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ABSTRACT
We develop a methodology for the analysis of machine learning

(ML) models to detect and understand biased decisions and apply

it to two specific scenarios. In particular, we show how analyzing

model predictions across the dataset, comparing models trained on

different subsets of the original data, and applying model-agnostic

post-hoc explanation tools can help identify bias in a model in

general as well as in specific instances. Further, we consider several

definitions of bias and fairness, and show how each provides a

different interpretation of the model decisions.

Our results show that the analysis of models through the lens

of statistical analysis and post-hoc explanations helps to detect

and understand bias. We also observe that post-hoc explanations

often fail to detect individual biased instances, and caution against

using this category of tools to guarantee model fairness. Finally,

we provide insights on how this analysis can help understand the

origin and shape of bias.
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1 INTRODUCTION
Machine learning models are ubiquitous in our everyday lives, in-

cluding emerging applications in networking [5, 8, 15, 19, 31] and

network security [3, 14, 22, 25, 32, 34]. However, concerns arise

when those models are used for decision-making in critical or sensi-

tive applications. One of the main concerns for instance is whether

the models may discriminate unfairly, either by flaws introduced
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during training or, more straightforwardly, by perpetuating biases

that already exist in current datasets. To address the issue of fairness

in ML, researchers have developed various ways to identify bias

through statistical definitions [6, 33, 35], to detect bias in trained

models [11], to train bias-free models through dataset curation [6]

and adversarial training [33, 35], and to interpret the model re-

sults [17, 18, 23, 24, 26]. However, due to the challenges of learning

unbiased models from biased real-world data and the many differ-

ent forms bias can take, the challenges of how the different biases

and model interpretations are related and navigating the trade-off

between fairness versus accuracy are still open problems.

We empirically investigate how bias and accuracy change with

different dataset setups and how these biases relate to specific

features and decisions of supervised binary classifiers. For this

purpose, we combine the analysis of ML decisions through existing

statistical definitions of bias and the use of recent model-agnostic

explanation tools to understand the results of two well-known

datasets (UCI adult [4] and German credit [13]) commonly used

for bias investigations. In particular, we propose a methodology to

analyze the statistical correlation between features and biases with

a concrete application to these datasets and explore how post-hoc

explainers [18, 23, 24] help detect and understand learned biases.

In this paper, we report several interesting findings. We show

that not all fairness definitions lead to similar bias detection and

the protected feature is not necessarily the feature that influences

the model biases (§ 4.1). We reveal that post-hoc explanation tools

do not always agree on their explanation of the output of the model

(§ 4.2). We show that there exist many different ways in which

biased instances can be detected with high probability through

purely statistical analysis and post-hoc explanation tools (§ 4.3-

§ 4.4). Finally, we give evidence that cautions against using post-hoc

explanation tools to detect bias in individual predictions (§ 4.4).

We believe that this paper will contribute to improving known

techniques for detecting and, ultimately, correcting model biases.

While our approach is rather general, we believe that the questions

we address are particularly relevant for this workshop on applica-

tions of ML in networking given the potentially large user base that

these applications may affect.

2 PRELIMINARIES
We start by introducing our setup and several definitions of model

bias and fairness adapted from prior works.

As the predictor model, we consider a binary classifier mapping

the input features 𝑋 to a boolean decision 𝑌 , such that the model

output 𝑌 = 𝑓 (𝑋 ) for any particular instance is 𝑦 ∈ {+,−}. We

assume the input 𝑋 contains one protected feature 𝑍 , which is a

feature that should not be used as part of the decision process

to ensure fairness. The classifier is not aware, during training, of
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which feature is the protected one, and thus cannot be artificially

constrained to avoid it.

The protected feature 𝑍 has only two values 𝑧 ∈ {𝑔,𝑔}. As
defined in [6], a deprived group is a group of individuals with a

specific value in the protected feature 𝑧 = 𝑔, which the model

discriminates against. On the other hand, individuals belonging to

a favored group (𝑧 = 𝑔) are given an unfair advantage by the model.

Mehrabi et al. [20] present several definitions of fairness that

can detect biased models and individual biased predictions. We pick

three of the most common definitions used to detect biases inside

the entire model. The bias is measured in the model by observing

the relation between the value of𝑍 and the probability of selecting a

positive output𝑦+. Those definitions quantify bias as a single metric,

such that a positive value indicates a bias against individuals in the

deprived group.

Definition 2.1. Demographic parity. A predictor 𝑌 satisfies de-

mographic parity if 𝑃 (𝑌 |𝑧 = 𝑔) = 𝑃 (𝑌 |𝑧 = 𝑔).

A model is considered unbiased when the probability of a pre-

diction being positive or negative is the same for two instances

that are identical except for the protected feature 𝑍 . Analogously

for a dataset, the labels have to be the same. This definition is

widely used to detect discrimination both in models and in datasets

[6, 33, 35]. Specifically, we use the formulation of demographic

parity from [6, 33], defined as:

𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝑓 ) = 𝑃 (𝑦+ |𝑧 = 𝑔) − 𝑃 (𝑦+ |𝑧 = 𝑔) (1)

to measure discrimination in a model 𝑓 , and the same equation

with 𝑦 can be used to measure the discrimination in a dataset 𝐷 .

Definition 2.2. Eqalized odds. A predictor 𝑌 satisfies equalized

odds with respect to protected feature 𝑍 and outcome 𝑌 , if 𝑌 and 𝑍

are independent conditional on 𝑌 , i.e., 𝑃 (𝑌+ |𝑧 = 𝑔,𝑌 ) = 𝑃 (𝑌+ |𝑧 =
𝑔,𝑌 ).

Specifically, given an outcome 𝑌 the prediction of the model

needs to be independent of the protected feature 𝑍 . This definition

is used in [6, 35] to detect a biased model by comparing the false

positive rate (𝐹𝑃𝑅) and false negative rate (𝐹𝑁𝑅) of the deprived and

favored group. We reduce the metric to a single value quantifying

the amount of bias in the model as:

𝑑𝑖𝑠𝑐𝑜𝑑𝑑𝑠 (𝑓 ) =
𝐹𝑁𝑅𝑔 − 𝐹𝑁𝑅𝑔
𝐹𝑁𝑅𝑔 + 𝐹𝑁𝑅𝑔

+
𝐹𝑃𝑅𝑔 − 𝐹𝑃𝑅𝑔
𝐹𝑃𝑅𝑔 + 𝐹𝑃𝑅𝑔

(2)

where 𝐹𝑃𝑅𝑔 and 𝐹𝑁𝑅𝑔 are the false positive and false negative rates

of the deprived group, 𝐹𝑃𝑅𝑔 , and 𝐹𝑁𝑅𝑔 are the false positive and

false negative rates of the favored group.

Definition 2.3. Eqal opportunity.A binary predictor𝑌 satisfies

equal opportunity with respect to 𝑍 and 𝑌 if 𝑃 (𝑌+ |𝑧 = 𝑔,𝑌+) =
𝑃 (𝑌+ |𝑧 = 𝑔,𝑌+).

The prediction and the protected features are conditionally in-

dependent on a positive label. This definition was used by Zhang

et al. [35] to remove model bias through adversarial learning. In this

approach, we quantify the discrimination of the model as the true

positive rate difference between the favored and deprived groups.

𝑑𝑖𝑠𝑐𝑜𝑝𝑝 (𝑓 ) = 𝑇𝑃𝑅𝑔 −𝑇𝑃𝑅𝑔 (3)

In addition to the three definition of bias metrics above, we also

pick two definitions of fairness to detect whether a specific predic-
tion is biased: fairness through awareness [11] and counterfactual
fairness [16].

Definition 2.4. Fairness though awareness. A predictor is fair

if it gives similar predictions to similar instances.

This definition is used by Dwork et al. [11] to train an unbiased

model by detecting whether a specific prediction is biased. One way

is to use statistical distance to group similar instances and detect

variations in the model output. In our analysis, we instead define

similar instances as instances where the input features have similar

contributions to the decision, as described in § 3.3.

Definition 2.5. Counterfactual fairness. Predictor 𝑌 is coun-

terfactually fair if under any context𝑊 = 𝑤 and𝑍 = 𝑧, 𝑃 (𝑌𝑍←𝑔 (𝑈 ) =
𝑦 |𝑊 = 𝑤,𝑍 = 𝑧) = 𝑃 (𝑌𝑍←𝑔 (𝑈 ) = 𝑦 |𝑊 = 𝑤,𝑍 = 𝑧), for all 𝑦.

Where 𝑋 = 𝑍 ∪𝑊 and 𝑈 is the set of relevant latent features

which are not observed. Therefore the prediction of the model has

to be independent of the protected features.

3 METHODOLOGY
We devise an empirical methodology to identify bias in binary

classifiers. By varying the features and distribution of the inputs

throughout various experimental scenarios, we observe how the

bias changes in shape and intensity, and analyze the results to corre-

late recognizable symptoms of biased classifiers. The symptoms are

gathered through a statistical analysis of the bias and by applying

post-hoc explanation tools to the classifiers.

We release our codes and additional results at this repository:

https://github.com/MatRug/detecting_individual_bias.

Model explanations. We build upon several post-hoc explana-
tion tools to determine how the model decided on its output, i.e.,

attributing a score or weight to individual input features based

on their effects on the output. The tools we use are LIME [23],

SHAP [18], and Anchors [24]. The first two return a specific weight

for each feature, indicating how much the feature influences the

result toward an outcome or the others. Anchors instead returns

the features that have the biggest influence on the model’s predic-

tion. The authors reported that one limitation of this tool is for

predictions near the boundary decision function of the model or

rare classes of predictions, where the number of anchors obtained
is very high.

We note that LIME and SHAP sample the input space around

the prediction to build a linear model. As the samples are taken

randomly around the prediction, the number of samples must be

selected carefully to minimize variance in the explanation weights.

We extract 10 explanations for every instance in 0.15% of the testing

set and compute the coefficient of variation for each feature of

the weights computed by the explainer, iterating the number of

samples from 5,000 (default value) to 100,000, with steps of 5,000.We

use UCI adult dataset for this analysis, with quartile discretization

enabled. For LIME, Fig. 1a shows that the coefficient of variation

is almost constant after 50,000 samples. Instead for SHAP (Fig. 1b)

the coefficient of variation reach a value of 10
−17

for all features

(i.e., no variation) after 300 samples. Thus, we select 50,000 and 300

sampled instances per prediction for LIME and SHAP, respectively.

https://github.com/MatRug/detecting_individual_bias
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Figure 1: Analysis of the coefficient of variation of the weights by
varying the number of samples on the UCI adult dataset.

Datasets and models. The UCI adult is a dataset for predicting
if an individual has an annual income higher or lower than $50K,

based on 14 features. This dataset is known to have biases against

both gender and race. Among the protected features we exclude

race and focus on gender. In addition to that, we also remove redun-

dant features and differentiate between categorical and numerical

features. The final features are: Workclass, Education-num, Occu-
pation, Relationship, Sex, Capital-gain, Capital-loss, and Hours-per-
week. The last 3 are numerical features and the rest are categorical

ones, and hence are discretized by LIME and SHAP. The training

set has 32,561 instances (21,790 males and 10,771 females) with

𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝐷) = 0.196. The testing set has 16,281 instances; consid-

ering that some features were removed, some instances presented

duplicates. With the removal of these duplicate instances, the test-

ing set has 8,257 instances left (5,255 males and 3,002 females)

with 𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝐷) = 0.159 instead of the original testing set where

𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝐷) = 0.192. In both datasets, the demographic parity

is important because the model could learn the same bias when

trained on them.

The German credit is a dataset for predicting if a person has

good credit standing or not. It has been observed to be biased

against gender [7]. We use the 9 features reported in [30]. The

training set has 800 instances (552 males and 248 females) with

𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝐷) = 0.064; the testing set has 200 instances (138 males

and 62 females) and 𝑑𝑖𝑠𝑐𝑑𝑒𝑚𝑜 (𝐷) = 0.119.

We train several neural networks (NNs) that consist of one or

more hidden layers with ReLU activation function and the last

layer has two units and softmax activation function. Based on prior

works [1, 6, 9, 12, 29, 33, 35], we use six different NN architectures

for UCI adult, and one (128-64-32 units) for German credit. We use

Adam optimizer and binary cross-entropy loss function.

3.1 Scenarios
We devise multiple scenarios to analyze and understand how dis-

tinct features influence the bias of the classifier and how bias cor-

relates with test accuracy. A scenario refers to a transformation

Scenario 1 2 3 4 5 6 7

Relationship v b x v b x t

Sex v v v x x x v

Table 1: UCI adult features for each case of datasets used to train
the models. All cases have Workclass, Education-num, Occupation,
Capital-gain, Capital-loss, and Hours-per-week. In scenarios 2 and 5,
Relationship feature is reduced to a binary value (e.g. wife or other)
(b), and in 7 to wife, husband, or other (t). For all other scenarios a
(v) means that the feature is selected and (x) not. In addition to that
case there case-8 with equal number of male and female, and case-9
same as case-8 with demographic parity.

of the original dataset in which a subset of features are excluded

or transformed. The base scenario does not exclude any feature.

As considering all combinations of features is time prohibitive, we

focus on 9 scenarios of interest based on insights on the feature

semantics. This derives from knowledge of the protected features

and the features correlated to them, which can be obtained through

a Bayesian pre-analysis of the dataset.

For UCI adult, Table 1 reports the relevant variations with Re-
lationship and Sex features across all scenarios. Case-1 is the base

scenario with the original dataset. In case-2 and case-5, we use a

binarized value of Relationship (either wife or other), to distinguish

between bias introduced by the Relationship feature (value wife)
and the Sex feature (value female). Case-3 excludes the Relationship
feature altogether, as it is related to Sex because the value wife is
always used for instances where Sex is female, and husband with

male, hence we seek to observe the importance of this feature in

the bias of the model.

Case-4 excludes the feature Sex; therefore, the model can infer

the gender of the individual only through the Relationship feature.

In case-6, both Relationship and Sex are removed, and the model

has no direct access to the gender of the individual represented by

each instance. Case-7 has a similar purpose to case-2 and 5, but

instead of using a binary value, it uses three values, husband, wife,
and other.

Case-8 randomly removes instances from the dataset to guar-

antee it contains the same number of males and females, to see

if the model bias is affected by having more training samples to

learn from. Lastly, case-9 is the same as case-8 with demographic

parity fairness, which guarantees that if the classifier turns out to

be biased, it is due to the training process.

For German credit, we use only two training scenarios, one with

all 9 features and one without Sex, for similarity with UCI adult: we

call them case-1 and case-4. Due to the small number of instances,

it is impossible to create cases similar to 8 and 9.

3.2 Feature analysis
To understand the reasoning behind the model predictions, i.e.,

which features and values are used to decide on the output, we

analyze individual predictions through model-agnostic post-hoc

explanation tools. To account for variations in explanations, we

use three different tools: LIME, Anchors, and SHAP. For LIME and

SHAP, the output is a weight of the importance of the feature for a

particular instance. We use both real weights provided by the tools

and weights normalized to the sum of the absolute value of each

weight of the instance as in [10]. To compare LIME and SHAP with
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Figure 2: Discrimination versus accuracy for UCI adult classifiers. The discrimination is computed according to Equalized odds in Fig. 2a, Equal
opportunity in Fig. 2b, and Demographic parity in Fig. 2c.

Anchors, we order the features by their weight for each instance,

and we check the index of the features selected as anchors. We

also show the difference between the weight of features selected as

anchors and those that are not.

Instead of looking at individual instances to find correlations

between individual biased predictions and the information of model

agnostic tools, we cluster the instances whose explanations are sim-

ilar and extracted the behavior of each cluster. We group instances

with three different clustering algorithms (k-means [28], optics-

clustering [2], and spectral-clustering [21]) in the case of LIME and

SHAP. We select these algorithms because of their different clus-

tering approaches and the different geometries of the clusters. For

Anchors, we group instances that have identical features selected

as anchors in the same cluster.

3.3 Individual biased prediction detection
For the fairness verification of the classifiers through the lens of

Fairness through awareness as defined in § 2, similar instances were

clustered according to their weight as measured by LIME with quar-

tile discretization. This approach allows grouping the instances con-

sidered similar by LIME, considering that it assigns similar weights

importance for all features of the group instances. Therefore the

model has to predict the same outcome. Based on these results,

we choose 7 possible ways to define similar instances. We firstly

exclude the protected feature (Sex), and as the first definition of

similarity, we consider identical any two instances that have every

other feature at the same value. The other similarity groups are like-

wise selected by grouping instances that have similar weights for all

features: Hours-per-week (weights divided in three groups), Capital-
gain (2 groups), Capital-loss (2 groups), Relationship (2 groups), and

Education-num (4 groups). Using this approach to define similarity

groups, it is impossible to find similar instances for German credit,

as the dataset is too small and results in a very small number of

instances for each group.

Through the lens of Counterfactual fairness bias, we modify

instances by changing the protected feature from the deprived

group to the favored group or vice versa and observe that if the

prediction change, then it is considered biased. For both datasets,

this means changing from female to male or the opposite; in the

case of UCI adult, we also change wife to husband and the opposite

if the Relationship feature holds one of those (other values of that

feature are not used for this analysis, as they do not correlate to

the protected feature we are investigating). The predictions whose

output changes after the features presented above are modified are

considered biased.

4 RESULTS
First, we trained a neural network model on the various scenarios

described in § 3.1 and validated their accuracy against existing

works [1, 6, 9, 12, 29, 33, 35], then analyze how the accuracy and

fairness changes depending on the dataset scenario in § 4.1. We also

extracted feature importance from the classifiers through post-hoc

explainers and report the results in § 4.2, comparing how different

tools provide different results. Finally, we analyze in § 4.3 and § 4.4

how the information from the explainers is correlated to individual

biased predictions, comparing the results between bias and unbiased

predictions.

To validate our models, we compare the accuracy obtained with

other works and state-of-the-art models, for the case-1 scenario (i.e.,

the original dataset). For UCI adult dataset, the architecture that

reached results similar to state-of-the-art models is a feed-forward

neural network with 256-128-64-32 nodes for each layer and 2

nodes in the last layer with Softmax activation function. Instead,

for German credit dataset, the best neural network has 128-64-32

nodes per layer and the last one has 2 nodes and softmax activation

function.

4.1 Accuracy vs. discrimination
Achieving an unbiased model often requires sacrificing some accu-

racy. This section reports the measured accuracy and discrimination

obtained by each case, following the definitions of Equalized odds,

Equal opportunity, and Demographic parity from § 2, where a posi-

tive value means that the model is biased on the protected feature

Sex against the deprived group female, and negative values indicate
a bias against the favored group male. Fig. 2 reports the discrimi-

nation and accuracy of the models for each case of UCI adult and

shows that while the trend is similar between all definitions, some

differences remain: in Demographic parity, case-1 has lower dis-

crimination than case-7, and in Equal opportunity, case-2 is less

biased than case-6. Moreover, demographic parity for case-1 is sim-

ilar to the one of the dataset (§ 3). Therefore, we can conclude that

the model is learning to be biased from the dataset.

We also observe that some of the scenarios invert the discrimi-

natory aspect: a bias is created against the favored group in case-2,

case-4, and case-9 for Equalized odds, and in case-4 and case-9

for Equal opportunity. Case-1, 4, 7, and 8 have similar values of

accuracy and discrimination, in particular, case-4 does not have the
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Case-1 Case-4

Accuracy 0.745 0.745

Equalized odds discrimination 0.439 0.222

Equal opportunity discrimination 0.062 0.013

Demographic parity discrimination 0.127 0.074

Table 2: Discrimination and accuracy results for models trained on
the German credit dataset.

protected feature in the dataset, and it still is biased, even though

in the opposite sense. Therefore, we deduced that the model can

extrapolate the protected feature from other features, such as Re-
lationship. These plots also show that having an equal number of

instances in the deprived and favored group (case-8) is not enough

to make the model unbiased. Training the model on a dataset with

demographic parity (case-9) gave the best result for accuracy and

discrimination. Cardoso et al. [6] show a correlation between Sex
and Relationship. For this reason, removing both features (case-6)

leads to a minimal value of discrimination.

Table 2 reports the results for the German credit dataset. As

for the UCI adult dataset, removing the protected feature does not

change the accuracy of the model. However, unlike UCI adult, the

discrimination values are halved for case-4 by Equalized odds and

Demographic parity, and a fourth by Equal opportunity because

there is no other feature correlate to Sex as Relationship in the

case of UCI adult. Moreover, the Demographic parity value is more

similar to the one of the testing set for case-1 and the training

set for case-4. Therefore, despite the training set not being fully

biased, it instills a biased behavior in the model that shows up when

analyzing more biased data.

4.2 Importance of each feature
To better understand the prediction of the model, we analyzed the

importance of each feature by LIME, SHAP, and Anchors. We report

only the results obtained on the UCI adult case-1 dataset because it

is the complete dataset and the results of the other scenarios have

similar results when analyzing bias. We do not report the analysis

on German credit because they are similar to UCI adult.

Fig. 3 show the importance of Hours-per-week and Sex features

returned by the explainers, where a positive weight means the

feature favors an income <= 50𝐾 and a negative weight > 50𝐾 ; in

red are reported the values obtained for females, and in blue for

males. Hours-per-week has a clear trend in the weights obtained by

LIME with quartile discretization. In the other cases, the results are

more spread, and the weights of LIME without discretization show

an opposite trend for Hours-per-week. For the Sex feature, LIME

always gives a negative value to the weight of male and positive to

female. Instead, in SHAP, females received negative and positive

weights, but males only received negative weights, which indicates

that the model is biased because it favored males, not because it

penalized females.

To compare Anchors results with LIME and SHAP, we compare

the weights obtained by each feature in general and when it is

chosen as an anchor. Fig. 4a shows the average normalized weight

obtained by each feature, and the same results obtained when the

features are selected as anchors, with LIME and Anchors with
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(a) LIME with quartile discretization
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(b) LIME without discretization
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(c) SHAP

Figure 3: Relation between feature values and weights obtained by
LIME with quartile discretization on numerical features Fig. 3a,
LIME without discretization on numerical features Fig. 3b, and
SHAP Fig. 3c.

quartile discretization; LIME with decile discretization achieved

similar results. We expected that the features selected as anchors

should have a higher average weight than all together, as it is

for the case of SHAP in Fig. 4b. Instead, for LIME, the results are

counterintuitive, and the average weight of the features selected as

anchors is lower than all of them together. These unexpected results

can be caused by the fact that although the average weight of the

anchors is lower than the others, the anchor feature still has greater

importance. From other analysis, we noticed that Relationship has

more anchors than Sex, and that can be explained because the

average weight of the Relationship anchor is different from the

general average weight, unlike Sex, where they are similar.

4.3 Fairness through awareness detection
We notice that there is no correlation between the results obtained

by the analyzing tools and the predictions detected as biased. The

results show no correlation between the weights of the features

and the biased predictions. This result may be caused by the low

number of biased predictions in the groups, which range from 1

to 44 biased predictions, because, for each biased prediction, many

more with similar weights are unbiased. The same is for Anchors,

where there is no correlation in both groupings because each group

has more instances with fair predictions than with biased ones.

4.4 Counterfactual fairness detection
Compared to Fairness through awareness, this definition labels more

predictions as biased: 386 predictions for UCI adult case-1 and 28

for the German credit dataset. In this case, the weights of SHAP can

detect predictions that are considered biased by the counterfactual
fairness definition.
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(b) SHAP

Figure 4: Weights obtained for each feature for all the instances and
the features selected as anchors, for LIME with quartile discretiza-
tion Fig. 4a and SHAP Fig. 4b.
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Figure 5: Scatter plot ofWorkclass andHours-per-week SHAPweights.

Fig. 5 shows the weights obtained by SHAP and if the prediction

changes due to a change in the protected feature value. It is possible

to observe that considering only Hours-per-week is sufficient to

detect some biased predictions because they have a large absolute

weight value, without performing clustering. The same results are

obtained for all cases (except case-6, where there are no protected

features or features related to them, making it impossible to define

biased instances through counterfactual fairness); in case-4, the

biased predictions are detected only by the change from husband to

wife or the opposite. For UCI adult dataset case-9, it is still possible
to correlate the detected biased prediction with the weights of

SHAP, and this definition detects 1,486 biased predictions. Even

though the case-9 dataset has demographic parity, unlike the other

cases, it still holds more biased predictions. The discrepancy in the

results of the definition is because not all the definitions lead to the

same notion of fairness, especially if they aim at a model or a single

prediction. The feature Sex on the German credit dataset achieved

the same results as Hours-per-week for the UCI adults dataset. For

Anchors and LIME is not possible for either grouping or datasets

to detect biased predictions obtained from this definition.

Therefore, we can conclude that it is impossible to distinguish

individual biased predictions detected by fairness through awareness
definition with all 3 model agnostic tools. Instead, SHAP can detect

individual biased predictions obtained through counterfactual fair-
ness definition, not only on models trained on the whole dataset

but also in a model trained on the dataset without the protected

feature. From this result and the one shown above, we can deduce

that only SHAP is consistent with other theories and definitions.

5 RELATEDWORK
Our work on detecting biased predictions with post hoc explana-

tion methods mainly relates to two topics: post-hoc explanation

of predictions and bias detection in individual predictions and in

the entire model. Slack et al. [27] presented a work that belongs to

the same category, though their methodology differs. They show

that it is possible to fool post-hoc explanation tools like LIME and

SHAP with scaffolding around the input data, which makes the

model appear as unbiased even if it is biased. They also show that

LIME is more vulnerable than SHAP, similarly to the results that

we obtained, in which we show that it is possible to detect biased

predictions with SHAP weights but not with LIME weights.

The work of Kusner et al. [16] belongs to bias detection, and

they showed that using the counterfactual fairness definition makes

it possible to detect individual biased predictions in a model trained

with the protected features; they argue that protected features also

have importance in the final prediction, and their complete removal

can be counterproductive. Therefore, it is useful to have a way to

detect individual biased predictions. Dwork et al. [11] dealt with

individual fairness. They showed that it is possible to train a model

that treats similar instances similarly (Fairness thought awareness)
and that with this approach, it is also possible to satisfy statistical
parity (referred to as demographic parity in our paper). Their work

applies to the discrimination prevention area, but they suggest that

their method can also be used to detect discrimination in individual

biased predictions.

6 CONCLUSION
Starting from several common definitions of model bias and fair-

ness, we analyzed with the aid of post-hoc explanation tools and

statistical correlation how to detect the presence of bias, quantify-

ing how different definitions have dissimilar results. This finding is

not surprising considering the large number of definitions, which

are not necessarily compatible, but it shows the need to analyze

correlations among these tools and the fairness metrics to under-

stand both of them better. At the same time, we show that post-hoc

explanation tools can play an important role in this type of inves-

tigation. While our study is focused on two specific datasets, we

believe that the ensuing methodology has broader applicability.
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