By clearly distinguish-
ing between these two phases, the dashboard helps identify
patterns of each phase and reveals the cause of metric spikes
(power and GPU utilization) that are present in the example
depicted in Figure 3.

In addition to per-client metrics, the dashboard also contains
a section with aggregated metrics over device types to assist
with cross-device comparison. Finally, to simplify debugging,
COLEXT can also collect logs and display them directly in
the dashboard while the experiment is running.

VI. COLEXT TESTBED DEPLOYMENT

We deployed COLEXT testbed in a dedicated server room
at our institution premises. The testbed comprises of hetero-
geneous edge devices, including SBCs with integrated GPUs,
such as the NVIDIA Jetsons, x86 SBCs, such as LattePan-
das, ARM-based SBCs, OrangePis, and Nvidia Jetsons, and
Android devices, selected based on their AI task performance
scores from the benchmark AI-Benchmark [78], so to cover
low-, middle-, and high-end phones. In total, 48 devices,
of which 28 are SBCs of 6 model types, and 20 Android
smartphones of 8 models (5 vendors), are included in the
testbed. More details, including the quantity of each device
type, are present in Table II, while a picture of the testbed
can be seen in Figure 4. Furthermore, a server-grade machine
equipped with an Intel(R) Xeon(R) Gold 6442Y CPU (48
cores @ 2.6GHz), 256GB of RAM, and an NVIDIA RTX
A6000 GPU acts as the COLEXT server. Finally, the testbed



Fig. 4: COLEXT testbed devices.

Fig. 5: COLEXT Samsung Galaxy XCover 6 Pro powered by a
Monsoon PM.

also includes a Monsoon High Voltage Power Monitor (PM),
which acts as a power source, while simultaneously monitoring
the amount of power supplied to the device. PM measures
current and voltage at a sampling rate of 300 kHz. PM can
power SBCs directly through appropriate pins. For Android
devices, the battery must be removed and the PM’s wires
need to be connected to the battery pins. The Samsung
Galaxy XCover series, with its removable batteries, offers the
most straightforward implementation of the above, depicted in
Figure 5.

The testbed operates over its dedicated network. COLEXT
devices are connected through a switch and a WiFi access
point (AP) – the 28 SBCs, the FL server, and the WiFi AP
are connected to a switch using Ethernet cables, while the 20
smartphones connect to the AP via WiFi. The FL server runs
a DHCP service, configured with statically assigned IPs, and
is the gateway to the Internet.

The testbed devices are pre-configured with the appropriate
operating system and software environment. For SBCs, we
opt for Ansible playbooks to automate the configuration of
the devices, including the configuration of the NTP server
and the installation and configuration of microk8s, which also
adds the node to the Kubernetes node pool. For Android, some
device configuration is possible through ADB, including the
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Fig. 6: The overhead of performance metric collection on SBCs.
The results show average CPU and memory utilization over
1,000 metric collection events, with error bars indicating the 95th
percentile. On each platform the CPU utilization remains below
9%, while the memory utilization remains very low (< 50MiB).

NTP server setup, but other configurations, like the connec-
tion to ADB, require manual intervention. Due to hardware
differences, the OS and the environment vary across SBCs.
The OS also varies for Android devices, depending on the
vendor. The OS environment for every device type is described
in Table II. The testbed devices are pre-configured with
the appropriate operating system and software environment.
For SBCs, we opt for Ansible playbooks to automate the
configuration of the devices, including the configuration of the
NTP server and the installation and configuration of microk8s,
which also adds the node to the Kubernetes node pool. For
Android, some device configuration is possible through ADB,
including the NTP server setup, but other configurations, like
the connection to ADB, require manual intervention. Due to
hardware differences, the OS and the environment vary across
SBCs. The OS also varies for Android devices, depending
on the vendor. The OS environment for every device type is
described in Table II.

VII. VALIDATING COLEXT

We validate COLEXT for its ability to provide the metrics of
interest without significant overhead and its ability to support
a range of FL algorithms out-of-the-box.

Throughout this section, we use the CIFAR-10 dataset [74],
which is widely employed in FL research and hence allows us
to validate the results we obtain. We also use relatively small
models (35k to 380k parameters). Nevertheless, COLEXT is
agnostic to both the models and the datasets the clients use.
Lastly, devices use their default performance configurations,
with the exception of NVIDIA Jetsons, whose power mode is
set to the highest setting to optimize performance.

A. Quantifying Metric Collection Overhead

Frequent sampling of performance metrics may require
significant resources of the host machine, which, in turn, could
affect the execution of the FL task. To ensure this is not the
case in COLEXT, we profile the metric scrapper on SBCs.
The profiling ran for 5 minutes, scrapping every 0.3 seconds
and pushing metrics to the database every 10 seconds. In total,



TABLE II: Testbed device specifications. SBC’s AI Performance was retrieved from NVIDIA Jetson Benchmarks [79]. Score values
for Android devices were obtained from AI-Benchmark [78]. Unavailable scores are shown with a dash.

Single Board Computer (SBC)
Device Qty CPU (Core@GHz) Mem (GB@GHz) AI Perf (TOPS) OS environment
Jetson AGX Orin 2 12@2.2 64@3.2 275 Jetpack 5.1.2 + Linux for Tegra 35.4.1
Jetson Orin Nano 4 6@1.5 8@2.1 40 Jetpack 5.1.2 + Linux for Tegra 35.4.1
Jetson Xavier NX 2 6@1.9 8@1.8 21 Jetpack 5.1.2 + Linux for Tegra 35.4.1
Jetson Nano 6 4@1.5 4@1.6 0.472 Jetpack 5.1.2 + Linux for Tegra 32.7.4
Latte Panda Delta 3 6 4@2.9 8@2.9 – Ubuntu server 22.04
Orange Pi 5B 8 8@2.3 16@2.3 – Ubuntu server 22.04 [80]

Android Mobile Phone
Device Qty SoC Mem (GB) Phone score / SoC score OS environment
Asus ROG 6 2 Snapdragon 8+ Gen 1 16 1447 / 1000 Android 13
Xiaomi 12 2 Snapdragon 8 Gen 1 12 1355 / 1046 Android 12
Google Pixel 7 5 Google Tensor G2 8 720 / 525 Android 13
Samsung XCover 6 Pro 3 Snapdragon 778G 6 – / 257 Android 13
Xiaomi Poco X5 Pro 2 Snapdragon 778G 8 – / 257 Android 12
Samsung Galaxy S21 FE 2 Exynos 2100 8 262 / 196 Android 13
OnePlus Nord 2T 5G 2 Dimensity 1300 8 240 / 177 Android 12
Samsung Galaxy M54 2 Exynos 1380 8 – / 75 Android 13

we collected 1,000 sample points. We assess the excess CPU
and memory usage caused by such scraping in Figure 6.

For most devices, we see that CPU usage stays below 2.5%,
i.e., remains rather insignificant. The lowest CPU utilization
is associated with the OrangePi, which only collects metrics
from the psutils package. The second lowest utilization
belongs to the LattePanda devices, where, on top of psutils,
COLEXT resorts to PyRAPL to collect power measurements,
hence requiring additional CPU utilization. Jetson AGX Orin
and Orin Nano experience increased CPU usage, as these
devices call psutils and then jetson-stats for power
measurements and GPU utilization. Finally, we see a rather
unexpected spike in CPU usage for Jetson XavierNX and
Jetson Nano, where the CPU utilization is over 3 times higher
than for the other Jetson devices, despite using the same data
collection method. After profiling the code and benchmarking
the CPUs with the sysbench program, we discovered that
the CPUs of these devices are approximately twice as slow
as the CPUs of other Jetson devices. However, the CPU
utilization of XavierNX can be reduced by using a power
mode that favors CPU speed by using fewer cores (6@1.4GHz
or 2@1.9GHz). Nevertheless, we believe that with less than
10% CPU overhead, the burden imposed by fine-grain metric
collection remains acceptable irrespective of the device type,
while the rate of metric collection can be reduced in case
lowering the overhead is necessary.

In Figure 6, we also depict the memory usage, which is
shown to stay consistently low across devices when metrics
are periodically pushed to the DB. However, if metrics are
not periodically pushed, they are stored in memory, causing
memory utilization to increase by about 10 KiB for every 1k
samples collected, as each sample (of all the metrics) requires
an average of 10 bytes. Related to this, the network usage
is also determined by how frequently metrics are pushed to
the DB. Given the small size of the metrics, only minimal
bandwidth is required. Moreover, potential interference of data
transmission and the operation of the FL experiment can be
entirely avoided by sending the metrics to the DB only after

TABLE III: FL algorithms tested on COLEXT SBCs.

Algorithm Deployed Issues
FedAVGm [11] ✓ Aarch64 & TensorFlow on LattePanda
FedProx [12] ✓ -
Moon [13] ✓ GPU only
FedNova [16] ✓ -
FedPara [81] ✓ Dataloader segfault LattePanda + OrangePi
HeteroFL [19] X Code decoupling needed
FjORD [82] X Unsupported serialization

the experiment has finished.

B. Supporting Different FL Algorithms

1) Porting FL algorithms on SBCs: To confirm COLEXT’s
ease of use and compatibility with different FL algorithms, we
execute a collection of FL algorithms on our COLEXT testbed.
We select these algorithms from open-source implementations
developed within the Flower “Summer of Reproducibility”
initiative [83], during which a cash reward was provided for
the Flower-based implementations of published FL algorithms.
Currently, this collection includes 20 baselines, of which seven
(listed in Table III) were used for our experiments.

These baselines are written so that their folder structure
and code organization are uniform, which makes comparison
across algorithms straightforward. Nevertheless, due to varying
authorship, the coding style, code efficiency, and package
dependencies varied noticeably among the algorithms. Thus,
we believe that with this set of algorithms, we can com-
prehensively test the COLEXT’s ability to support different
FL algorithms. Note, however, that all of the baselines were
initially implemented with a simulation environment in mind,
and consequently, certain modifications are necessary to get
them working in a real-world client-server deployment. In case
the algorithms do not assume shared data between clients and
the server, and when the data communicated with the server
can be serialized by the client, the required changes are minor.
In all cases, the entry script needs to be updated to support
the separate start-up of client and server as follows:



# Before: Simulation

history = fl.simulation.start_simulation(

client_fn=client_fn,

num_clients=cfg.num_clients,

config=fl.server.ServerConfig(cfg.num_rounds),

strategy=strategy,

)

# After: Client - Server

# is_client, is_server, server_addr, num_rounds, client_id:

# passed as arguments via the configuration file

if is_client:

fl.client.start_numpy_client(

server_address=cfg.server_addr,

client=client_fn(cfg.client_id),

)

elif is_server:

fl.server.start_server(

server_address="0.0.0.0:8080",

config=fl.server.ServerConfig(cfg.num_rounds),

strategy=strategy,

)

As we identify in Table III, we successfully complete the
experiments with five out of seven selected algorithms – two
baselines do not comply with the above requirements and
hence cannot be deployed on the testbed without corrections
to their codebase. The process was relatively straightforward,
and besides the expected augmentation of the code (i.e., 3
lines of code for decorating the FL client and strategy, detailed
in Section IV-A, and the above-shown changes to the entry
script), we had to take the following additional steps: 1) Flower
uses Poetry [84] to specify dependencies, thus we had to
convert the list of dependencies into the format COLEXT
supports, i.e., the pip requirements.txt file, using the
poetry export command; 2) package dependencies for
aarch64 sometimes needed adjustments. From our analysis, all
baselines were tested on an x86 machine. However, when we
try to use the same (identical) dependencies, we sometimes
find that minor versions of packages are not available on
aarch64. When we encounter these issues, we bump the minor
version for one that supports aarch64; 3) we had to replace
the use of dependencies explicitly targeting x86 architectures.
In Flower baselines, torch and torchvision dependencies are
specified by prebuilt wheels targeting x86. We had to comment
out these dependencies so that aarch64 wheels could be used
for our aarch64 devices.

We now describe the challenges encountered when porting
the baselines. For FedAVGm, we had to degrade TensorFlow
from 2.11.1 to 2.11.0 because a dependency required by the
original version was not available for aarch64. Additionally,
the PyPI TensorFlow wheel for x86 CPUs assumes support for
the AVX instruction, which is not available on the LattePandas,
so they cannot use those wheels. Certain parts of the Moon
baseline code assume that a GPU is available for the movement
of data to/from the GPU. This prevents the experiment from
running on CPU-only devices. FedPara is deployable, but
we encountered issues with the PyTorch DataLoader module,
causing segmentation faults on OrangePis and LattePandas.

The exact cause remains unclear, but it could be related
to the data partitioning strategy not supporting a reduced
number of clients. The HeteroFL baseline requires some code
decoupling to work in a client-server setup. In the simulated
environment code, the client information is assumed to be
available to the server before the experiment starts, but in a
client-server setup, it needs to be shared by the client. FjORD’s
client implementation attempts to send nested dictionaries and
model weights, whereas Flower supports only string-to-scalar
dictionaries, thus, the algorithm was not portable.

To confirm that the experimentation in COLEXT was not
only successful but also produced the expected results, we
executed the Moon [13] baseline and compared it with the
FedProx [12] algorithm with 10 clients using the CIFAR-10
dataset as instructed in the README for the Moon baseline.
The accuracy achieved for the final models was slightly lower
than the values reported in the README, more specifically
0.1% and 1.4% lower for Moon and FedProx, respectively.
This discrepancy can be explained by the alteration of the
random number generator sequences when switching from a
simulated environment to a client-server setup.

In conclusion, the experiments conducted in COLEXT
demonstrate that the FL code can be successfully deployed in
the testbed environment with only minor potential variations
in accuracy compared to the simulated environment.

2) Porting algorithms to Android devices: On Android de-
vices, Flower’s support limits us to use TFLite. One significant
constraint of TFLite is its lack of support for stateful FL
algorithms. To confirm the support of different algorithms
in COLEXT, we needed to port stateless FL algorithms to
Android.

Given the limitations, we developed an application that sup-
ports stateless algorithms, and we implemented and tested the
algorithms presented in Table IV. The algorithms were ported
from the Flower code repository. FedYogi and FedAdam
modify the adaptive momentum estimation (Adam) optimizer
to stabilize the learning process and improve convergence in
heterogeneous federated settings. FedAdagrad adapts the Ada-
grad optimizer for FL by using per-parameter learning rates
that adjust based on the history of gradients, accommodating
non-IID data distributions. FedOpt serves as a generalized
framework for federated optimization, encompassing various
adaptive optimizers providing flexibility and robustness.

All of the stateless algorithms only require changes on
the server side. Currently, the implementations in the Flower
repository for all algorithms support serialization designed for
Python implementations. To make the algorithms work with
Android, we had to make certain changes to the code. The
initial code from Flower relies on NumPy for the serialization
of weights transferred to the clients and back. As we are
running these clients on Android, we do not have access to
NumPy, so we harnessed the existing implementation of a
suitable serialization that is present in the FedAvgAndroid
code from the Flower repository. Furthermore, the above
algorithms require a random starting model. We added a
mechanism similar to what FedAvg uses, whereby if there is



TABLE IV: FL algorithms tested on COLEXT smartphones.

Algorithm Deployed
FedAvg [3] ✓
FedAdam [85] ✓
FedYogi [85] ✓
FedAdagrad [85] ✓
FedOpt [86] ✓

1500 2000 2500 3000

TTA (s)

20

40

60

80

E
T

A
(k

J
)

Model size

Small

Large

Fraction fit

1

0.8

0.6

0.4

0.2

Algorithm

HeteroFL

FedAvg

FedProx

Model size

Small

Large

Fig. 7: TTA and ETA consumed to reach 64% accuracy on
CIFAR-10 with 20 clients and Dirichlet distribution (α = 1.0).
Missing configurations failed to reach the target accuracy for
three consecutive evaluation rounds.

no initial model present at the server, such a model is pulled
from one randomly chosen client and broadcast to the others.

VIII. PROFILING WITH COLEXT

Heterogeneity of both SBC and smartphone devices in-
cluded in our testbed, support for a broad span of algorithms
and datasets, together with a range of performance metrics
produced by the framework, ensure that COLEXT provides
a rich experimentation space for FL research In this section,
through a small number of use cases, we show how COLEXT
experiments can be used to improve our understanding of FL.

A. Revealing Accuracy vs. Resource Usage Trade-off

The final model inference accuracy is the most reported
metric in FL research. Yet, the accuracy is seldom juxtaposed
against the resources needed to achieve it. In Figure 1 of
section I, we reveal that substantial energy costs can be
incurred to achieve a very modest gain in accuracy. We now
expand this investigation and assess how both the time and the
energy vary as we aim to achieve a certain inference accuracy
through different FL algorithms and settings.

We focus on the SBC clients in our testbed and assign both
a training and a validation dataset sampled from the same
distribution to each client, whereas distributions differ among
the clients (i.e., non-IID data) according to the Dirichlet distri-
bution with parameter α = 1.0. We employ FL with different
algorithms (FedAvg, FedProx, and HeteroFL), using different

model sizes (Small – 35k and Large – 380k parameters) and
a different number of clients harnessed in each round. After
each training round, each client evaluates the global model on
its validation dataset and reports the resulting accuracy to the
server. The experiment continues until the average validation
accuracy across all clients achieves a pre-defined target value
for three consecutive evaluation rounds.

We are interested in resources spent for training, thus we
measure the wall clock (i.e., time-to-accuracy – TTA) and the
energy (i.e., energy-to-accuracy – ETA) required to reach the
target accuracy. To determine the energy spent on training,
we first measure the average idle power consumption of the
devices and subtract this “average idle power” from the power
measurements during training. For instance, our experiments
indicate that Jetson XavierNX consumes 2.9W (Watt) at rest.
Hence, when such a device consumes, on average, 5W during
the experiment, we consider that 2.1W is the “average active
power” used for training. We then compute the energy used
for training by multiplying the “average active power” by the
time when the device is actively learning.

In Figure 7, we compare TTA and ETA for the three
algorithms when the target accuracy is set to 64%. We observe
that using the Large model (denoted with larger symbols)
significantly increases the training time. A close look reveals
that the cause for this lies in stragglers, as the server waits until
it receives the updated models from all the sampled clients.
Note that the FedAvg (square symbols) and the FedProx
(inverse triangle symbols) algorithms require all the clients
to train the same model architecture, while the HeteroFL
algorithm (star symbols) goes beyond this limitation, allowing
clients to train a model with a size proportional to their
computational power. Consequently, the TTA for HeteroFL
is comparable to the algorithms in which all clients train the
Small model (denoted with smaller symbols). For the cluster
of points on the left of the figure, which reflect the training
of the Small model with the FedAvg and FedProx algorithms
and heterogeneous model sizes with HeteroFL, we see a trend:
increasing the percentage of clients sampled for training in
each training round (“fraction fit”) decreases the TTA, as
each update to the server model is obtained with more data.
However, this causes an increase in ETA as more devices are
used for training.

B. Revealing (in)Efficiency of On-device Training

COLEXT can also be used to assess the efficiency of
different device types when handling the same workload.

We focus on the Moon and FedProx implementations that
we experimented with in subsection VII-B. To profile effi-
ciency, we measure the time and the energy required to process
one batch of data, calculated by dividing the measured time
and energy required to finish a training round by the number
of batches in the round. We deploy and run the algorithms on
GPU-enabled SBCs in our testbed.

The results, shown in Figure 8 (top-left), reveal that the
fastest device is, unsurprisingly, AGXOrin, which is also
advertised as the most powerful SBC in our setup. However,
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for both algorithms, AGXOrin is not significantly faster than
OrinNano, yet it uses noticeably more energy (top-right plot).
Thus, we ask: How can we quantify whether the decrease in
training time justifies the additional energy cost?

This led us to consider another metric common in digital
electronics, the Energy Delay Product (EDP). This metric
multiplies the time taken to complete a task with the energy
required for the task completion. Thus, a (preferred) low EDP
indicates that a solution is both fast and energy-efficient. In
Figure 8 (bottom-left), we observe that, according to EDP,
OrinNano is the most efficient device in both algorithms. In
other words, considering our subset of devices, if we only use
OrinNano devices for this algorithm, we would minimize the
time taken to train a batch for a given energy budget and vice-
versa. The data also shows that XavierNX appears to be the
slowest device, despite being a more recent model and having
better hardware compared to the oldest model, the Jetson Nano
(Table II for device specifications). However, when FedProx
is employed, despite XavierNX being the slowest device, it is
still more efficient than a faster device, as is shown by the
lower EDP value compared to Jetson Nano.

Note that our comparisons were done without fine-tuning
the boards (e.g., the CPU operating frequency, etc.) for optimal
efficiency;4 it is possible that running AGXOrin in a lower
power mode could make it more efficient than OrinNano. Nev-
ertheless, these examples demonstrate how EDP helps identify
which devices are more efficient for specific algorithms and
how device efficiency changes across algorithms. Another
interesting use of EDP is to evaluate algorithm modifications
to determine efficiency improvements.

4Users can update the power mode and CPU frequency of the devices;
however, currently this cannot be done via the COLEXT configuration file.
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Fig. 9: Normalized (N) round level metrics for Moon and FedProx
using an 11.6M parameter model (L), with the addition of a small
optimization (O) to the original Moon baseline code. Results show
average round data statistics over 30 rounds, with error bars
indicating the 95th percentiles.

With these insights, COLEXT provides users with a valu-
able tool to compare device efficiency, enabling them to
observe and address potential performance issues with FL on
real-world devices.

C. Revealing Algorithm Implementation Issues

The testbed also allows us to analyze the algorithms’
performance at the FL round level. We once again turn back
to the SBC-based experiment we performed with FedProx
and Moon in the previous section. The algorithms are rather
similar, yet we expect that results will reveal the cost of
extra forward passes conducted by Moon – compared to
FedProx, which completes one forward pass, Moon performs
three (one for the client model, two for the server model)
in each round. However, the results of the experimentation
(depicted in Figure 8 left) show that both algorithms take
a very similar amount of time per batch (and, consequently,
per round). To further unpack the issue, instead of using the
Small model, which might prevent the expected differences
from being noticed, we tasked the algorithms with training the
Large model. This larger model exceeds the 4 GB memory of
the Jetson Nano devices, so this experiment was only done
with other Jetson device types. The results, shown in Figure 9
(with L indicating the Large model training), indicate that the
difference in time between the two algorithms is obvious, if
not unexpectedly large.

Surprised by such a large difference in the execution time
(Moon 1.75× slower), we further inspected the code and
identified unnecessary data movements from the GPU to the
CPU memory in the Moon codebase. By addressing this and
optimizing the code (denoted with L+O in Figure 9), the
results finally get in line with the theoretical expectations
regarding the two algorithms.

This experiment highlights how code optimizations and
model size modifications can drastically change how two
algorithms compare in terms of the training time, making their
implementation and real-world performance analysis critical.

D. Identifying Causes of Stragglers in Real-world Mobiles

We perform extensive experimentation with Android devices
in COLEXT and identify two main reasons for devices becom-
ing stragglers, both due to hardware heterogeneity:



Fig. 10: CPU utilization and power consumption on heteroge-
neous mobile hardware. Data collected over 1 round of training
on CIFAR-10 dataset.

Fig. 11: Uploaded bytes over time after a round of training on
FEMNIST dataset [87] using CNN model.

Compute speed. Hardware heterogeneity introduces varying
compute capabilities among devices, which is particularly
noticeable during model training. The top graph of Figure 10
shows the CPU utilization and power consumption during one
round of training on three devices: Google Pixel 7, Xiaomi
12, and OnePlus Nord 2 5G. The start and end of local
training can be identified by shifts in CPU utilization, from
near idle (close to 0%) to high utilization (over 100% –
indicating that multiple CPU cores are active) and then back
to idle. We observe that OnePlus Nord takes the longest to
complete a training round, with almost 2.3× longer round time
than the fastest participating device in this training (Google
Pixel 7). In the bottom graph of Figure 10, significant power
consumption spikes are evident for two devices, contrasting
with the OnePlus as a result of it being severely underclocked.
Despite having similar CPUs, the default underclocking of the
CPU in OnePlus makes a substantial difference in a real-world
deployment of FL.
Data reception and transmission. Even with similar com-
puting capabilities, devices can vary significantly in other

hardware components, notably the wireless communication
module (WiFi/cellular chip). With larger models requiring the
transfer of many weights, differences in data transmission
speeds become more evident. Figure 11 illustrates this, show-
ing the Xiaomi 12, with the default transmission parameters,
as a straggler, taking 3.2× longer transmission time for the
same amount of data compared to the OnePlus 2T 5G.

IX. LIMITATIONS AND FUTURE WORK

Android & SBC deployments. Deep learning has evolved
separately on desktop and server environments, where it is
often implemented in Python, harnessing PyTorch or Keras
libraries, and on mobile devices, where deep learning is
usually based on the TensorFlow Lite (TFLite) library and
written in Kotlin or Java. Consequently, FL is also supported in
different manners on the two groups of devices present in the
COLEXT testbed – SBCs and Android phones. While we rely
on Flower, due to its support for both of these device groups,
we still face the barrier of different serialization formats used
by PyTorch and TFLite, which hampers FL over a group of
clients where Android and SBC devices are intermixed. A
potential solution could be a compatibility-providing mapping
between the PyTorch and TFLite serialization formats, some-
thing that ONNX [88] promises to provide. However, our
extensive experiments with such a mapping failed to produce
a reliable solution. Alternatively, deploying TFLite on single-
board computers (SBCs) could be considered. However, this
approach is not widely adopted among FL researchers, and
TFLite may not offer the same level of usability as PyTorch
for certain applications. In future versions of COLEXT, we
aim to address this issue and enable a combination of models
trained with SBC and Android devices to be used within the
same experiment.
Network conditions. Network variability is a common prop-
erty of edge environments where wireless networks are the
norm. COLEXT currently does not support controlling net-
work conditions, but preliminary work on that front has
already been conducted. For SBCs, we are adding support
for fixed latency and bandwidth settings on clients, which
could be configured using the Linux tc tool. Due to the
difficulty of configuring Android clients in the same manner,
for smartphones, we plan on supporting network parameter
modifications on the server side only.
Concurrent users. Given the size of our device pool, 28
SBCs and 20 smartphones, allowing multiple users on each
platform would restrict FL experimentation with just a handful
of devices, defeating the purpose of COLEXT, which aims to
support the investigation of FL over heterogeneous hardware.
Due to this, access to COLEXT is currently limited to two
users at a time for a set period (e.g., one week), with one
user assigned to the Android portion, and the other user to the
SBCs. Once the number of devices is significantly increased,
a more scalable access mechanism will be introduced.



X. CONCLUSION

Reproducible and realistic experimentation is necessary for
the future growth of distributed AI. Despite its research popu-
larity, FL remains mostly confined to simulations, as the effort
of deploying FL solutions over heterogeneous edge devices
and collecting performance metrics remains insurmountable
to most research groups. We presented COLEXT, an FL
experimentation framework and testbed that allows an arbitrary
FL algorithm to be run in a heterogeneous environment
and assessed from various performance aspects. Our testbed
already employs over 40 devices and collects a range of met-
rics, including inference accuracy, detailed energy usage, and
CPU/GPU/memory utilization information. Nevertheless, we
believe that by making COLEXT publicly available, we will
support the organic growth of our testbed so that it addresses
the up-to-date needs of FL researchers and practitioners.
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