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Progressing beyond centralized AI is of paramount impor-
tance, yet it has been shown that distributed AI solutions, in
particular various federated learning (FL) algorithms, cannot
be realistically assessed in a simulation setting [6], which
prevents the research community from identifying the most
promising approaches and practitioners from being con-
vinced that a solution is deployment-ready. The largest hur-
dle towards FL algorithm evaluation is the difficulty of con-
ducting real-world experiments over a variety of FL client
devices and different platforms, while evaluating various
dimensions of algorithm performance, such as inference ac-
curacy, energy consumption, and time to convergence.
In this paper, we overcome the limitations of previous

work that either supported experimentation with a single al-
gorithm and unified hardware architectures [6] or only used
trace-based simulation [3], and present CoLExT, a real-world
testbed for FL research. CoLExT is designed to streamline FL
experimentation over heterogeneous edge devices, such as
single-board computers (SBCs) and smartphones, while pro-
viding real-time collection and visualization of performance
metrics. CoLExT only requires minimal developer’s effort to
port algorithms to testbed-based execution, and its metrics
collection instrumentation introduces negligible resource
usage overhead. Furthermore, CoLExT includes an easy-to-
use configuration mechanism allowing an experimenter to
modify the execution scenario, including the number/nature
of devices running the algorithm, the training arguments,
and metric collection settings. Finally, through our initial
experimentation, we reveal previously unknown trade-offs,
inefficiencies, and programming bugs that popular FL algo-
rithms exhibit once evaluated in a realistic setting and, thus,
demonstrate the practical usability of CoLExT.
Figure 1 illustrates how CoLExT sheds new light on FL

algorithm evaluation. We experiment with 3 FL methods
(FedAvg [5], FedProx [4], and HeteroFL [2]), with different
model sizes and a different ratio of clients participating per
training round. Traditional means of simulation-based as-
sessment would only compare algorithms based on their
accuracy and would identify FedProx with a large model
and full client participation as the most promising solution
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Figure 1: Validation accuracy VS energy to accuracy.
(top-right blue square). CoLExT, on the other hand, uncov-
ers other metrics, such as CPU utilization, training duration,
and energy usage. In the figure, CoLExT reveals that the
amount of energy needed for reaching a particular level of
accuracy (i.e., energy-to-accuracy, ETA) differs drastically
among points that achieve very similar accuracy. Thus, while
the previously identified FedProx configuration reaches the
top accuracy, it consumes 3× more energy for a mere 4%
increase in accuracy when compared to the FedAvg configu-
ration using 40% client participation (top-left pink triangle).

For more details on CoLExT, see our technical report [1].
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