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Abstract
Federated learning (FL) is increasingly becoming the norm
for training models over distributed and private datasets. Ma-
jor service providers rely on FL to improve services such as
text auto-completion, virtual keyboards, and item recommen-
dations. Nonetheless, training models with FL in practice
requires signi�cant amount of time (days or even weeks)
because FL tasks execute in highly heterogeneous environ-
ments where devices only have widespread yet limited com-
puting capabilities and network connectivity conditions.

In this paper, we focus on mitigating the extent of device
heterogeneity, which is a main contributing factor to training
time in FL.We proposeAQFL, a simple and practical approach
leveraging adaptive model quantization to homogenize the
computing resources of the clients. We evaluate AQFL on
�ve common FL benchmarks. The results show that, in het-
erogeneous settings, AQFL obtains nearly the same quality
and fairness of the model trained in homogeneous settings.
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1 Introduction
Exploiting machine learning (ML) techniques for big data
analytics and building predictive models has become pre-
dominant in many applications [12, 16, 41]. Traditionally,
training of deep neural networks (DNNs) is performed over
centrally-collected datasets with little to no regard for pri-
vacy concerns. However, with the growth of connected de-
vices, large datasets are nowadays distributed at end-user
devices and data cannot be centrally collected due to privacy
concerns. Moreover, various regulations have been imposed
for the preservation of consumer and user privacy, such as
GDPR [1] and CCPA [2]. Consequently, DNN training is
moving to the data-rich network edge, including through
outsourced computations over a widely heterogeneous col-
lection of mobile devices and other distributed training ar-
chitectures [10, 14, 29].

A popular paradigm for distributed collaborative learning
is Federated Learning (FL) [7, 22, 29]. In FL, client devices
collaboratively learn a global model with the help of a cen-
tral server without transmitting the private data [31]. This
approach has recently drawn much attention from industry
(e.g., [7, 17, 36, 41]) and academia (e.g., [9, 39]). FL, however,
faces major challenges that hinders its wide adoption in real
applications [7, 40, 41]. One of the main challenges is the
heterogeneity of clients (in terms of hardware capabilities
and/or connectivity) participating in the training process.
Device heterogeneity can have a large impact on the qual-
ity of the trained models [5] and this is the focus of our
work.1 Device heterogeneity arises as population bias during
training due to uneven client sampling as slower or poorly
connected devices are more susceptible to failures or missing
the deadline for reporting module updates [7].
To demonstrate the extent of device heterogeneity’s im-

pact on model quality, consider the following scenarios:
• An ideal HOmogeneous case (HO): where devices have
homogeneous computational and network access ca-
pabilities (thus, all devices �nish within the deadline)
and devices remain available throughout training (thus,
devices are sampled uniformly at random).

• A realistic Device Heterogeneous case (DH): where
devices have heterogeneous hardware and network

1We account for data heterogeneity by using non-IID datasets in our exper-
iments. Behavioral heterogeneity, which is left for future work, may also
impact the model quality (esp. w.r.t. fairness) as it a�ects the availability of
the clients throughout training [5].
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Table 1. Summary of the benchmarks used in this work.

Task ML
technique Model Dataset Model

Size [bytes]
Total
Clients

Selection
Count
(sc)

Reporting
Deadline
(ddl) [s]

Maximum
Sample Count

Learning
Rate

Quality
metric

Next Word
Prediction RNN LSTM Reddit [33] 24,722,496 813 100 27 50 0.5 12.83%

Shakespeare [29] 3,271,488 1,129 50 142 50 0.8 46.97%

Image
Classi�cation CNN 2 Conv2D Layers FEMNIST [11] 26,414,840 3,400 100 60 340 0.01 80.098%

1 Conv2D Layer CelebA [28] 124,808 9,343 100 15 30 0.01 90.6%

Cluster
Identi�cation

Traditional
ML

Logistic
Regression Synthetic [9] 2,400 9,367 50 23 340 0.005 84.21%

access characteristics while client availability also re-
mains uniform.

Following the methodology from our work in [5], we per-
form experiments across a range of FL con�gurations where
we vary a number of hyper-parameters that in�uence the
model quality. Figure 1 shows the average test accuracy nor-
malized to the HO baseline and contrasts the two scenarios.
The box-plots for the two cases show the average test accu-
racy measured for experiments sweeping a wide range of
hyper-parameters settings of �ve di�erent FL benchmarks
(listed in Table 1). The results show that device heterogene-
ity has a signi�cant impact on model quality. Speci�cally, at
the median (shown in green), the normalized average test
accuracy of DH (see the �gure caption) is 0.91⇥ that of HO.
Moreover, the accuracy across experiments in DH varies
widely, and in the worst case training does not converge.

In this paper, we take a �rst step towards mitigating the
unwanted e�ects of device heterogeneity on the quality and
fairness (i.e., how model accuracy varies across clients) of
DNNmodels trained in FL environments. To this end, we pro-
pose an adaptive model quantization technique that varies
the quantization level in proportion to the resources avail-
able at clients’ end-devices. This approach reduces both the
computational and communication overhead of the train-
ing process, which results in signi�cantly better quality and
fairness of the trained models. We support our claims via
empirical experiments on �ve common FL benchmarks (see
Table 1) used in FL literature. These benchmarks span di�er-
ent ML tasks including image and facial features recognition,
next word prediction and cluster identi�cation.

In summary, our contributions are:

• We show the e�ects of device heterogeneity on the
training process in heterogeneous FL environments.

• We highlight the bene�ts of quantized model training
and its minimal impact on convergence in FL settings.

• We propose Adaptive Quantized Federated Learning
(AQFL), a simple and practical approach based onmodel
quantization to mitigate the model quality and fairness
degradation.

• Via experimentation on common FL benchmarks, we
show the bene�ts ofAQFL in homogenizing the devices

Figure 1. Impact of device heterogeneity on model quality.
The test accuracy is averaged over all devices and normalized
by the baseline accuracy of each benchmark.

which helps in retaining the quality and fairness of the
ideal case.

2 Background
Due to the growing computational power of users’ end-
devices, coupled with concerns over transmitting private
information, it is increasingly attractive to store data locally
and push network computation to the edge. A commonly
used architecture for federated learning setting is depicted
in Figure 2. In this setting, N clients owning di�erent sets of
data, which has common data structure, learn a global model
via a centralized aggregation FL server. To train a model, the
following steps are performed [29]:

1. The clients check-in with the FL server, and then the
server typically selects a sample of clients for training
and pushes a copy of the up-to-date global model.

2. The clients perform an equal number of local optimiza-
tion steps as determined by task designer.

3. Clients encrypt all or a subset of the updated local
model parameters with encryption [32], di�erential
privacy [3], or secret sharing [8] techniques and push
the encrypted model to the FL server.

4. The FL server performs secure aggregation of the local
models pushed by the clients.

5. The FL server updates the state of the global model.
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Figure 2. Phases of Training FL model in a resource heterogeneous environment

The central server, which performs aggregation and hosts
the global model, invokes the above process frequently and
continues so until the model accuracy or loss function con-
verges to a target value. This setting does not depend on the
speci�c ML algorithms in use (e.g., logistic regression, SVM,
or DNN). Moreover, the incentive for client participation is
that they will share and bene�t from the deployment of the
converged model in their applications.

2.1 System Aspects of the FL Life Cycle
FL production systems consist of di�erent players that take
role in the FL life cycle. The main players are the FL server
and the devices which perform an FL task on their local data.
The server is typically a cloud-based distributed server which
performs the aggregation and collects some metrics about
the task. An FL task is a computation (either training or eval-
uation) for a speci�c FL population. The task performs either
training on the local dataset with given hyper-parameters,
or evaluation of the global model on a held-out validation
dataset to obtain some performance metrics. An FL popula-
tion is uniquely identi�ed by the learning problem, or appli-
cation for which the model is trained or evaluated [7, 17, 41].
The process starts when clients that are ready to run an

FL task for a given FL population join the system. Then,
the server, within a certain time window, selects a subset of
clients from the online clients that joined within the time
window. Typically, the server selects a few hundred from
the (tens of) thousands online clients to participate in the

FL task. FL tasks are broken into rounds and a round is
concluded when certain stages complete successfully during
which clients are expected to stay connected throughout
their duration. In each round, the server drives the stages
towards the completion of the round. The main stages in FL
systems are selection, con�guration, and reporting [7]:
Selection: The server waits for clients to join within a time
window and if the target number of clients becomes available,
the server proceeds to the con�guration stage; otherwise
this stage is restarted later.
Con�guration: The server con�gures the aggregation pro-
cesses (either single or distributed instances) for the selected
devices. The aggregation algorithm can be either a simple
Federated averaging [29] or a variant which exploits secure
aggregation [8]. Then, the server proceeds with sending an
FL task and a checkpoint of the global model to each client.
Then, the clients start executing the FL task on their local
datasets.
Reporting: The server waits until a time limit or deadline,
for the participating clients to upload their model updates.
Then, the server aggregates the updates received before the
deadline using the con�gured aggregation mechanism. This
stage and hence the round is deemed successful when the
server updates the global model. This happens if the number
of received updates before the deadline matches a con�gured
target update fraction; otherwise the round fails and the
received updates are ignored, in which case the round is
restarted from scratch.
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2.2 Device Heterogeneity Challenge for FL
For FL to be widely adopted, the impact of device heterogene-
ity on model quality should be mitigated. To this end, the
training of DNNs on resource-constrained mobile and em-
bedded devices should be e�cient. As a result, various works
proposed model compression for this purpose. Speci�cally,
quantized DNNs have drawn a signi�cant attention. A quan-
tized DNN uses discrete values to represent both weights
and activations of the model. Quantized DNNs have several
bene�ts due to their smaller bit-width and smaller model
size in that they: 1) can increase e�ciency by using �xed-
point computations; 2) can speed up the computation and
reduce memory usage on resource-limited devices; 3) can
speed up the upload and download time of the model. It is
reported that a speedup of 2⇥ to 3⇥ is obtained for quantized
inference compared to �oat, with almost 10⇥ speedup with
DSP or NPU units [19, 23].

It is also shown that, for the same time budget, quantized
training of DNNs (e.g., bit-widths � 8) can obtain accuracy
on par or even higher than its �oating-point counterpart
[20]. However, for the same number of iterations, quantized
DNNs may result in noticeable accuracy degradation (e.g.,
for bit-widths  4)[13, 18]. Yet, quantizated training of DNN
models on mobile devices in FL setting can be bene�cial
to mitigate the resource variations in device heterogeneous
settings. So, quantization can be seen as a homogenizing
tool of the computation and network of the clients. Next,
we present AQFL, a practical scheme for enabling e�cient
training of FL models.

3 Adaptive Quantized Federated Learning
In real-world end-device settings, di�erent bit-widths are
supported by di�erent devices [19, 20, 23, 27, 30]. This hard-
ware �exibility allows for the ability of con�guring themodel
with di�erent quantization levels to match the variety of
hardware con�gurations of clients’ mobile or IoT devices.
Therefore, it is natural to rethink the design of the FL server
and allow the �exibility of choosing for the clients among
di�erent quantized versions of the model. The server can
then make a per-client decision and send the model version
that best matches the capabilities of the selected clients in
each round. To this end, the server would maintain a single
version of the model in �oating-point format and quantize
the model during the con�guration phase of each round. Al-
ternatively, the FL server may use Quantizable DNNs, which
are a special type of quantized DNNs that can �exibly adjust
the bit-width on the �y, i.e., turning on di�erent bit mode by
applying di�erent quantization levels [13].
System Design: We leverage model quantization and de-
sign AQFL system to homogenize the devices participating
in the training in a client-agnostic manner. Fig. 2 contrasts
the design of AQFL with the existing FL system. They are

Algorithm 1 AQFL Algorithm

1: Input: K,T ,�, E,w0,N ,k = 1, . . . ,N
2: for t = 0, . . . ,T � 1 do
3: K online clients check-in with the server.
4: Server selects, at random, a subset St of K devices
5: Server collects information from selected clients to

decide the quantization level Qk for each client k
6: Server sends a custom quantized Qk (wt ) to device k
7: parfor k = 0, . . . ,K � 1 do
8: run SGD for E epochs on Fk with step-size �
9: a new version of the model is producedQk (wt+1

k )
10: send the updated model Qk (wt+1

k )) to the server
11: end parfor
12: Server updates the model:wt+1 = 1

K
Õ
k 2St Q

0
k (wt+1

k )
13: end for

nearly identical except that the AQFL system imposes a mi-
nor change to the operations of the FL server during the
con�guration phase in which the server needs to decide on
whether to send a quantized model and its precision.
Quantization Decision: The decision of the model preci-
sion is quite challenging in highly heterogeneous environ-
ments. One feasible approach is that, during the selection
stage, the server sends a reference (or dummy) model to each
selected client. The dummy model is an unused replica of the
global model being trained. Then, the client pro�les forward
and backward pass(es) and sends its computational specs and
pro�le run times to the server. The server, which maintains
computational pro�le(s) of the dummy model in di�erent
precision for reference device(s), can map the client pro�les
to a reference pro�le that will likely allow the device to �nish
training and send updates within the deadline. Alternatively,
the server uses established benchmarks [6, 19] and quantizes
the model to a precision that likely meets the deadline. We
leave further exploration of these ideas to future work.

3.1 AQFL Algorithm
The AQFL algorithm is depicted in Algorithm 1. First, the
clients check-in with the server and the server samples at
random a subset St from the available clients. Then, the
server collects the clients’ computational pro�les to aid in
making the decision of the per-client model quantization pre-
cisionQk . The precisionQk is chosen to likely meet the time
budget (or the deadline) at minimal impact on convergence.2
Then, during the con�guration phase, the server sends the
custom quantized model Qk (wt ) to each client selected to
participate in the training. Then, the clients train using the
quantized model and upload the model updates to the server.
Finally, the server de-quantizes the per-client model updates

2As we show the impact of quantization varies based on the benchmark.
However, for reasonable quantization-levels (� 4), the impact is negligible.
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and aggregates them to update the global model, which is
typically stored in �oating-point precision.

3.2 Practical Challenges
RealizingAQFL in practice faces several challenges, whichwe
now highlight along with a discussion of possible solutions.
A full exploration of these is part of our ongoing work.
Device quantization support: how can the FL server iden-
tify the range of supported bit-widths on the device for mak-
ing per-device choices of the quantized model? This can be
hard to achieve with tight privacy constraints. To overcome
this, some of the clients may voluntarily share the meta-data
about either their device model or the range of supported
bit-widths when they check in with the FL server. The server
could then maintain an association table with di�erent hard-
ware targets and theirs supported bit-widths.
Dynamic client environment: how can the FL server
adapt its quantization decision for each device when device
workload and network conditions vary? This can be hard to
achieve with no knowledge about the changing dynamics
of device workload and network conditions on the client
side. To resolve this, the server could try to learn and model
the environment of the clients to predict the optimal quan-
tization level. For instance, the server could employ online
reinforcement-learning to build an adaptive decision model
for the quantization level.
Relying on the server may su�er from low quality deci-

sions due to the limited availability of and/or outdated infor-
mation. Alternatively, the system could rely on client-side
mechanisms to make the decisions which provides higher
quality decisions but at the cost of increased overhead on
the client. For instance, the FL server could send several bit-
width versions of the quantized model to the client and the
client caches them locally. Then, the client could monitor its
own workload and network conditions and adaptively alter-
nate between the quantized models. For example, DC2 [4]
monitors the network conditions and adjusts the control
knob of the communication reduction methods adaptively.

4 Preliminary Evaluation
Our experiments address the following questions:

• What is the impact on model quality and fairness from
using quantized models in an ideal FL setting?

• Is there any bene�t from employing AQFL in various
resource heterogeneous FL settings?

4.1 Relevant Metrics
We collect the average test accuracy and loss of the test
clients as indicators of model’s quality in each testing round.3
We collect the same metrics for the training clients in train-
ing rounds. We collect several fairness metrics: 1) Cosine

3Testing rounds are invoked every 1% of the total rounds and test clients
are sampled from the FL population with a maximum cap of 3,500 clients.

similarity between the test (and train) accuracy distributions
and all-one vectors to measure the uniformity of the distribu-
tion (larger is better); 2) KL divergence of the test (and train)
accuracy distributions to measure the entropy (larger is bet-
ter); 3) Jain’s Fairness Index of test (and train) accuracy [21].
We, however, only present test accuracy and cosine similarity
as representative of the other metrics.
Benchmarks: Weuse �ve benchmarks covering a variety of
FL applications used in several prior works [5, 7, 9, 17, 24, 25,
29, 39]. Table 1 summarizes the application, dataset, and de-
fault con�guration of each benchmark. Note that the datasets
are partitioned among the clients in a non-IIDmanner, which
represents the most common scenario in FL settings. The
benchmarks use common con�gurations as follows: batch
size is 10, number of epochs is 1, min selection count is 10, up-
date fraction is 0.8 (80%), selection time window is 20 seconds,
and local optimizer is SGD.
Platform: We run experiments using the HeterFL simu-
lation environment [5] on a GPU cluster. HeterFL is an
extension of Flash [39], which simulates wall-clock accu-
rate execution times of FL tasks. Flash also multiplexes the
training of many clients onto a single GPU. Flash follows
a real-world trace and maps the devices into three hard-
ware categories: high-end (HE), moderate (M), and low-end
(LE) devices. Their computational pro�les are close to three
real-world hardware specs. Finally, the per-device network
upload and download speeds are randomly assigned from 20
di�erent distributions representing real-world networks.
Heterogeneity: We conduct the experiments in the follow-
ing two ideal and realistic scenarios.HO – The homogeneous
case where clients are always available and have homoge-
neous hardware and link speed con�gurations. DH – The
heterogeneous case where clients are always available but
both their device type and link speed are sampled at random.
The device partitions per round are random and on average
over the full training the percentages of selected LE, M, and
HE devices are 55%, 44%, and 1%, respectively.
Implementation We implement quantization using the
built-in quantization API of TensorFlow [35, 36]. To quan-
tize the model, we make use of the quantization function
in the tensor�ow.contrib.quantize library.4 The quantization
function updates the model computation graph with the
required quantization operations for the chosen bit-width.
Speci�cally, it takes as input the graph, and the quantization
bits for the weights and biases of the model. Note that the
procedure inserts fake quantization operations to simulate
the error introduced by quantization.

4.2 Homogeneous Scenario with Quantization
We present the results of training using �oating-point and
quantized models in the ideal HO scenario. We evaluate

4While most TensorFlow versions support quantization, we implement and
evaluate AQFL using TensorFlow v1.14.
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(a) Reddit (b) Shakespeare (c) FEMNIST (d) CelebA (e) Synthetic

(f) Reddit (g) Shakespeare (h) FEMNIST (i) CelebA (j) Synthetic

Figure 3.Model quality and fairness of FL tasks using quantized models in HO. The plots show the test accuracy (top row)
and cosine-similarity (bottom row) on the y-axis and global training rounds on the x-axis.

the test accuracy and cosine-similarity of the model over
the training rounds. We use 5 commonly used quantization
levels (i.e., 16, 8, 4, 3, 2-bits) [13, 20].

Figure 3 shows that, for all benchmarks, quantization with
precision of 16-bit and 8-bit quantization results in nearly the
same average and cosine-similarity of test accuracy as of the
�oating-point baseline. This shows that not only the quality
and fairness of moderately quantized models are acceptable,
but they can used to reduce the run-time of the training
for ill-capable (or slow) devices. The impact of qunatization
for CelebA is noticeable (esp., for up to the �rst 150 rounds).
This could be attributed to the batch normalization employed
in CelebA’s model architecture, which requires alternative
quantization strategies [26, 38]. We observe also that 4-bit
quantization results in lower but acceptable model quality
and fairness for most benchmarks, except for Reddit, where
there is a noticeable impact on the average model quality.
We note that, for extreme quantization levels (less than

4 bits), most benchmarks converge to a signi�cantly lower
test accuracy and achieve worse fairness among clients. This
implies that the server either should avoid using such low
quantization levels or use them only when the pool of avail-
able clients are limited to extremely low-capability devices.
These results suggest that settling on a globally acceptable
quantization level is hard to achieve and therefore there is
a need for adapting the quantization level to the available
resources of the target hardware.

4.3 Heterogeneous Scenario
Wepresent the results of the realistic resource-heterogeneous
scenario (DH) and evaluate whether AQFL is able improve
the model quality to retain or nearly achieve the same model
quality as in HO case. We evaluate the test accuracy and
cosine-similarity of the model over the training rounds. We
compare the homogeneous case (HO) and the heterogeneous
case (DH) with and without AQFL. Figure 4 shows that, for

all benchmarks, the DH case without AQFL compared to the
HO case results in signi�cant degradation in the average
and cosine-similarity of test accuracy by up to 25% and 0.5%,
respectively. This shows that DH can hinder the FL task and
may result in a model with unsatisfactory quality and fair-
ness. As shown in the last row of Figure 4, the degradation
for DH without AQFL is because on average nearly ⇡ 20%
of the selected clients are not successful in uploading their
updates. These clients are mostly the ones with limited re-
sources (i.e., LE devices), which miss the deadline and hence
their updates are not incorporated into the global model.
In contrast, the results show that AQFL in the DH case

helps to mitigate the impact from heterogeneity. We observe
that both the average test accuracy (quality) and cosine-
similarity (fairness) of the model are restored to values simi-
lar to those obtained in the idealHO case. This is because the
AQFL-enabled server picks the right-sized quantized model
based on the device’s computational class, which reduces
the training run time for slow devices. As shown in the last
row of Figure 4, the number of successful clients for DH
with AQFL increases by 12-20% and approaches 100% partici-
pation (e.g., for Shakespeare and CelebA, the client success
rate is at 100%). Note that the red line of DH with AQFL
overlaps the black line for HO for Shakespeare and CelebA.
Even though the client success rate with AQFL is at 100% for
CelebA, we observe that all cases reach to same accuracy at
the end, but AQFL has worse model quality up until round
150. This is because of the impact from quantization on batch
normalization as detailed in §4.2.

5 Related Work
Federated Learning (FL): is a new learning approach for
privacy-preserving learning on distributed datasets. In FL,
the training is performed, with the help of a central server,
on decentralized devices which frequently produce new data
samples. The main requirement is that data does not leave
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(a) Reddit (b) Shakespeare (c) FEMNIST (d) CelebA (e) Synthetic

(f) Reddit (g) Shakespeare (h) FEMNIST (i) CelebA (j) Synthetic

(k) Reddit (l) Shakespeare (m) FEMNIST (n) CelebA (o) Synthetic

Figure 4. Model quality and fairness of FL tasks in HO, DH, and DH with AQFL. The plots show test Accuracy (top-row),
cosine-similarity (middle-row), and Client success rate (bottom-row) on y-axis and training round on x-axis.

the local storage of the data source [29]. Therefore, FL has
gained popularity and is currently deployed for a large num-
ber of users to enhance the functionality of virtual keyboards
(e.g., the search suggestion [7, 41]). Several works developed
FL frameworks for simulating FL settings [5, 9, 36, 39]. Het-
erFL [5] is a simulation platform that re�ects the heterogene-
ity settings in FL and provides various evaluation metrics to
assess the quality and fairness of the trained models. In this
work, we extended HeterFL with the AQFL algorithm and
use it to conduct the experiments.
System heterogeneity: Heterogeneity is one of the major
challenges for distributed systems. In FL, device heterogene-
ity results in model quality degradation due to stragglers (i.e.,
slow workers) that slow down the training process [5, 7]. In
the FL setting, the heterogeneity is not limited to the hetero-
geneity in device capabilities. Speci�cally, data distribution
among clients, client sampling method, and user behavior
are other sources of heterogeneity in FL scenarios [7]. Sev-
eral works tried to address this problem via algorithmic
solutions [24, 25], however their practical e�ectiveness is
questionable [5, 39]. In contrast, this work proposes quanti-
zation as an e�ective and practical solution to the problem,
showing promising results.
Quantized DNN training: Quantized DNNs map both
weights and activations to discrete spaces to achieve smaller
models and faster computations [13, 15, 20]. Quantized train-
ing is classi�ed into post-quantization [20, 30] or quantization-
aware [18, 27] training. Post-quantization training methods
cannot support less than 8-bit values as the model quality

signi�cantly degrades for  4-bit quantization. Quantization-
aware training adapts to the quantization noise during train-
ing to be able to support lower precision. These methods
are �xed-bit, and changes in bit-width during training is not
permitted. Notably, modern ML frameworks support model
quantizaton (e.g., TensorFlow [35, 37] and PyTorch [34]).

6 Conclusion
We showed the impact from device heterogeneity on the
quality and fairness of the FL trained models. To mitigate
the impact, we proposed AQFL, a simple and practical FL
system design which homogenizes the capabilities of the
devices. AQFL leverages the readily available support for
quantized training on mobile and IoT devices. Our evalua-
tion, which spans �ve common FL benchmarks, showed that
moderate model quantization imposes minimal impact on
the model quality and fairness. AQFL quantizes the model on
a per-client basis, which helps in achieving nearly the same
quality and fairness of the models trained in homogeneous
environments.
We believe our work will bene�t: (1) Practitioners, who

design FL applications deployed in real-world environments
and do not want to worry about heterogeneity and its impact
on model quality and fairness; (2) Researchers, who will use
our system as the basis for introducing more enhancements
that address other types of heterogeneity. As part of our fu-
ture work, we plan to investigate the challenges that hinders
the deployment of AQFL in practice and other approaches
that help in mitigating the impact of heterogeneity in FL
settings.
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