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Université catholique de Louvain

marco.canini@uclouvain.be

1. Introduction
Big data processing systems have dozens of available con-
figuration parameters and system performance crucially de-
pends on their tuning. For example, Apache Storm has about
201 parameters that can be set by the user. Amongst these,
there are 49 parameters that can be controlled on a per-
topology basis. Users do not need to configure all of these
settings; however, a significant number of these parame-
ters will need to be tuned to achieve certain performance
goals such as SLOs for mean latency or tail latency and/or
throughput for a given production deployment. Moreover,
the suitable configurations vary depending upon the avail-
able resources, workloads and applications for which the
system is being used.

Today, optimizing these configurations is done manually,
possibly requiring several hours of investigation and testing
by performance engineers. Also, performance engineer need
to have considerably detailed knowledge about the systems
to figure out a configuration that meets the performance re-
quirements of the deployment. This makes the configuration
optimization task a tedious and time consuming one.

The configurations in big data analytics framework de-
ployment can be broadly classified into two categories: re-
source allocation configurations and application/system spe-
cific configurations. Resource allocation has been a sub-
ject of significant amount of scientific works, especially for
MapReduce jobs [4, 6]. On the other hand, there have
been fewer studies in finding out the optimal application-
specific configurations for big data frameworks. Most of ex-
isting works present solutions specific to MapReduce jobs
[2, 3, 5]. Only a few of recent studies have looked into per-
formance optimizations for stream processing systems like
Storm [8]; but to the best of our knowledge the broader re-
search challenge remains open.

The goal of this research is to develop a generic frame-
work that can be used to optimize application-specific con-
figurations with the help of developer provided information.
The rest of this document is organized as follows: Section 2
discusses preliminary results to motivate the efforts behind
this research; Section 3 presents the research directions that
we will be investigating; we conclude in Section 4.

Configuration Possible Values
Number of workers 3, 6, 9, 12
Number of ACKer threads 3 - 12
Number of Spout threads 3 - 64
Number of Split Bolt threads 3 - 64
Number of Count Bolt threads 3 - 64

Table 1. Selected configurations and their values

2. Preliminary analysis
To understand the variation in performance due to system
configurations, we conducted preliminary tests on a multi-
node Apache Storm cluster. The setup includes 3 nodes, each
with a dual CPU with eight cores each and hyper-threading
enabled. This means that a total of 32 threads can run on
each node, simultaneously. We configure Storm to use the
Netty transport layer, as it achieves better performance than
with the default, ZeroMQ. Acking is left enabled so as to
access performace metrics for our measurements. We use
the Rolling word count topology of the Intel Storm bench-
mark [1], with count window size set to 10s and count emit
frequency set to 1s. In Storm, the spout components generate
a stream of tuples that are processed by bolt components fol-
lowing an application-specific topology. In this benchmark,
each tuple emitted by the spout is a text line which is split
into stream of words by the split bolt and the count bolt sub-
sequently counts the occurrences of each words in a time
window.

Following an Experimental Design approach, we use a
space filling algorithm to cover the configuration space. Ta-
ble 1 shows the space of possible configurations considered
for each experiment. Since our setup has the ability to run
96 threads simultaneously, we have fixed the total number of
threads in the topology to 96. We vary the number of threads
assigned to each of the topology component while keeping
the total number of threads constant. Since the number of
possible combinations arising from just these parameters are
more than 27k, we used the WSP space filling algorithm [7]
to generate 78 configurations for our experiments.

Achieving a suitable trade-off between desired through-
put and latency is generally the primary goal of performance
optimization in stream processing systems. Hence, we focus
on these metrics.



Figure 1. Performance results for selected configurations

Figure 2 shows the variation in different performance
metrics. Note that a tuple in the subsequent discussion is
a line of text. The per-tuple average latency mainly varies
from 13.2ms to 462ms and the maximum latency varies from
14.3ms to 496ms. In addition, there is a significant variation
in throughput based on the selected configurations, i.e., from
24k tuples/s to 117k tuples/s. This shows the extent of vari-
ation in performance due to distribution of threads among
the components of a topology, given a fixed resource budget.
Generally, high throughput can be achieved at the expense of
lower latency and vice versa. However, we observe that la-
tency and throughput are not always directly correlated. For
example, in our test cases, the topology with best average la-
tency has throughput of 42k tuples/s while the topology with
worst average latency has 26k tuples/s of throughput.

It is important to note that the reason for obtained latency
and throughput for a particular configuration is not always
obvious. For example, the CPU and network utilization re-
sults of our experiments (not shown here) show that no single
resource is being heavily utilized. Thus, it is not the individ-
ual resources i.e., CPU and network, that is leading to dras-
tic changes in performance but the interplay of components
in the Storm topology. The amount of work done by each
topology component and its processing latency, the number
of executor for each bolt/spout and their placement, all play
a part in the resulting overall performance.

3. Research Directions
Since evolutionary algorithms are suitable for multi-objective
optimization problems with complex fitness landscapes, we
are looking into leveraging their power to find suitable con-
figurations. The user can define the performance goals that
can be transformed into a fitness function for the evaluation
of different configurations.

We plan on developing a framework that would allow
software developer to provide information about the key
configuration parameters, system-specific metrics APIs and
performance metrics. We will use this information to au-
tomatically improve the application-specific configurations,
instead of forcing users to understand the fine details about
a distributed software system.

A set of thread-level performance analysis tools might
need to be developed to provide the framework with nec-
essary information. An additional direction for this research

could be to enable software developers to provide models for
their specific software in order to allow for system specific
optimizations and potentially use simulations instead of real
tests to figure out suitable optimizations, if possible. Since
distributed systems are deployed in several settings i.e., bare-
metal machines, public Clouds (on VMs) and containers, it
will be important to provide support to capture system-level
metrics from each deployment setting to get a better picture
of resource utilization for optimization.

The outline of the immediate research plan is:
• Investigate the performance issues in stream processing
systems to find the factors that lead to degraded performance
and quantify their importance.
• Devise set of parameters and building blocks that can be
provided to the system developer and used by the framework
to assist in configuration optimization of a particular system.
• Investigate/develop analytical and simulation models that
can be used for different distributed big data systems.

4. Summary
Given the ever increasing number of big data frameworks
and the dozens of configurations that they provide, optimiz-
ing each of the systems is becoming a daunting task with
significant amount of knowledge required. The goal of this
research is to study and reason about the performance is-
sues arising due to configuration parameters. This knowl-
edge would help in development of an automatic configu-
ration selection system that can possibly leverage the infor-
mation from system developers to apply application-specific
optimizations and achieve cost-performance goals.
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