Application Aware Placement and Scheduling for Multi-tenant Clouds

Lalith Suresh' and Marco Canini?

"Technische Universitit Berlin, Germany
2Université Catholique de Louvain, Belgium
{Isuresh @inet.tu-berlin.de, marco.canini @uclouvain.be}

Abstract

In an Infrastructure-as-a-Service (laaS) environment,
it is paramount to perform intelligent allocation of
shared resources. Placement is the problem of choos-
ing which virtual machine (VM) should run on which
physical machine (PM), whereas Scheduling is the
problem of sharing resources between multiple co-
located VMs. An efficient placement and scheduling
is one, that in addition to satisfying all constraints,
increases the overall utilization of physical resources
such as CPU, storage, or network. Determining an
efficient placement and scheduling is a very challeng-
ing problem, especially in face of conflicting goals and
partially available information about workloads.

In order to reason about placement, we first tackle the
problem of performance interference that may affect
co-located VMs—when there is more demand by mul-
tiple VMs for a resource than is available at a given
instant of time. We thus characterize the performance
of Hadoop in a shared and virtualized setting.

1. Introduction

The focus of our study is multi-tenant, multi-purpose
Infrastructure-as-a-Service (IaaS) cloud data centers,
wherein servers are virtualized, with multiple tenants
deploying applications atop shared infrastructure. Uti-
lizing compute, storage and network resources effi-
ciently is a crucial objective in these environments
as virtual machines (VMs) are collocated on physical
servers and contend for a set of shared resources on
the physical server and network.

However, it is well-known that virtualized comput-
ing environments can suffer from performance inter-
ference (see e.g., [4]). More precisely, due to imper-
fect performance isolation by the underlying hyper-
visors and lack of fine-grained bandwidth assurances
across tenants within the network, the performance of

a VM may suffer due to collocated VMs. Such per-
formance interference can lead to unpredictable delays
for the cloud tenant, which would ultimately manifest
in failed service-level agreements (SLAs) at the appli-
cation level and in loss of business revenue.

To mitigate performance interference, it is thus im-
portant to balance the different workloads of various
tenants across the data center. While VMs from dif-
ferent tenants may be collocated on the same physi-
cal host, different tenants in the data center may have
varying demands for resources depending on the ap-
plications that they are running. For instance, a tenant
running a Hadoop [3] deployment on the cloud may
have a greater demand for disk I/O bandwidth than a
tenant managing a multi-tier website. Depending on
the resource demands of different applications being
run by different tenants, VMs may experience varying
degrees of performance interference due to contention
for shared resources. Thus, the performance degrada-
tion experienced by different VMs is sensitive to the
specific placement of VMs in the data center [7].

Since this performance degradation depends on the ap-
plications being run within the VMs, understanding
how applications behave and where their bottlenecks
are may allow an operator to perform smarter place-
ment of VMs within the data center. This project
takes a fresh look at the fundamental problem of
application placement in the private cloud environ-
ment. Application placement is the task of decid-
ing which VM runs on which physical server. There
have been proposals to address application placement
from both theoretical and systems standpoints. For
instance, theoretical approaches model the environ-
ment as a multi-dimensional bin packing problem [8]
or provide schedules based on statistical models [1].
However, these models are too coarse to accurately
account for performance interference, which require
fine-grained experimentation to observe. On the other
hand, [S5, 6, 2, 9] propose techniques to identify per-
formance interference by observing low-level system

metrics on individual VMs and then making placement
decisions to minimize it or allocating more resources
to compensate for interference. However, these ap-
proaches do not exploit the specific characteristics and
goals of the applications.

In fact, in today’s cloud ecosystem, most applica-
tions are distributed across more than one VM. With
service-oriented architectures becoming the norm,
systems are decomposed into multiple, loosely cou-
pled, communicating clusters of components. An in-
dividual logical component in an application could by
itself be a self-healing system comprised of multiple
nodes, which have built-in mechanisms to compen-
sate for stragglers or slower nodes (e.g, MapReduce’s
scheduler). Taking these aspects into consideration,
we argue that performance interference should be rea-
soned about at the granularity of logical components
of the application using application-specific metrics,
and not at the granularity of the individual VMs using
system-level metrics. This project aims to demonstrate
this fact experimentally.

In order to design application- and interference-aware
approaches to plan application placement in multi-
tenant clouds, we first try to characterize the perfor-
mance of different systems under multi-tenant envi-
ronments. This information can then be used to ef-
fectively place applications in a cloud, as show in the
methodology illustrated in Figure 1. In the findings
presented below, we present performance results of
running Hadoop in shared environments.

2. Usage of Future SOC Lab

HPI FSOC Lab provided us access to a state-of-the art,
1000-core computing cluster. The cluster consists of
25 nodes, each equipped with 40 cores at 2.40 GHz,
1 TB RAM, 3.6 TB SSD storage and 10 Gbps Ether-
net. To use this cluster for our experimental study, we
needed it to be configured as a virtualized cloud en-
vironment, and we obtained simultaneous, dedicated
access to all nodes.

We ran experiments of the Hadoop cluster under mul-
tiple configurations and co-location scenarios.

e Baseline: every VM of the Hadoop cluster is run-
ning on a separate physical machine.

e Co-located Datanodes: two Hadoop Datanode
VMs from the same cluster are co-located each
physical machines.

e Co-located Clusters: a VM each from two differ-
ent Hadoop clusters are co-located on the same
physical machine.

Through our runs, we vary the number of reducers
used by Hadoop, the Hadoop scheduler being used
(Capacity and Fair schedulers), and we enable/disable
speculative execution (wherein tasks are speculatively

cloned to account for stragglers). We use the follow-
ing notations to describe the combinations of these pa-
rameters. cpt and cpf represent the use of the Capac-
ity Scheduler along with speculative execution enabled
and disabled, respectively. fst and fsf represent the use
of the Fair Scheduler along with speculative execution
enabled and disabled, respectively. The workload we
run is the TeraSort benchmark that is packaged with
the Hadoop distribution, with four jobs submitted in
parallel.

3. Findings

In this section, we describe some of our findings.
Figure 2 represents measurements of the difference
between the maximum and minimum job completion
times when submitting four TeraSort jobs to the cluster
at the same time, under varying scenarios. We use this
as an indication of fairness in the system. We find that
the baseline and co-located Datanodes scenarios pro-
vide identical fairness when using different schedulers
and regardless of whether speculative execution is en-
abled or disabled. However, in the co-located clusters
scenario, we observe that due to performance inter-
ference from each cluster on the other, the system is
unable to guarantee fairness in job completion times
even when using the Hadoop Fair Scheduler. Figure 3
describes the same set of results but when using 10 re-
ducers instead of 1. Since Hadoop can now distribute
the reduce tasks over multiple nodes, the skew in job
completion times is minimized, but still remains sig-
nificant in the co-located clusters scenario.

One challenge we faced in obtaining more results and
measurements was that the specifications of the phys-
ical machines being used deviated significantly from
those used in typical Infrastructure-as-a-Service de-
ployments, where servers have a different CPU cores
to I/0 bandwidth ratio.

4. Summary and Future Work

Our studies indicate that performance interference not
only affects the job completion times of Hadoop di-
rectly, but also leads to interference in the Hadoop
schedulers, affecting the guarantees they are expected
to provide (such as fairness). We plan to use these
measurements in order to prepare measurement-driven
interference models which can in turn be used as in-
put to placement algorithms which can be used to map
VMs to physical machines in cloud environments. Our
study will also extend to other systems such as key-
value stores and the interactions between these sys-
tems.

5. Acknowledgements

We would like to thank the system administrators of
the Future SOC-Lab infrastructure for their support, in

® ®

Virtual Overlay Graph
Machines Causal Path >
fmm———-- . Analysis
@
=0 O,
! 1
Ol g Ouo= s
! : A T’p Oty Minimizing
1
; I) T : :
' - , 1 Online 1 Baseline Profile | .
! 1 . ' + '
CETE ! I SaNADOXING | ey Resource Profile | 1
I and Offline ' + \ I
Analysis . '
1 y 1 Interference Matrix , 1
: ® ®: :
1 1
1 1

Figure 1. At a high level, our workflow combines online and offline measurements of ap-
plications with specific information about the application’s internals in order to perform
interference minimizing placement.

particular with setting up OpenStack on the machines.
We also thank Zubair Khwaja Sediqi for help with the
setup of the measurement code and workloads.

References

[1] R. C. Chiang and H. H. Huang. Tracon: interference-
aware scheduling for data-intensive applications in vir-
tualized environments. In Proc. ACM SC, 2011.

[2] D. Novakovi¢ et al. Deepdive: Transparently identify-
ing and managing performance interference in virtual-
ized environments. In Proc. USENIX ATC, 2013.

[3] A. Hadoop. http://hadoop.apache.org/, last
accessed Dec 20th, 2013.

[4] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen,
and C. Pu. An analysis of performance interference ef-
fects in virtual environments. In Performance Analysis
of Systems & Software, 2007. ISPASS 2007. IEEE Inter-
national Symposium on, pages 200-209. IEEE, 2007.

[5] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen,
and C. Pu. An analysis of performance interference ef-
fects in virtual environments. In Proc. IEEE ISPASS,
2007.

[6] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-
aware clouds. In Proc. EuroSys, 2010.

[7] A. Roytman, A. Kansal, S. Govindan, J. Liu, and
S. Nath. Algorithm design for performance aware vm
consolidation.

[8] B. Urgaonkar, A. Rosenberg, and P. Shenoy. Applica-
tion placement on a cluster of servers. [Int. J. Found.
Comput. Sci., 2007.

[9] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
avoiding long tails in the cloud. In Proc. NSDI, 2013.

Experiment 1(1 Reducer): Max—Min Comparison of Schedulers' Performance

3 ‘
_ . '
s B Baseline - ' °
B Colocated Datanodes . :
B Colocated Clusterfl !
=] O Colocated Clusterp
o | —_
N - '
1 —
! '
L
1) —_ |
o ' |
g 8 - ' '
S 3 ! ;
@ '
2 — ' '
£ ' —
£ g ‘
£ 84 L
c " ' ' '
2 : : ‘ \
k] .
g :
£ o ' —
S o !
o © '
o | L
S , J
S ,
o 1
o '
< ! — |
' _ —_ R
e — 1
S ' .
N ' ,
o o - -
T T T T T

T T T T T T T T T T
cpt cpt cpt cpt cpf cpf cpf cpf fst fst fst fst fsf fsf fsf fsf

Schedulers

Figure 2. When using the capacity and fair scheduler for Hadoop, the systems are unable
to guarantee fairness of job completion times when running as co-located clusters due to
performance interference.

Experiment 2(10 Reducer): Max-Min Comparison of Schedulers' Performance

300 400
1 1

Job completion time in seconds
200

100
|

T T T T T T T T T T T T T T T T
cpt cpt cpt cpt cpf cpf cpf cpf fst fst fst fst fsf fsf fsf fsf

Schedulers

Figure 3. As with the single reducer case, the systems are unable to guarantee fairness of
job completion times when running as co-located clusters. However, using more reducers
reduces the skew in job completion times.

